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Abstract. Let G be agraph. A set S C V(G) is a hop dominating set of G if for every v € V(G)\S,
there exists v € S such that dg(u,v) = 2. The minimum cardinality v,(G) of a hop dominating
set is the hop domination number of G. Any hop dominating set of G of cardinality v,(G) is a
vp-set of G. A hop dominating set S of G which intersects every v,-set of G is a transversal hop
dominating set. The minimum cardinality 7, (G) of a transversal hop dominating set in G is the
transversal hop domination number of G. In this paper, we initiate the study of transversal hop
domination. First, we characterize graphs G whose values for 4, (G) are either n or n — 1, and
we determine the specific values of 3 (G) for some specific graphs. Next, we show that for every
positive integers ¢ and b with a > 2 and b > 3a, there exists a connected graph G on b vertices
such that 7}, (G) = a. We also show that for every positive integers a and b with 2 < a < b,
there exists a connected graph G for which ~,(G) = a and 4,(G) = b. Finally, we investigate
the transversal hop dominating sets in the join and corona of two graphs, and determine their
corresponding transversal hop domination numbers.
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1. Introduction

The concept of domination in graphs was first introduced by Ore [16] in 1958
and C. Berge [2] in 1962. Thereafter, domination as well as its numerous variations have
become among the most extensively studied research areas in graph theory.

Given a family € of sets, a transversal of € is a set containing at least one element
from each member of ©. Transversals in graphs have received high attention since the last
30 years. In 1991, T. Andreae et al. [21] studied the clique-transversal sets of line graphs.
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In 1996, the vertex transversals that dominate is introduced in [5]. The independent
transversal domination is being investigated in [6, 20, 22]. Recently, A. Alwardi et al.[18,
19] investigated the transversal domination in graphs. In this paper, we introduce and
initiate the study of transversal hop domination.

All graphs considered here are finite, simple and undirected. For basic graph termi-
nologies, we refer the readers to [3]. For a graph G = (V(G), E(G)), V(G) and E(G) are
its vertex set and edge set, respectively. For S C V(G), |S| refers to the cardinality of S.
In particular, |[V(G)| is the order of G.

Given two graphs G and H with disjoint vertex sets, the union of G and H is the graph
GUH whose vertex set is V(GUH) = V(G)UV (H) and edge set E(GUH) = E(G)UE(H).
The join of G and H is the graph G + H with vertex set V(G) U V(H) and edge set
E(G)UE(H)U{uw :u € V(G),v € V(H)}. The corona of G and H is the graph G o H
obtained by taking one copy of G and |V (G)| copies of H, and then joining the i** vertex
of G to every vertex in the i*" copy of H. In G o H, we denote by H® that copy of H
which is being joined to the vertex v of G. We also denote by H” + v that subgraph
({v} UV (H")) of G o H induced by {v} UV (H").

For a vertex v of G, the open neighborhood of v in G is the set Ng(v) = {u € V(G) :
wv € E(G)}, while the closed neighborhood of v in G is the set Ng[v] = Ng(v) U{v}.
Any vertex u € Ng(v) is called a neighbor of v. The degree of a vertex v of G, denoted
by dega(v), is the number |Ng(v)| of neighbors of v. The distance between two vertices
u,v € V(G) is the number of edges in a shortest path that joins vertex u to vertex v,
and is denoted by dg(u,v). Such shortest u-v path is called u-v geodesic. We define
diam(G) = max{dg(u,v) : u,v € V(G)}. Any geodesic of length equal to diam(G) is
called a diametral path.

For S C V(G), Ng(S) = UyesNg(v) and Ng[S] = Ng(S)U S. If NglS] = V(G)
(resp. Ng(S) = V(G)), then S is a dominating set (resp. total dominating set) of G.
For total dominating sets, G necessarily has no isolated vertex. The smallest cardinality
of a dominating (resp. total dominating) set S of G, denoted by v(G) (resp. (G))
is called the domination number (resp. total domination number). A dominating (resp.
total dominating) set S of G with |S| = v(G) (resp. |S| = 1(G)) is called a y-set (resp.
~vi-set) of G. The reader is referred to the following references, namely [4, 7-12, 14], for the
history and a bit of the succeeding developments of the theory of domination in graphs.

