EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 16, No. 1, 2023, 121-130 ISSN 1307-5543 – ejpam.com Published by New York Business Global



# On Interval Valued Fuzzy Bi-interior Ideals in Semigroups

Thiti Gaketem<sup>1</sup>, Tanaphong Prommai<sup>1,\*</sup>

<sup>1</sup> Fuzzy Algebras and Decision-Making Problems Research Unit, Department of Mathematics, School of Science, University of Phayao, Phayao 56000, Thailand

**Abstract.** In this paper, we study the concept of an interval valued fuzzy bi-interior ideal. We investigate the properties of an interval valued fuzzy bi-interior ideal in semigroups. We characterize a regular semigroup in terms of an interval valued fuzzy bi-interior ideal.

2020 Mathematics Subject Classifications: 03E72, 18B40

Key Words and Phrases: Bi-interior ideals, interval valued fuzzy bi-interior ideals

# 1. Introduction

Uncertainties cannot be handled using traditional mathematical tools but maybe deal with using a wide range of existing theories such as probability theory, theory of fuzzy sets, interval valued fuzzy sets. In 1975, Zadeh [11] introduced the theory of interval valued fuzzy sets as a generalization of the notion of fuzzy sets. Interval valued fuzzy sets have various applications in several areas like medical science [2], image processing [1], decision making [12], etc. In 2006, Narayanan and Manikantan [9] for the first time employed the theory of interval valued fuzzy subsemigroup and studied types of interval valued fuzzy ideals in semigroups. In 2018, MK. Rao [5] introduced and studied the definition and properties of the bi-interior ideal in the semigroup. In 2019, A. Mahboob et al. [8] characterizations of regular ordered semigroups by  $(\varepsilon, \varepsilon \bigvee_{(k,qk)})$ -fuzzy quasi ideals. G Muhiuddin et al. discussed a new type of fuzzy semiprime subsets in ordered semigroups. Many researchers studied in interval valued fuzzy semigroup such that in 2020 Ahsan et al. [6] extend the ideals of (m, n)-ideals in semigroups to fuzzy sets in semigroup and they characterize the regular semigroup by using fuzzy (m, n)-ideals. I. Crista et al. [3] studied a new type fuzzy quasi-ideal in ordered semigroups. In 2021 T. Gaketem [4], studied interval valued fuzzy almost (m, n)-bi-ideal in semigroups. A. Mahboob and G. Muhiuddin [7] studied a fuzzy prime subset in ordered semigroups.

https://www.ejpam.com

© 2023 EJPAM All rights reserved.

<sup>\*</sup>Corresponding author.

DOI: https://doi.org/10.29020/nybg.ejpam.v16i1.4616

Email addresses: thiti.ga@up.ac.th (T. Gaketem), , tanaphong.pr@up.ac.th (T. Prommai)

In this work, we establish the concept of an interval valued fuzzy bi-interior ideal. We investigate the properties of an interval valued fuzzy bi-interior ideal in semigroups. Finaly, we characterize a regular semigroup in terms of an interval valued fuzzy bi-interior ideal in semigroups.

# 2. Preliminaries

In this section, we begin with elementary some fundamental concepts about semigroups, fuzzy sets, and interval valued fuzzy sets that are necessary for this paper.

By a subsemigroup of a semigroup S we mean a non-empty subset M of S such that  $M^2 \subseteq M$ , and by a left (right) ideal of S we mean a non-empty subset M of S such that  $SM \subseteq M(MS \subseteq M)$ . By a two-sided ideal or simply an ideal, we mean a non-empty subset of a semigroup S that is both a left and a right ideal of S. A non-empty subset M of S is called a quasi-ideal of S if  $MS \cap SM \subseteq M$ . A subsemigroup M of S is called an interior ideal of S if  $MSM \subseteq M$ . A subsemigroup M of a semigroup S is called an interior ideal of S if  $SMS \subseteq M$ . A subsemigroup M of a semigroup S is called an interior ideal of S if  $MSM \subseteq M$ . A subsemigroup M of a semigroup S is called an interior ideal of S if M is a subsemigroup of S and  $SMS \cap MSM \subseteq M$ .[5]. We note here that the properties is hold:

(1) Every left ideal is a bi-interior ideal of S.

