Using Kriging Technique to Interpolate and Forecasting Temperatures Spatio-Temporal Data
DOI:
https://doi.org/10.29020/nybg.ejpam.v16i1.4613Keywords:
ordinary kriging, semi parametric model, geographic basis risk, spatiotemporal dataAbstract
This paper deals with the forecasting temperatures’ spatio-temporal data. This research aims to examine the performance of two statistical methods for interpolating and predicting Spatio-temporal. The kriging technique and a dynamic semi-parameter factor model are applied in this work. The data adopted in this work represent the temperature in Mosul city and Baghdad city in Iraq. The results of our findings show the behavior prediction is closed to the fitting model based on the cross-validation through the comparison between the kriging method and dynamic semi-parametric factor model, we are getting that kriging prediction is more efficient with the second method of the dynamic model. In conclusion, the results show that prediction is consistent with geographic basis risk, also the performance of the dynamic semi-parameter factor model appears to the extent of geographic basis risk to describe the information of the prediction model.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 European Journal of Pure and Applied Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.