For two vertices u and v of G, v is a hop neighbor of vertex u if dg(u,v) = 2. The set
Ng(u,2) = {v € V(G) : dg(v,u) = 2} is called the open hop neighborhood of u. The closed
hop neighborhood of u in G refers to Ng[u, 2] = Ng(u,2)U{u}. For S C V(G), the open hop
neighborhood and closed hop neighborhood of S refer to the sets Ng(S,2) = UyesNa(u, 2)
and Ng[S,2] = Ng(S,2) U S, respectively. In case Ng[S,2] = V(G), then S is a hop
dominating set (or HD-set) of G. Provided G has no isolated vertex, S is a total hop
dominating set (or tH D-set) of G if N(S,2) = V(G). The minimum cardinality of a H D-
set (resp. tHD-set) of G, denoted by v,(G) (resp. 1 (G)), is called the hop domination
number (resp. total hop domination number) of G. Any H D-set (resp. tH D-set) with
cardinality v, (G) (resp. v (G)) is called a ~yp,-set (resp. yu-set). References [15] and [17]
are excellent references for hop domination and total hop domination, respectively.
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A set S C V(G) is a (1,2)*-dominating set of G (resp. (1,2)*-total dominating set)
if it is both a dominating (resp. a total dominating) set and a hop dominating set of G.
The smallest cardinality of a (1,2)* -dominating (resp. (1,2)*-total dominating) set of G,
denoted by 7{ 5(G) (respAi(G)) is called the (1,2)* -domination number (resp. (1,2)*
total domination number) of G. A (1,2)* -dominating (resp. (1,2)* -total dominating) set
S with [S] = 7] 5(G) (resp. |S| = 7{%(G)) is called a 77 y-set (resp. 7i%y-set) of G. The
concept of (1,2)*-domination (a variation of (1,2)-domination) is introduced in [1].

A subset S of V(G) is a point-wise non-dominating set (or PN D-set) of G if for each
v € V(G)\ S, there exists u € S such that v ¢ Ng(u). The smallest cardinality of a
PN D-set of G, denoted pnd(G), is called the point-wise non-domination number of G.
Any point-wise non-dominating set S of G with |S| = pnd(G) is called a pnd-set of G.
The concept of point-wise non-domination was introduced in [1].

A hop dominating set S of G which intersects every y,-set of G is called a transversal
hop dominating set or (T'HD-set). In other words, a TH D-set is a hop dominating set
of G which is represented by every y,-set of G. The minimum cardinality of a T H D-set
of G is called the transversal hop domination number of G and is denoted by 74, (G). Any
THD-set S of G with |S| =7,(G) is called a J,-set.

2. Preliminary Results

Clearly, v,(G) < n(G) < n for all connected graphs G of order n. In particular,
Y (G) =1if and only if G = K.

Proposition 1. Let G be a connected graph of order n. Then
(1) An(G) = n if and only if G is a complete graph.
(ii) Forn >3, A,(G) = n—1 if and only if G is one of the graphs Py, Cy and Ko+ K, .

Proof. Tt is clear that if G = K, then 74(G) = A4(G) = n. Conversely, suppose
Ar(G) = n. The conclusion is clear if n = 1,2. Assume n > 3. Suppose G is not complete.
Since G is connected, there exist u,v € V(G) such that dg(u,v) = 2. Let S = V(G) \ {v},
and let T be a p-set of G. Clearly, S is an HD-set of G. If v ¢ T, then T C S.
Suppose that v € T. Since {v} is not a hop dominating set of G, there exists w € T' with
w # v. Thus, w € SNT. Since T is arbitrary, S is a THD-set of G. Consequently,
An(G) < |S| =n — 1, a contradiction. Thus, G is a complete graph.