- (2) Every right ideal is a bi-interior ideal of S.
- (3) Every ideal is a bi-interior ideal of S.
- (4) Every quasi ideal is a bi-interior ideal of S.
- (5) The arbitrary intersection of bi-interior of S is also bi-interior ideal of S.
- (6) If M is a bi-interior ideal of S then MS and SM are bi-interior ideals of S [5].

**Definition 1.** [10] A fuzzy subset  $\eta$  of a non-empty set X is a function  $\eta: X \to [0, 1]$ .

For any  $\eta_i \in [0, 1]$  where  $i \in \mathcal{A}$  define

$$\bigvee_{i\in\mathcal{A}}\eta_i:=\sup_{i\in\mathcal{A}}\{\eta_i\} \quad ext{and} \quad \bigwedge_{i\in\mathcal{A}}\eta_i:=\inf_{i\in\mathcal{A}}\{\eta_i\}.$$

We see that for any  $\eta_1, \eta_2 \in [0, 1]$ , we have

 $\eta_1 \lor \eta_2 = \max\{\eta_1, \eta_2\}$  and  $\eta_1 \land \eta_2 = \min\{\eta_1, \eta_2\}.$ 

Let  $\Omega[0,1]$  be the set of all closed subintervals of [0,1], i.e.,

$$\Omega[0,1] = \{ \tilde{p} = [p^-, p^+] \mid 0 \le p^- \le p^+ \le 1 \}.$$

Let  $\tilde{p} = [p^-, p^+]$  and  $\tilde{q} = [q^-, q^+] \in \Omega[0, 1]$ . Define the operations  $\preceq$ , =,  $\land$  and  $\curlyvee$  as follows:

- (1)  $\tilde{p} \preceq \tilde{q}$  if and only if  $p^- \leq q^-$  and  $p^+ \leq q^+$
- (2)  $\tilde{p} = \tilde{q}$  if and only if  $p^- = q^-$  and  $p^+ = q^+$

(3) 
$$\tilde{p} \wedge \tilde{q} = [(p^- \wedge q^-), (p^+ \wedge q^+)]$$

(4)  $\tilde{p} \vee \tilde{q} = [(p^- \vee q^-), (p^+ \vee q^+)].$ If  $\tilde{p} \succeq \tilde{q}$ , we mean  $\tilde{q} \preceq \tilde{p}$ .

For each interval  $\tilde{p}_i = [p_i^-, p_i^+] \in \mu[0, 1], i \in \mathcal{A}$  where  $\mathcal{A}$  is an index set, we define

$$\underset{i \in \mathcal{A}}{\overset{\wedge}{\mathcal{P}}_{i}} = [\underset{i \in \mathcal{A}}{\overset{\wedge}{\mathcal{P}}_{i}}, \underset{i \in \mathcal{A}}{\overset{\wedge}{\mathcal{P}}_{i}}] \quad \text{and} \quad \underset{i \in \mathcal{A}}{\overset{\vee}{\mathcal{P}}_{i}} = [\underset{i \in \mathcal{A}}{\overset{\vee}{\mathcal{P}}_{i}}, \underset{i \in \mathcal{A}}{\overset{\vee}{\mathcal{P}}_{i}}p_{i}^{+}].$$

**Definition 2.** [9] Let T be a non-empty set. Then the function  $\tilde{\mu} : T \to \Omega[0,1]$  is called an interval valued fuzzy set (shortly, IVF set) of T.

**Definition 3.** [9] Let M be a subset of a non-empty set T. An interval valued characteristic function of T is defined to be a function  $\tilde{\chi}_M : T \to \Omega[0, 1]$  by

$$\tilde{\chi}_M(e) = \begin{cases} [1,1] & \text{if } e \in M, \\ [0,0] & \text{if } e \notin M \end{cases}$$

for all  $e \in T$ .

For two IVF sets  $\tilde{\mu}$  and  $\tilde{\varpi}$  of a non-empty set T, define

- (1)  $\tilde{\mu} \sqsubseteq \tilde{\varpi} \Leftrightarrow \tilde{\mu}(e) \preceq \tilde{\varpi}(e)$  for all  $e \in T$ ,
- (2)  $\tilde{\mu} = \tilde{\varpi} \Leftrightarrow \tilde{\mu} \sqsubseteq \tilde{\varpi} \text{ and } \tilde{\varpi} \sqsubseteq \tilde{\mu},$
- (3)  $(\tilde{\mu} \sqcap \tilde{\varpi})(e) = \tilde{\mu}(e) \land \tilde{\varpi}(e)$  for all  $e \in T$ ,
- (4)  $(\tilde{\mu} \sqcup \tilde{\varpi})(e) = \tilde{\mu}(e) \lor \tilde{\varpi}(e)$  for all  $e \in T$ .

