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Reverse Derivations on δ-prime rings
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Abstract. In this paper, we generalized Posner’s theorem, then, Mayne’s theorem has been ex-
tended to get a main result, and presented by the following theorem, if δ is a nonzero centralizing
reverse derivations on a nonzero δ-ideal U of δ –prime ring R, then R is commutative.
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1. Introduction

Throughout this paper, R assumed to be an associative ring with unity and the center
Z(R), the commutator is defined as [u, v] = uv − vu, is also called a Lie commutator for
elements u, v ∈ R, the symbol C(R) stand for the set of all commutator ideals generated
by [u, v], the set annU = {r ∈ R : rU = 0} is the annihilator of U of R. The smallest
positive integer n such that n · u = 0 for all u ∈ R is the characteristic of the ring R.

We will employ some commutator properties like [uv,w] = u[v, w]+[u,w]v and [u, vw] =
v[u,w] + [u, v]w ∀u, v, w ∈ R. Furthermore, we recall that R is called a prime ring if
uRv = {0}, then either u = 0 or v = 0, and by analogy, R is called a semiprime ring, for
u ∈ R, if uRu = {0}, then u = 0.

A map F from R to R is said to be a centralizing on U if [u, F (u)] ∈ Z(R) for
all u ∈ U . An additive map δ : R → R is called a derivation on R, if the condition
δ(uv) = δ(u)v + uδ(v), ∀u, v ∈ R holds, while an additive map δ : R → R is said to be a
reverse derivation on R if satisfies the rule δ(uv) = δ(v)u+ vδ(u), ∀u, v ∈ R.

Furthermore, for a fixed element u ∈ R the additive map ∂u : R → R defined by,
∂u(v) = uv − vu, where v ∈ R is called a partial derivation generated by u ∈ R (∂u(U) =
[u, U ] = {[u, t] : t ∈ U}).
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Let ∆ be a subset of the set of all derivations D on R. An ideal U of R such that
δ(U) ⊆ U is used to be called a δ- ideal of R. A ring R is called δ-prime if, for any two
δ- ideals U, V of R, the condition UV = 0 infers that either U = 0 or V = 0, equivalently,
we call a ring R that δ- semiprime, for U ⊆ D, if [U,U ] ̸= 0, implies U ̸= 0.

Moreover, other terminologies are standard and they were considered as in [10],[11]
and [12].

Posner’s First Theorem demonstrated that the composition of two nonzero derivations
on a prime ring R, with charR ̸= 2, is not a derivation. The Second Theorem of Posner
proved that if the nonzero derivation d on a prime ring R is a centralizing on R, then R
is commutative [26].

Mayne generalized Posner’s theorem when a ring R has an automorphism or a nonzero
centralizing derivation on some ideal U ̸= 0, concluding that R is commutative [22].

Likewise, some generalizations of these results with different ways for a prime and
semiprime rings are condidered in [6, 7, 13, 14, 21–24, 26, 28, 29]. In general, they have
showed commutativity of prime and semiprime rings admit centralizing derivations on
specific subsets of R.

Overall, Brešar and Vukman who started the researching on reverse derivation concept
(see [8]), recently, Samman and Alyamani [27] came, with many properties of reverse
derivations in prime (resp. semiprime) rings.

2. Preliminaries

Many researchers studied the properties of Lie rings with derivations D of differentially
simple, prime and semiprime rings (see for example [1–4], [14, 15], [16, 17] and [18, 28],
where further references can be found for the widening in this field.

Passman in [25], has investigated the commutative rings with semiprime Lie ring D.
There are many papers in this line, as [9, 19, 20].

The following main lemmas that will be used to prove our new results, to which we
shall refer, stated as in the following:

Lemma 1. [26, Lemma 3] Let R be a prime ring, and d a derivation of R such that
ad(a)− d(a)a = 0 for all a ∈ R. Then R is commutative.

Lemma 2. [21, Theorem] Let R be a prime ring with a nontrivial centralizing automor-
phism. Then, R is a commutative integral domain.