If G is one of the graphs Py, C4 and K3 + K,_5 where n > 3, then 7,(G) = n — 1.
Conversely, assume that 75 (G) = n — 1. Suppose diam(G) > 4. Then G has order n > 5.
Let u,v € V(G) such that dg(u,v) = 4. Then {u,v} is not a y,-set of G. It follows that
S =V(G)\{u,v}is a THD-set of G. Thus, 7,(G) < |S| = n—2, a contradiction. Hence,
diam(G) < 3. Consider the following cases:

Case 1: Suppose that diam(G) = 3. Then G has order n > 4. Let P = [u,w,x,v]

be a diametral path in G. Let y € V(G) \ V(P) that is adjacent to any of the vertices
in P. If wy € E(G), then S = V(G) \ {u,y} is a HD-set of G. Since {u,y} is not
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a HD-set of G, S is a THD-set of G. Thus, 7,(G) < |S| = n — 2, a contradiction.
Similar contradiction is attained if zy € F(G). Suppose that uy € E(G). Necessarily,
2 < dg(y,v) < 3. Since {w,y} is not a HD-set of G, S = V(G) \ {w,y} is a THD-set
of G. Thus, J,(G) < |S| = n — 2, a contradiction. A similar contradiction is attained if
yv € E(G). Therefore, G = P = P.

Case 2: Suppose that diam(G) = 2 and G # Cy. Then G has order n > 3. Let u,v €
V(@) such that dg(u,v) = 2. First, we claim that uz, vz € E(G) for all x € V(G) \ {u,v}.
This is clear if n = 3 i.e., G = P3. Assume n > 4. Let [u,w,v] be a geodesic in G, and
let y € V(G) \ {u,w,v}. Suppose that uy ¢ E(G). Then dg(u,y) = 2, and say [u, z,y]
is a u-y geodesic in G. The desired contradiction is attained as we consider the following
subcases:

Subcase 2.1: Suppose that z = w. Observe that S = V(G) \ {v,y} is a HD-set of
G. Since T = {v,y} does not hop-dominate w, T is not a HD-set of G. Thus, S is a
T H D-set of G. Consequently, 74(G) < |S| = n — 2, a contradiction.

Subcase 2.2: Suppose that w # z and wy € E(G). Then S = V(G) \ {v,y} is a
HD-set of G. Since T'= {v,y} is not a HD-set of G, S is a T'H D-set of G. This means
that 7,(G) < |S| =n — 2, a contradiction.

Subcase 2.3: Suppose that w # z and dg(y,w) = 2. Let [y, x,w] be a y-w geodesic
inG. If x =z, then S = V(G)\ {u,y} is a TH D-set of G as {u, y} does not hop-dominate
z. If ¢ # z, then S = V(G) \ {w,y} is a THD-set of G as {w,y} does not hop-dominate
x. Accordingly, 7,(G) < |S| = n — 2, a contradiction.

Therefore, uz € E(G) for all x € V(G) \ {u,v}. Similarly, vz € E(G) for all = €
V(G)\ {u,v}.

Next, we claim that H = (V(G)\{u, v}) is complete. Suppose not, and let z,y € V(H)
with dg(x,y) = 2. Let [z, z,y] be a geodesic in H. In particular, [u,z,v] is a geodesic
in G by the above claim. Observe also that S = V(G) \ {u,y} is a HD-set of G. By
the first claim, uz € E(G). Thus, {u,y} does not hop-dominate z. This means that S is
a THD-set of G. Consequently, 7,(G) < |S| = n — 2, a contradiction. Therefore, H is
complete. Accordingly, G = ({u,v}) + H = Ko + K,,—2. O

Theorem 1. If G is a disconnected graph with components G1,Go, ..., Gy, then

m

(G) = min {Fu(Ge)+ > (G}

1<k<m .=
J=1j#k

In particular, Yp(Ky) = n.

Proof. For each k € {1,2,...,m}, let D and Sj be a J-set and a 7,-set, respectively,
of Gi. Then Dy U (U;.”zl #ij> is a THD-set of G for all k € {1,2,...,m}. Thus,
(G) < ming <p<m {0 (Gr) + 22711 j2, m(G)}
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To get the other inequality, let S be any TH D-set of G. Then T, = S N V(Gy) is
a HD-set for all k € {1,2,...,m}. We claim that T} is a THD-set of G}, for at least
one k € {1,2,...,m}. Suppose not, and let, for each k € {1,2,...,m}, Sp be a -
set of Gy for which T, NSy = @. Since U] Sk is a yu-set of G, SN (UJL,) Sy # 9.
Since S = U™, Ty, this is impossible and our claim holds. Hence, |S| = >7%, |T)| >
ming <g<m {Va(Gr) + 2711 j26 (Gj)}- O

Theorem 2. Let G be any nontrivial graph. Then 4 < 3,(G) + Ar(G) < 2n, and these
bounds are sharp.