For two IVF sets  $\tilde{\mu}$  and  $\tilde{\varpi}$  in a semigroup S, define the product  $\tilde{\mu} \circ \tilde{\varpi}$  as follows : for all  $e \in S$ ,

$$(\tilde{\mu} \circ \tilde{\varpi})(e) = \begin{cases} \bigcup_{e=th} {\{\tilde{\mu}(t) \land \tilde{\varpi}(h)\},} \\ [0,0]. \end{cases}$$

**Definition 4.** [9] An IVF subset  $\tilde{\mu}$  of a semigroup S is said to be

- (1) an IVF subsemigroup of S if  $\tilde{\mu}(uv) \succeq \tilde{\mu}(u) \land \tilde{\mu}(v)$  for all  $u, v \in S$ ,
- (2) an IVF left (right) ideal of S if µ̃(uv) ≥ µ̃(v)(µ̃(uv) ≥ µ̃(u)) for all u, v ∈ S. An IVF subset µ̃ of S is called an IVF ideal of S if it is both an IVF left ideal and an IVF right ideal of S,

123

- (3) an IVF bi-ideal of S if  $\tilde{\mu}$  is an IVF subsemigroup and  $\tilde{\mu}(uvw) \succeq \tilde{\mu}(u) \land \tilde{\mu}(w)$  for all  $u, v, w \in S$ ,
- (4) an IVF interior ideal of S if  $\tilde{\mu}$  is an IVF subsemigroup and  $\tilde{\mu}(uav) \succeq \tilde{\mu}(a)$  for all  $a, u, v \in S$ ,
- (5) an IVF quasi-ideal of S if  $(\tilde{S} \circ \tilde{\mu})(u) \land (\tilde{\mu} \circ \tilde{S})(u) \preceq \tilde{\mu}(u)$  for all  $u \in S$  where  $\tilde{S}$  is an *IVF* subset of S mapping every element of S on [1, 1].

**Theorem 1.** [9] Let S be a semigroup and let M be non-empty subset of S. Then M is a subsemigroup (left ideals, right ideals, interior ideals, bi-ideals, quasi-ideals) of S if and only if the characteristic set  $\tilde{\chi}_M$  is an IVF subsemigroup (left ideals, right ideals, interior ideals, bi-ideals, quasi-ideals) of S.

## 3. Interval valued fuzzy bi-interior ideals of Semigroups

In this section, we introduce the notion of an interval valued fuzzy bi-interior ideal and study the properties of interval valued fuzzy bi-interior ideals of semigroups.

**Definition 5.** An IVF subsemigroup  $\tilde{\mu}$  of a semigroup S is called an IVF bi-interior ideal of S if it satisfies the following condition:  $\tilde{\chi}_{S} \circ \tilde{\mu} \circ \tilde{\chi}_{S} \sqcap \tilde{\mu} \circ \tilde{\chi}_{S} \circ \tilde{\mu} \subseteq \tilde{\mu}$ ,

**Example 1.** Define  $\tilde{\mu}: T \to \Omega[0, 1]$  by

$$\tilde{\mu}(e) = \begin{cases} [1,1] & \text{if} \quad e \in T, \\ [0,0] & \text{if} \quad e \notin T \end{cases}$$

Then  $\tilde{\mu}$  is an IVF bi-interior ideal of T.