Lemma 3. [22, Theorem]
Let R be a prime ring and A ̸= {0} be an ideal of R. If R has a nontrivial automorphisim
or derivation T such that uuT − uTu is in the center of R and uT is in U for every u in
U , then R is commutative.

Lemma 4. [4, Lemma 13] Let A ̸= 0 be a Lie δ-ideal of a δ-semiprime and subring of a
ring R of charR ̸= 2. Then A ⊆ Z(R) or A contains a non-central δ-ideal of R.
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Therefore the purpose of our research is to study the structure of reverse derivation on
δ– prime ring and some properties of centralizing reverse derivations on nonzero δ– ideal
of δ– prime ring.

3. Some properties and examples of Reverse Derivation

In fact, it is not necessary that every derivation is a reverse derivation on a ring R or
vice versa. Taking into consideration when the ring R is commutative, then the derivation
and the reverse derivation are coincides. Therefore it is possible to define an example
about this case.

Example 1. Let R =

{[
u v
0 0

]
: u, v ∈ T

}
, such that T is a ring with T 2 ̸= {0}. Let

δ : R → R be an additive mapping defined as

δ

([
u v
0 0

])
=

[
0 v
0 0

]
: ∀u, v ∈ T.

and δ̀ : R → R be an additive mapping defined as

δ̀

([
u v
0 0

])
=

[
0 u
0 0

]
: ∀u, v ∈ T.

It is easy to see that δ is a derivation, but not a reverse derivation, while δ̀ is both a
derivation and a reverse derivation.

Now, if the ring R is commutative, then

δ(uv) = δ(vu).

if δ is a derivation on a ring R, so

δ(uv) = δ(u)v + uδ(v)

and
δ(vu) = δ(v)u+ vδ(u).

This means
δ(u)v + uδ(v) = δ(v)u+ vδ(u).

Thus, δ is a reverse derivation too.

Lemma 5. Let R be a δ-prime ring, U ̸= {0} a δ-ideal of R, which δ ̸= 0 a reverse
derivation on a R. If δ(U) = 0, then δ(R) = 0.

proof. Since U is δ-ideal of R, then

RU ⊆ U and UR ⊆ U.
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So

δ(RU) ⊆ δ(U) = 0 and δ(UR) ⊆ δ(U) = 0,

then

δ(RU) = δ(UR) = 0.

Since δ is a reverse derivation then,

δ(RU) = δ(U)R+ Uδ(R) = 0 and δ(UR) = δ(R)U +Rδ(U) = 0,

this means

Uδ(R) = δ(R)U = 0.

Thus, we deduce that δ(R) ⊆ annU , but U is a δ-ideal, hence δ(R) = 0.

Lemma 6. Let δ ̸= 0 be a reverse derivation on a δ-ring R and let U ̸= {0} be δ-ideal of
R. If

[δ(u), u] = 0 ∀u ∈ U, (1)

then R is commutative.

proof. Now, let linearize the identity (1) on U , then we have for all u, v ∈ U

0 = [δ(u+ v), u+ v] = [δ(u), u] + [δ(u), v]+

[δ(v), u] + [δ(v), v] = [δ(u), v] + [δ(v), u].

[δ(u), v] = [u, δ(v)]. (2)

Write vδ(u) instead of δ(u) in (2), then we get

[u, δ(v)] = [vδ(u), v] =

v[δ(u), v] + [v, v]δ(u) =

v[δ(u), v] = v[u, δ(v)] =

vuδ(v)− vδ(v)u = vuδ(v)− δ(v)vu = [vu, δ(v)] =



I. Taha et al. / Eur. J. Pure Appl. Math, 15 (4) (2022), 2032-2042 2036

[δ(vu), v] = [δ(u)v + uδ(v), v] =

[δ(u)v, v] + [uδ(v), v] = [δ(u), v]v + [u, v]δ(v)

[v, u]δ(v) = 0. (3)

Now, replace u by uv in (3), then,

[v, uv]δ(v) = 0,

[v, u]vδ(v) = 0,

thus

[v, u]Uδ(v) = 0.