Proof. Let G be any nontrivial graph. Then, we have 2 < 7,(G) < n. Similarly,

2 <A,(G) < n. Therefore, 4 < ,(G) + F1(G) < 2n.

To show sharpness of the bounds, consider G = K> for the lower bound and G = K,
for the upper bound. O

3. On some specific graphs

Proposition 2. Let G = Ky, m,,....m, be a complete multipartite graph such that 1 <
mi<mo <...<myg, and k > 2. Then

’/')/\h(G) =m;+k—1
In particular, for m,n > 1, 3p(Kpn) = 1 + min{m,n}.

Proof. Let Uy, U, . .. Uy, be the partite sets of G with |U;| = m; foreachi € {1,2,...,k}.
Then v,(G) = k, and S C V(G) is a yu-set of G if and only if |S N U;| = 1 for each
i€{1,2,...,k}. Thus, T C V(G) is a THD-set of G if and only if T = U; U (U?Zl;#iSj)
for some i € {1,2,...,k} and @ # S; C U; for all j # i. Consequently, 7,(G) = mi+k—1.
0

Proposition 3. For a path P, on n vertices,

2. ifn=35
3, ifn=4
An(Pp) =  2r, if n = 6r

2r+1, ifn=6r+1
2r+2, ifn==6r+s,s=2,3,4,5

Proof. Let P, = [v1,v2,...,v,]. The case where n = 3,4,5 can easily be verified.
Let n > 6 and let r and s be integers for which n = 6r + s with 0 < s < 5. Let
S = {v3,v4,v9,v10, . .., Ver—3, V6r—2}. If s =0, then S is the unique 7;-set of P,. In this

case, YV (Pn) = Yn(Py) = 2r. If s = 1, then every ~j-set contains the vertex vy. Thus,
Ah(Ppn) = yn(Py) = 2r + 1. Suppose that s € {2,3,4,5}. Then T'= S U {v,—2,v,-1} is a
An-set of P,. Thus, 3,(P,) = |T| = 2r + 2. O
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Proposition 4. For a cycle C,, of length n,

3, ifn=4,5
An(Cn) = 2r+2, if n=6r, 6r+1
2r+3, ifn=6r+s,s=23,4,5

Proof. Let C,, = [v1,v2,...,vn,v1]. The case where n = 4,5 can easily be verified. Let
n > 6 and write n = 6r + s where 0 < s < 5. Let S = {v3, v4,...,Vr—3,V6r—2}. Then SU
{Un747 Un}a SU {Un727 Un}a Su {fUan, Un—1, Un}a Su {Unf?n Un—1, Un}a Su {Un747 Un—3, Unf2}
and S U {v,—5,Un—3,0n_2} are qp-sets of C), provided s =0, s =1, s =2, s =3, s =4
and s = b, respectively. Since |S| = 2r, the result follows. O

Proposition 5. Let G = K,,(a1,a2, - ,an) be a multi-star graph. Then 4,(G) = m for
m > 2.

Proof. Let V(K,,) = {v1,v2,...,vn} and for each i = 1,2,3...,m, let vlm; (j =

1,2,...,a;) be the pendant edges joined with v; (Figure 1 shows the particular G with

m = 4). Then the ~,-sets of G are of the form {v;, :1;;} Hence G has a unique 7p-set,

T 2

.3 L g2
Al
1 2
L1 5 oT;,

)
o ol
$34 !\W%

4

xa4 xa3

Figure 1: Multi-star K4 (a1, az2,as, as)

namely, the V(K,,). Thus, 4,(G) = m. O

Proposition 6. For the Petersen graph P, 7, (P) = 6.