The next Theorems are studies IVF ideals in semigroup are IVF bi-interior ideals of semigroups

**Theorem 2.** Every IVF left ideal of a semigroup S is an IVF bi-interior ideal of S.

*Proof.* Let  $\tilde{\mu}$  be an IVF left ideal of S. Let  $x \in S$ . Then

$$(\tilde{\chi_S} \circ \tilde{\mu})(x) = \bigcup_{x=yz} \{\tilde{\chi_S}(y) \land \tilde{\mu}(z)\} = \bigcup_{x=yz} \{\tilde{\mu}(z)\} \subseteq \bigcup_{x=yz} \{\tilde{\mu}(yz)\} = \bigcup_{x=yz} \{\tilde{\mu}(x)\} = \tilde{\mu}(x).$$

We have,  $(\tilde{\mu} \circ \tilde{\chi_S} \circ \tilde{\mu})(x) = \bigcup_{x=abc} \{\tilde{\mu}(a) \land (\tilde{\chi_S} \circ \tilde{\mu})(bc)\} \subseteq \bigcup_{x=abc} \{\tilde{\mu}(a) \land \tilde{\mu}(bc)\} = \tilde{\mu}(x)$ . Now

$$\begin{aligned} (\tilde{\chi_S} \circ \tilde{\mu} \circ \tilde{\chi_S} \sqcap \tilde{\mu} \circ \tilde{\chi_S} \circ \tilde{\mu})(x) &= (\tilde{\chi_S} \circ \tilde{\mu} \circ \tilde{\chi_S})(x) \sqcap (\tilde{\mu} \circ \tilde{\chi_S} \circ \tilde{\mu})(x) \\ & \preceq (\tilde{\chi_S} \circ \tilde{\mu} \circ \tilde{\chi_S})(x) \sqcap \tilde{\mu}(x) \preceq \tilde{\mu}(x). \end{aligned}$$

Therefor  $\tilde{\chi_S} \circ \tilde{\mu} \circ \tilde{\chi_S} \sqcap \tilde{\mu} \circ \tilde{\chi_S} \circ \tilde{\mu} \sqsubseteq \tilde{\mu}$ . Hence  $\tilde{\mu}$  is an IVF bi-interior ideal of S.

**Theorem 3.** Every IVF right ideal of a semigroup S is an IVF bi-interior ideal of S.

*Proof.* It follows Theorem 2.

**Corollary 1.** Every IVF ideal of a semigroup S is an IVF bi-interior ideal of S.

**Definition 6.** Let  $\tilde{\mu}$  be an IVF set in a non-empty set X. Define  $U(\tilde{\mu}; \tilde{t}) = \{x \in X | \tilde{t} \subseteq \tilde{\mu}(x)\}$  where  $\bar{t} \in \Omega[0, 1]$  is called the IVF level set of  $\tilde{\mu}$ .

**Theorem 4.** Let S be a semigroup and  $\tilde{\mu}$  be a non-empty IVF set of S. An IVF set  $\tilde{\mu}$  is an IVF bi-interior ideal of a semigroup S if and only if the IVF level set  $U(\tilde{\mu}; \tilde{t})$  of S is a bi-interior ideal of a semigroup S for every  $\tilde{t} \in \Omega[0, 1]$ , where  $U(\tilde{\mu}; \tilde{t}) \neq \emptyset$ .

*Proof.* Assume that  $\tilde{\mu}$  is an IVF bi-interior ideal of S and let  $x \in SU(\tilde{\mu}; \tilde{t})S \cap U(\tilde{\mu}; \tilde{t})SU(\tilde{\mu}; \tilde{t})$ . Then x = bau = cde where  $b, u, d \in S$  and  $a, c, e \in U(\tilde{\mu}; \tilde{t})$ . Then  $\tilde{t} \leq (\tilde{\chi}_S \circ \tilde{\mu} \circ \tilde{\chi}_S)(x)$  and  $\tilde{t} \leq (\tilde{\mu} \circ \tilde{\chi}_S \circ \tilde{\mu})(x)$  implies that  $\tilde{t} \leq \tilde{\mu}(x)$  Then  $x \in U(\tilde{\mu}; \tilde{t})$ . Therefore  $U(\tilde{\mu}; \tilde{t})$  is a bi-interior ideal of S.