Hence, since R is a δ-prime ring, either δ(u) = 0, then u = 0 and this contradicts
the assumption, or [v, u] = 0 for all u, v ∈ U , therefore U is commutative. So we get
UC(R) = 0, then C(R) = 0, hence R is commutative.

4. Reverse Derivation on δ- Ideal

Through this section, we will prove several lemmas arriving to the extension of lemma
(1), presented by the main theorem.

Lemma 7. Let R be a δ-prime ring and let δ ̸= 0 be a reverse derivation on R. If
u[δn(u), R] = 0, ∀u ∈ R or [δn(v), R]u = 0, ∀u, v ∈ R, n ∈ Z+. Then either u = 0 or
v ∈ Z(R).

proof. Assume u, v ∈ R and n ∈ Z+, then from the assumption

u[δn(u), R] = 0,

this equivalents to

u∂δn(v)(R) = 0, (4)

then
0 = u∂δn(v)(ab) = u∂δn(v)(b)a+ ub∂δn(v)(a), ∀a, b ∈ R

Now from (4)

ub∂δn(v)(a) = 0,



I. Taha et al. / Eur. J. Pure Appl. Math, 15 (4) (2022), 2032-2042 2037

This means

uR[δn(v), a] = 0.

Consequently,

uRδk([δn(v), a]) = 0.

What forces that u = 0 or [δn(v), a] = 0. Hence v ∈ Z(R).

Lemma 8. Let R be a δ-prime ring and let U ̸= {0} be a right δ-ideal, which δ is a
reverse derivation on R. If U is commutative, then R is commutative.

proof. Assume that u ∈ U . Since U is commutative, then ∂u(U) = [u, U ] = 0. Now
by lemma (5), ∂u(R) = 0, then u ∈ Z(R),∀u ∈ U , hence U ⊆ Z(R). Thus C(R) = 0, this
means R is commutative.

Lemma 9. Let R be a δ-prime ring and δ ̸= 0 a reverse derivation on R. If [v, δn(u)v] ∈
Z(R),∀u, v ̸= 0 ∈ R,n ∈ Z+, then u ∈ Z(R).

proof. Assume a ∈ R, then we get

0 = [δn(u)v, a] = δn(u)[v, a] + [δn(u), a]v = [δn(u), a]v.

Then, by lemma (7), u ∈ Z(R).

Lemma 10. Let R be a δ-prime ring of charR ̸= 2 and let U be a δ-ideal of R, which
δ ̸= 0 is. If

[a, δ(a)] ∈ Z(R) ∀a ∈ U, (5)

then [a, δ(a)] = 0.

proof. Assume that a, b ∈ U . Now by linearlizing the identity (5), we see

[a+ b, δ(a+ b)] = [a, δ(a)] + [a, δ(b)] + [b, δ(a)] + [b, δ(b)],

= [a, δ(b)] + [b, δ(a)],

then, from (5)

[a, δ(b)] + [b, δ(a)] ∈ Z(R). (6)

Now replace b by a2 in (6), we have

[a, δ(a2)] + [a2, δ(a)] = [a, δ(a)a+ aδ(a)] + [a2, δ(a)].
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Then,
[a, δ(a2)] + [a2, δ(a)] = 4a[a, δ(a)] ∈ Z(R).

Hence,

a[a, δ(a)] ∈ Z(R). (7)

Therefore,

[a[a, δ(a)], δ(a)] = 0

a[a, δ(a)]δ(a)− δ(a)a[a, δ(a)] = 0

[a, δ(a)](aδ(a)− δ(a)a) = 0

[a, δ(a)]2 = 0.

From (5),

δ([a, δ(a)]) ∈ Z(R)

and

δ([a, δ(a)]) = [δ(a), δ(a)] + [a, δ2(a)] = [a, δ2(a)].

We obtain,

δ([a, δ2(a)]) ∈ Z(R).