Proof. Let V(P) = {x1,x2, 3,24, %5, Y1, Y2, Y3, Y4, Y5} Where x1,xo, 3, x4, x5 are the
vertices of the outer cycle and y1, ys2, 3, Y4, ys are the corresponding vertices of the inner
cycle. Then the ~,-sets of P are of the form {z;,y;} where z;y; € E(P), {z;,z;} where
ziz; € E(P), 1 # j and {y;,y;} where y;y; € E(P), i # j forall 4,5 =1,2,...,5. Thus,
S ={xi,xj, xk, yi, yj, Y } is a Yp-set of P where z; and z; are adjacent in P and the vertex
x ¢ Np(x;)UNp(x;) and yy, is adjacent to the vertex xy, in P and y;, y; ¢ Np(x;)UNp(z;).
Therefore, 3, (P) = |S| = 6. O
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Proposition 7. Let G be a firefly graph with t > 1 pendant paths, s > 1 triangles and
n—2s—2t—12>1 pendant edges. Then, v,(G) = 2.

Proof. Let G be a firefly graph as shown in Figure 2, where «a is the vertex common to
the triangles [a, asg—1, ask,a] (k =1,2,...,s), pendant edges [a,wi]| (k=1,2,...,n—2s—
2t — 1) and pendant paths [a, ux,vx] (k= 1,2,...,t) in G. If t = 1, then the 7,-sets of G
are the sets {a,u;}, {u1,v1} and the sets of the form {a,w;} for i > 1. Hence, {a,u;} is
the unique 7p-set of G. Therefore, 7,(G) = 2.

Assume t > 1. Then the vp-sets of G are of the form {a,w;} and {a,w;} for i > 1.
Since the vertex a is in every ~yp-set of G. Therefore, 7,(G) = 2. O

w3 w2 Wi

as aq

Figure 2: firefly graph F» 33

4. Realization Problems

Theorem 3. Let a and b be two positive integers with a > 2 and b > 3a. Then there
exists a connected graph G on b vertices such that Y,(G) = a.

Proof. Write b = 3a + r for some integer r > 0. Consider the corona K, o Ko, and let
x € V(K,). Obtain G from K, o Ky by joining to KJ + x, the complete graph K, (see
G in Figure 3 where a = 4 and r = 3). Then G is a connected graph on b vertices. If

Figure 3: Graph G wherea =4, r =3 and |V(G)|=3a+r =15

a = 2, then v,(G) = a and V(K,) is the unique ~y,-set of G. In this case, V(K,) is also
the unique Ap-set of G so that 7,(G) = a. If a > 3, then except for the case of a = 3
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which also includes V(K,) as a 7,-set, the y,-sets of G are all sets of the form {u,y,v}
for distinct vertices u,v € V(K,) and y € V(H") UV (H") and {p, q, 2z} where z € V(K,)
and p,q € V(K3). Thus, V(K,) is a Ap-set of G. Therefore, 7,(G) = a. O

Theorem 4. For any positive integers a and b with 2 < a < b, there exists a connected

graph G for which v,(G) = a and 3,(G) = b.

Proof. If a = b, then we consider the complete graph K,. By Proposition 1, vy, (K,) =
a = Ap(Kp). Suppose that a < b. Then b = a + n for some positive integer n. Consider
the graph G as shown in Figure 4. G is obtained from the rectangular grid graph L(a, 3)
by adding the edges w;v; and y;z; and the paths [wi,mf,yi] for each i € {1,2,...,a}
and k € {1,2,...,n}. For each i € {1,2,3,...,a}, let U; = {x;,xl,2?... 27}. Then
Yo(G) = a and S is a y,-set of G if and only if |[SNU;| =1 for all i =1,2,3,...,a and
S\UY,U; = @. In particular, the set S* = {z1, 22, x3,...,Tq—1,Zq} IS & y4-set of G. Put
D = S*UUy. For each yp-set S of G, SN D # &. Clearly, D is a 4-set of G. Therefore,

Y (G)=|D|=a+n=>0. O
U1 V2 U3 (%! Us Va—1 Va
o] (e} o] o @] (@] (@]
w1 w2 w3 Wy Ws Wa—1 Wq
x7 . To. T3 . T4 Ts . Tg—1 . T .
; , . , { ;
z] x5 x5 x4 z3 e x)
T \ T ng N T4 Nms \%-1 Tq
y1 Y2 Y3 Ya Ys Ya—1 Ya
O (@) O (o) ] O (o]
21 22 Z3 24 25 Za—1 Za,

Figure 4: Graph G with v,(G) = a and 4, (G) = b

Corollary 1. For each positive integer n, there exists a connected graph G such that
Y (G) — v (G) = n. That is, the difference 3, — vy, can be made arbitrarily large.