Conversely suppose that  $U(\tilde{\mu}; \tilde{t})$  is a bi-interior ideal of S, for all  $\tilde{t} \in Im(\tilde{\mu})$ . Let  $x, y \in S$ . Then  $\tilde{\mu}(x) = \tilde{t}_1, \tilde{\mu}(y) = \tilde{t}_2, \tilde{t}_1 \succeq \tilde{t}_2$ . Then  $x, y \in U(\tilde{\mu}; \tilde{t})$ . Thus  $SU(\tilde{\mu}; \tilde{t})S \sqcap U(\tilde{\mu}; \tilde{t})SU(\tilde{\mu}; \tilde{t}) \preceq U(\tilde{\mu}; \tilde{t})$ , for all  $\tilde{t} \in Im(\tilde{\mu})$ . Suppose  $\tilde{t} = \min\{Im(\tilde{\mu})\}$ . Then  $SU(\tilde{\mu}; \tilde{t})S \sqcap U(\tilde{\mu}; \tilde{t})SU(\tilde{\mu}; \tilde{t}) \preceq U(\tilde{\mu}; \tilde{t})$ . Therefor  $\tilde{\chi}_S \circ \tilde{\mu} \circ \tilde{\chi}_S \sqcap \tilde{\mu} \circ \tilde{\chi}_S \circ \tilde{\mu} \sqsubseteq \tilde{\mu}$ . Hence  $\tilde{\mu}$  is an IVF bi-interior ideal of S.

**Theorem 5.** Let M be a non-empty subset of a semigroup S and  $\tilde{\chi}_M$  be the characteristic IVF set of M. Then M is a bi-interior ideal of a semigroup S if and only if  $\tilde{\chi}_M$  is an IVF bi-interior ideal of a semigroup S.

*Proof.* Suppose M is a bi-interior ideal of S. Then M is a subsemigroup of S. Thus by Theorem 1,  $\tilde{\chi}_M$  is an IVF subsemigroup of S. Let  $x \in S$ . Since M is a bi-interior ideal of S, we have  $SMS \cap MSM \subseteq M$ . Thus

$$\begin{aligned} (\tilde{\chi}_S \circ \tilde{\chi}_M \circ \tilde{\chi}_S \sqcap \tilde{\chi}_M \circ \tilde{\chi}_S \circ \tilde{\chi}_M)(x) &= (\tilde{\chi}_S \circ \tilde{\chi}_M \circ \tilde{\chi}_S)(x) \land (\tilde{\chi}_M \circ \tilde{\chi}_S \circ \tilde{\chi}_M)(x) \\ &= \tilde{\chi}_{SMS}(x) \land \chi_{\tilde{M}SM}(x) \\ &= \tilde{\chi}_{SIS \cap MSM}(x) \preceq \tilde{\chi}_M(x). \end{aligned}$$

Therefore  $\tilde{\chi}_S \circ \tilde{\chi}_M \circ \tilde{\chi}_S \sqcap \tilde{\chi}_M \circ \tilde{\chi}_S \circ \tilde{\chi}_M \sqsubseteq \tilde{\chi}_M$ . Hence  $\tilde{\chi}_M$  is an IVF bi-interior ideal of S.

Conversely, suppose that  $\tilde{\chi}_M$  is an IVF bi-interior ideal of S. Then  $\tilde{\chi}_M$  is an IVF subsemigroup of S. Thus by Theorem 1, M is a subsemigroup of S. Let  $x \in M$ . We have

$$\begin{aligned} &(\tilde{\chi}_S \circ \tilde{\chi}_M \circ \tilde{\chi}_S)(x) \land (\tilde{\chi}_M \circ \tilde{\chi}_S \circ \tilde{\chi}_M)(x) \preceq \tilde{\chi}_M(x) \\ &\Rightarrow \tilde{\chi}_{SMS}(x) \land \tilde{\chi}_{MSM}(x) \preceq \tilde{\chi}_M(x) \\ &\Rightarrow \tilde{\chi}_{SMS \cap MSM}(x) \preceq \tilde{\chi}_M(x). \end{aligned}$$

Therefore  $SMS \cap MSM \subseteq M$ . Hence M is a bi-interior ideal of S.

**Theorem 6.** If  $\tilde{\mu}$  and  $\tilde{\lambda}$  are IVF bi-interior ideals of a semigroup S, then  $\tilde{\mu} \sqcap \tilde{\lambda}$  is an IVF bi-interior ideal of S.