Now

δ([a, δ2(a)]) = [δ(a), δ2(a)] + [a, δ3(a)] = [a, δ3(a)].

Then,

[a, δ3(a)] ∈ Z(R). (8)

Now, using the induction on a number n, so we have

[a, δn(a)] ∈ Z(R). (9)

replacing b in (6) by aδn(a), we have

[a, δ(aδn(a))] + [aδn(a), δ(a)] ∈ Z(R).
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Then,

[a, δ(aδn(a))] + [aδn(a), δ(a)] =

[a, δn+1(a)a+ δn(a)δ(a)] + [aδn(a), δ(a)] =

[a, δn+1(a)a] + [a, δn(a)δ(a)]− [δ(a), aδn(a)] =

[a, δn+1(a)]a+ δn(a)[a, δ(a)] + [a, δn(a)]δ(a)− a[δ(a), δn(a)]− [δ(a), a]δn(a) = S.

Then,

0 = [S, δn(a)] =[[a, δn+1(a)]a, δn(a)]+ (10)

[δn(a)[a, δ(a)], δn(a)]+

[[a, δn(a)]δ(a), δn(a)]−
[a[δ(a), δn(a)], δn(a)]−
[[δ(a), a]δn(a), δn(a)].

Now substituting instead b in (6) by a2δn(a), then we get

[a, δ(a2δn(a))] + [a2δn(a), δ(a)] ∈ Z(R).

Then,
[a, δ(a2δn(a))] + [a2δn(a), δ(a)] =

[a, δ(a)aδn(a))] + [a, aδ(a)δn(a)] + [a, a2δn+1(a)]− [δ(a), a2δn(a)] =

4[a, δ(a)]aδn(a) + [a, δn(a)]aδ(a) + [a, δn(a)]δ(a)a+ [a, δn+1(a)]a2 − [δ(a), δn(a)]a2 = M.

Now, multiply M by [a, δn(a)] and in view of (10), w have

[a, δn(a)]2aδ(a) + [a, δn(a)]2δ(a)a− [δ(a), δn(a)][a, δn(a)]a2.

Then, by continue the processes, we obtain

[a, δn(a)]3δ(a) = 0,

and so
[a, δn+1(a)]4δ(a) = 0,
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then,
[a, δn+1(a)]4R = 0,

This means

B =
∞∑
n=1

∑
a∈U

[a, δn(a)]R

is a sum of nilpotent ideals and so U is a nil ideal, then B = 0. this means [a, δ(a)] = 0.

Lemma 11. Let R be δ- prime ring of charR ̸= 2 and let δ be a reverse derivation, such
that [a, δ(a)] ∈ Z(R),∀a ∈ R. Then R is commutative.

proof. Recall that U = [R,R] is a Lie ideal of a prime ring R. Moreover,

δ([R,R]) ⊆ [R,R].

Since every ideal in δ- prime ring is a δ- ideal, Now, if U = [R,R] is commutative,
then, C(R) is a nil ideal (see [5], Lemma 1.7). Hence C(R) = 0 and R is commutative.
Therefore, by using lemma (4), U = [R,R] contains a δ- ideal of R. Thus, by (6), this
implies [a, δ(a)] ∈ Z(R), ∀a ∈ R, this gives δ(U) ∈ Z(R), then for all a ∈ U , ([a, δ(a)] = 0,
and based on lemma (8) R will be commutative.

Now, The proof of the next and main theorem is just a generalization of the lemmas
(2) and (3) which is represented as the following:

Theorem 1. Let R be δ- prime ring of charR ̸= 2 and U ̸= {0} be a δ- ideal, which δ ̸= 0
is a reverse derivation. if [u, δ(u)] ∈ Z(R),∀u ∈ U. Then R is commutative.

proof. From [u, δ(u)] ∈ Z(R), then, by lemma (6), we have

[u, δ(u)] = 0.

Then using lemma (8) and since R is δ- prime ring, which [u, δ(u)] = 0. then R is
commutative.
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