5. In the join of graphs

To attain a precise characterization of transversal hop dominating sets in the join
of graphs, we give the following definition. A set S C V(G) is a transversal point-wise
non-dominating set (or TRPN D-set) of G if S is a PN D-set of G that intersects every
pnd-set of G. The minimum cardinality of a TRPN D-set of G, denoted trpnd(G), is
the transversal point-wise non-domination number of G. Any transversal point-wise non-
dominating set of G of cardinality trpnd(G) is referred to as a trpnd-set. For complete
graphs, complete bipartite graphs, paths and cycles, we have

trpnd(K,) = n for all n > 1;
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trpnd(Kp,.n) = 1 +min{m,n} for all m,n not both equal to 1;

n—1, ifn=234
a
n—2, ifn>25;

trpnd(P,) = { nd

n—1, ifn=4,
trpnd(Cp) =< n—3, ifn==6,
n—2, ifn=5andn>7.

The following theorem is due to Canoy et al. [13] from which we draw the succeeding
lemma.

Theorem 5. [13] Let G and H be any two graphs. A set S C V(G+ H) is hop dominating
set of G + H if and only if S = Sg U Sy, where Sg and Sy are PN D-sets of G and H,
respectively.

Lemma 1. Let G and H be any two graphs. Then S is a yp-set of G + H if and only if
S =ScU Sy, where S¢ CV(G) and Sy C V(H) are pnd-sets of G and H, respectively.

Theorem 6. Let G and H be any two graphs. Then S C V(G + H) is a THD-set of
G+ H if and only if S = Sg U Sy where Sg¢ C V(G) and Sy C V(H) for which one of
the following holds:

(1) Sg is a TRPND-set of G and Sy is a PND-set of H.
(i) S is a TRPND-set of H and S is a PND-set of G.

Proof. Suppose that S is a THD-set of G+ H. Put S¢ = SNV (G) and Sy = SNV (H).
Since S = Sg U Sy is a hop dominating set of G + H, Sg # @ and Sy # @. Moreover,
by Theorem 5, S¢ and Sp are PN D-sets of G and H, respectively. Suppose that Sg and
S are, respectively, not TRPN D-sets of G and H. There exist pnd-sets A and B of G
and H, respectively, for which ANSg = @ and BN Sy = @. By Lemma 1, AUB is a
pnd-set of G+ H. Being a TRPN D-set, SN (AU B) # @, which is impossible. Thus, the

conclusion follows.

Conversely, suppose S = Sg U Sy where Sg and Sy are as described in (i). Let
T =TgUTH be ayp-set of G+ H. Write T = TNV(G) and Ty = TNV (H). By Lemma
1, T is a pnd-set of G. Thus, Sg¢ NTy # . This means that S NT # &. Therefore, S
is a THD-set of G+ H. Similarly, if (ii) holds for S¢ and Sy, then S is a TH D-set of
G+ H. O

Corollary 2. Let G and H be any two graphs. Then

(G + H) = min{trpnd(G) + pnd(H), trpnd(H) + pnd(G)}.
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6. In the corona of graphs

(7) If H has no isolated vertex, then (Ko 0 H) = 2.

(13) If H has k > 1 isolated vertices, then 7, (Ko0 H) = k + 2.
Proposition 8. Let G be a connected graph of order n > 3, and let H be any graph. Then
(G o H) <n,
and equality is attained if G = K.

Proof. 1t is easy to verify that V(G) is a hop dominating set of G o H. Let S be a
yr-set of Go H. Suppose that SNV (G) = @. Then |[SNV(H")| > 1, say u* € SNV (HY),
for each v € V(G). Let [z,v,w] be a path in G. Define §* = (5\ {v*,u"}) U {v}. To
show that S* is a hop dominating set of G o H, it is enough to consider only the vertices
in V(G) N (Ng(2) UNg(w)). Let a € V(G) N Ng(z) with a # v. If av € E(G), then
dgor(a,u’) = 2. On the other hand, if av ¢ E(G), then dgop(a,v) = 2. Thus, S* hop
dominates V(G)NNg(z). Similarly, S* hop dominates V' (G) N Ng(w). This means that S*
is a hop dominating set of Go H with |S*| < |S], a contradiction. Therefore, SNV (G) # @
for all y,-sets S of GoH so that V(G) is a T'H D-set of GoH. Consequently, 7,(GoH) < n.