*Proof.* Let  $\tilde{\mu}$  and  $\tilde{\lambda}$  be IVF bi-interior ideals of S. Then

$$\begin{split} (\tilde{\chi}_{S} \circ \tilde{\mu} \cap \tilde{\lambda})(x) &= \bigcup_{x=ab} \{ \tilde{\chi}_{S}(a) \land (\tilde{\mu} \cap \tilde{\lambda})(b) \} \\ &= \bigcup_{x=ab} \{ \tilde{\chi}_{S}(a) \land \tilde{\mu}(b) \land \tilde{\lambda}(b) \} \\ &= \bigcup_{x=ab} \{ \tilde{\chi}_{S}(a) \land \tilde{\mu}(b) \} \land \{ \tilde{\chi}_{S}(a) \cap \tilde{\lambda}(b) \} \} \\ &= \bigcup_{x=ab} \{ \tilde{\chi}_{S}(a) \land \tilde{\mu}(b) \} \cap \bigcup_{x=ab} \{ \tilde{\chi}_{S}(a) \cap \tilde{\lambda}(b) \} \\ &= (\tilde{\chi}_{S} \circ \tilde{\mu})(x) \land (\tilde{\chi}_{S} \circ \tilde{\lambda})(x) \\ &= (\tilde{\chi}_{S} \circ \tilde{\mu} \cap \tilde{\chi}_{S} \circ \tilde{\lambda})(x). \end{split}$$

Therefore  $\tilde{\chi}_S \circ \tilde{\mu} \sqcap \tilde{\lambda} = \tilde{\chi}_S \circ \tilde{\mu} \sqcap \tilde{\chi}_S \circ \tilde{\lambda}$ .

$$\begin{split} (\tilde{\mu} \cap \tilde{\lambda} \circ \tilde{\chi}_{S} \circ \tilde{\mu} \sqcap \tilde{\lambda})(x) &= \bigcup_{x=abc} \left\{ (\tilde{\mu} \cap \tilde{\lambda})(a) \land (\tilde{\chi}_{S} \circ \tilde{\mu} \cap \tilde{\lambda})(bc) \right\} \\ &= \bigcup_{x=abc} \left\{ (\tilde{\mu} \sqcap \tilde{\lambda})(a) \land \left\{ (\tilde{\chi}_{S} \circ \tilde{\mu} \cap \tilde{\chi}_{S} \circ \tilde{\lambda})(bc) \right\} \right\} \\ &= \bigcup_{x=abc} \left\{ (\tilde{\mu} \sqcap \tilde{\lambda})(a) \land \left\{ (\tilde{\chi}_{S} \circ \tilde{\mu})(bc) \land (\tilde{\chi}_{S} \circ \tilde{\lambda})(bc) \right\} \right\} \\ &= \bigcup_{x=abc} \left\{ \{ \tilde{\mu}(a) \land (\tilde{\chi}_{S} \circ \tilde{\mu})(bc) \} \cap \{ \tilde{\lambda}(a) \land (\tilde{\chi}_{S} \circ \tilde{\lambda})(bc) \} \right\} \\ &= (\tilde{\mu} \circ \tilde{\chi}_{S} \circ \tilde{\mu})(x) \land (\tilde{\lambda} \circ \tilde{\chi}_{S} \circ \tilde{\lambda})(x) \\ &= (\tilde{\mu} \circ \tilde{\chi}_{S} \circ \tilde{\mu} \cap \tilde{\lambda} \circ \tilde{\chi}_{S} \circ \tilde{\lambda})(x). \end{split}$$

Therefore  $\tilde{\mu} \sqcap \tilde{\lambda} \circ \tilde{\chi}_S \circ \tilde{\mu} \sqcap \tilde{\lambda} = \tilde{\mu} \circ \tilde{\chi}_S \circ \tilde{\mu} \sqcap \tilde{\lambda} \circ \tilde{\chi}_S \circ \tilde{\lambda}$ . Then

$$\begin{split} & (\tilde{\chi}_S \circ \tilde{\mu} \sqcap \tilde{\lambda} \circ \tilde{\chi}_S)(x) \land (\tilde{\mu} \sqcap \tilde{\lambda} \circ \tilde{\chi}_S \circ \tilde{\mu} \sqcap \tilde{\lambda})(x) \\ &= (\tilde{\chi}_S \circ \tilde{\mu} \circ \tilde{\chi}_S)(x) \land (\tilde{\mu} \circ \tilde{\chi}_S \circ \tilde{\mu})(x) \land (\tilde{\chi}_S \circ \tilde{\lambda} \circ \tilde{\mu}_{\chi_S})(x) \land (\tilde{\lambda} \circ \tilde{\chi}_S \circ \tilde{\lambda})(x) \\ &\preceq (\tilde{\mu} \sqcap \tilde{\lambda})(x). \end{split}$$

Therefore  $(\tilde{\chi}_S \circ \tilde{\mu} \sqcap \tilde{\lambda} \circ \tilde{\chi}_S) \sqcap (\tilde{\mu} \sqcap \tilde{\lambda} \circ \tilde{\chi}_S \circ \tilde{\mu} \sqcap \tilde{\lambda}) \sqsubseteq \tilde{\mu} \sqcap \tilde{\lambda}$ . Hence  $\tilde{\mu} \cap \tilde{\lambda}$  is an IVF bi-interior ideal of a semigroup S.