Now, consider G = K,,. If H has an isolated vertex, then S is a y,-set of G o H if and
only if S = {u,v} where v € V(G) and u is an isolated vertex of H”. In this case, V(Q)
is a Yp-set of G o H. Suppose that H has no isolated vertices. Then S is a y,-set of Go H
if and only if one of the following holds for S:

(1) S=V(G) (whenever n = 3);
(15) S =V (H" 4+ v) (whenever H = K»);

(1it) S = {v,u,w} where v € V(G) and u and w belong to distinct components of H"
(whenever H has at least 2 components);

(tv) S = {v,u,w} where v € V(G) and both v and w belong the same component of H"
such that for each z € V(H") \ {u,w} we have uz ¢ E(H") or wz ¢ E(H");

(v) S ={v,u,w} where u,v € V(G) and w € V(H") UV (H").
Therefore, V(G) is a Ap-set so that ,(G o H) = n. O

The inequality in Proposition 8 can be strict. If G = K4 and H = K>, then 7} (G o
H)=2<n.

Proposition 9. [1] Let G be a graph. Then 1 < pnd(G) < |V(G)|. Moreover,
(1) pnd(G) = |V(G)| if and only if G is a complete graph;

(13) pnd(G) =1 if and only if G has an isolated vertex; and
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(7i7) pnd(G) = 2 if and only if G has no isolated vertex and there exist distinct vertices a
and b of G such that Ng(a) N Ng(b) = @.

Theorem 7. [13] Let G and H be any two graphs. A set C C V(GoH) is a hop dominating
set of G o H if and only if

C = AU (Upev(@)nNg(4)Su) U (Uuev @)\ Ne (4) Bw)s
where

(i) A CV(G) such that for each w € V(G)\ A, there ezists © € A with dg(w,z) =2 or
there exists y € V(G) N Ng(w) with V(HY)NC # @,

(13) Sy CV(HY) for each v € V(G) N Ng(A), and
(tii) By C V(HY) is a point-wise non-dominating set of H" for each w € V(G)\ Ng(A).

Lemma 2. Let G be a connected Ks-free graph and H be a nontrivial connected graph,

and let S C V(G o H). Then S is a yp-set of Go H if and only if S C V(G) and is a
*t

Vip-set of G.

Proof. Let S C V(G o H) be a yp-set of G o H. First, we claim that S C V(G).
Assume, to the contrary, that S, = SNV (H") # & for some v € V(G). Suppose that
S N Ng(v) = @. By Theorem 7, S, is a PND-set of H”. By Proposition 9, [S,| > 2.
Choose w € Ng(v), and define S* = (S\ S,) U{w}. Let x € V(Go H)\ S*. If x € V(HY)
for y # v and z € S is such that dgom(x,z) = 2, then z € S*. If z € V(H"), then
dgon(w,z) = 2. Suppose that € V(G). Then x € V(G) \ S and x # w. There exists
z € S such that dgog(x,2) = 2. If z € S, then dgop(z,w) = 2 since G is Ks-free. If
z ¢ Sy, then z € S\ S, so that z € S*. This shows that S* is a hop dominating set of Go H.
Since |S*| < |S], this is a contradiction. Suppose, S N Ng(v) # @. Let w € SN Ng(v).
Define T'= S'\ S,. Following similar argument, 7" is a hop dominating set of G o H. Since
|T'| < |S], this is a contradiction. Therefore, S C V(G).

Now, let z € V(G). Pick u € V(H?). Then u ¢ S and there exists v € S for which
daom(u,v) = 2. Necessarily, dg(z,v) = 1. Therefore, S is a (1, 2)*-total dominating set of
G. Hence, S| > 71%(G). Suppose that A C V(G) is a y{%-set of G. Then A is a hop
dominating set of G'o H so that |S| < |A| = 4{%(G). Therefore, S is a y7%-set of G.

Conversely, suppose that S C V(G) is a ’ny—set of G. Then S is a hop dominating set
of G. Let v € V(G) and x € V(H"). Since S is a total dominating set of G, uv € E(G) for
some u € S. Then dgop(z,u) = 2. Since x and v are arbitrary, S hop dominates V(H")
for all v € V(G). Thus S is a hop dominating set of G o H. Let S* be a y,-set of G. By
the above result, $* C V(G) and is a y{%-set of G. Therefore, |S| = |S*| and S is a yp-set
of Go H. O

Corollary 3. For all connected Ks-free graphs G and nontrivial connected graphs H,

(G o H) =15(G).
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Figure 5: The corona K3 o0 Ks

It is worth noting that the necessity part of Lemma 2 need not be true if G contains
a K3. Consider, for example, the corona K3 o K5 as shown in Figure 5. Observe that the
blackened vertices constitute a ~yp-set of K3 o0 Ko.

For what follows, we give the following definition. A subset S C V(G) is said to be
a transversal (1,2)*-total dominating set of G if S is a (1,2)*-total dominating set of G
which intersects every ’yfo-set of G. The minimum cardinality of a transversal (1, 2)*-total
dominating set, denoted 77 (G), is the transversal (1,2)*total domination number of G.
Any transversal (1,2)*-total dominating set of G of cardinality 51%(G) is referred to as a

:y\i“fQ—set.

Theorem 8. If G is a connected Ks-free graph of order n > 2, then
(G o H) =775(G)

for all nontrivial connected graphs H.

Proof. This is clear if n = 2. Suppose that n > 3. First, let S C V(G) be a 7] y-set of
G. Following the sufficiency proof of Lemma 2, S is a hop dominating set of G o H. By
Lemma 2, S is a THD-set of G o H. Consequently, 3,(G o H) < |S| = 31%(G).

Now, let S C V(GoH) be a”p-set of GoH. Let A= SNV (G) and S, = SNV (H") for
each v € V(G). By Theorem 7 and Proposition 9, S, is a PN D-set of H", hence |S,| > 2,
for all v € V(G) \ Ng(A). For each v € V(G) \ Ng(A), choose u, € Ng(v). Define

C=AU{v,uy:v€V(G)\ Ng(A)}.

Clearly, |C] < |5].
Claim 1: (' is a hop dominating set of G.

Let x € V(G) \ C. Since S is a hop dominating set of G o H and = ¢ S, there
exists y € S for which dgop(z,y) = 2. If y € A, then y € C. Suppose that y ¢ A and
AN Ng(z,2) = @. Then there exists v € V(G) such that zv € E(G) and y € V(H").
Since G is K3-free, v € V(G) \ Ng(A). Thus, there exists u, € Ng(v) such that v, u, € C.
Since G is Ks-free, dg(z,u,) = 2. This shows that C is a hop dominating set of G.

Claim 2: (' is a total dominating set of G.

Let v € V(G). If v € Ng(A), then there exists u € C such that uv € E(G). Suppose
that v ¢ Ng(A). Then there exists u, € Ng(v) such that v,u, € C. In this case, u, is the
desired vertex in C' for which vu, € E(G). Accordingly, C' is a total dominating set of G.
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Claim 1 and Claim 2 all show that C is a (1,2)*-total dominating set of G. Let
T CV(G) be a 71"?2—set of G. By Corollary 3, T is a y4-set of Go H. Thus, SNT # &.
This means that ANT # &. Therefore, C NT # & and C is a transversal (1,2)*-total
dominating set of G. Consequently, 3{%(G) < |C] < [S| = F4(G o H). O

Example 1. Let H be a nontrivial connected graph.

1. For a path P, on n vertices,

2, if n=2,3;

2r, if n = 4r;

2r+1, ifn=4r+1;

2r4+2, ifn=4r+s, s=23.

An(Prno H) = 3?2(]371) =

2. For a cycle Cy, of order n > 4,

2r+1, ifn=4r, 4r+1

—~ C. oH :A*t C) =

3. For the complete bipartite graph K, , with m,n > 2,

An(KmpoH) = ﬁfo(Km,n) =1+ min{m,n}.
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