We know that every IVF ideal is an IVF bi-interior ideal then the following theorem holds.

**Theorem 7.** If  $\tilde{\mu}$  and  $\tilde{\lambda}$  are IVF right ideals and an IVF left ideal of a semigroup S respectively. Then  $\tilde{\mu} \cap \tilde{\lambda}$  is an IVF bi-interior ideal of S.

*Proof.* Assume that  $\tilde{\mu}$  and  $\lambda$  are IVF right ideals and an IVF left ideal of S respectively. Then by Theorems 2 and 3, we have  $\tilde{\mu}$  and  $\tilde{\lambda}$  are IVF bi-interior ideals of S. By Theorem 6 we have  $\tilde{\mu} \sqcap \tilde{\lambda}$  is an IVF bi-interior ideal of S.

The following are tools the converse of an IVF bi-interior ideals is IVF ideals on semigroups.

**Definition 7.** A semigroup S is called regular if for all  $a \in S$  there exists  $x \in S$  such that a = axa.

**Theorem 8.** If  $\tilde{\mu}$  be an IVF quasi-ideal of a regular semigroup S. Then  $\tilde{\mu}$  is an IVF ideal of a semigroup S.

*Proof.* Assume that  $\tilde{\mu}$  is an IVF quasi-ideal of S and let  $x, y \in S$ . Then

$$\begin{split} \tilde{\mu}(xy) &\succeq (\tilde{\mu} \circ \tilde{\chi_S})(xy) \land (\tilde{\chi_S} \circ \tilde{\mu})(xy) \\ &= \bigcup_{xy=ab} \{\tilde{\mu}(a) \land \tilde{\chi_S}(b)\} \land \bigcup_{xy=ij} \{\tilde{\chi_S}(i) \land \tilde{\mu}(j)\} \\ &\succeq \tilde{\mu}(x) \cap \tilde{\chi_S}(y) \land \tilde{\chi_S}(x) \land \tilde{\mu}(y) \\ &= (\tilde{\mu}(x) \land [1,1]) \land ([1,1] \land \tilde{\mu}(y)) = \tilde{\mu}(x) \cap \tilde{\mu}(y) \end{split}$$

Thus  $\tilde{\mu}(xy) \succeq \tilde{\mu}(x) \cap \tilde{\mu}(y)$ . Hence  $\tilde{\mu}$  is an IVF subsemigroup of S. Let  $x, y, z \in S$ . Then

$$\begin{split} \tilde{\mu}(xyz) &\succeq (\tilde{\mu} \circ \tilde{\chi_S})(xyz) \land (\tilde{\chi_S} \circ \tilde{\mu})(xyz) \\ &= \bigcup_{xyz=ab} \{\tilde{\mu}(a) \land \tilde{\chi_S}(b)\} \land \bigcup_{xyz=ij} \{\tilde{\chi_S}(i) \land \tilde{\mu}(j)\} \\ &\succeq \tilde{\mu}(x) \land \tilde{\chi_S}(yz) \land \tilde{\chi_S}(xy) \land \tilde{\mu}(z) \\ &= (\tilde{\mu}(x) \land [1,1]) \land ([1,1] \land \tilde{\mu}(z)) = \tilde{\mu}(x) \land \tilde{\mu}(z). \end{split}$$

Thus  $\tilde{\mu}(xyz) \succeq \tilde{\mu}(x) \land \tilde{\mu}(z)$ . Hence  $\tilde{\mu}$  is an IVF bi-ideal of S. Since S is regular,  $\tilde{\mu}$  is an IVF bi-ideal of S and  $x, y \in S$  we have  $xy \in (xSx)S \subseteq xSx$ . Thus there exists  $k \in S$  such that xy = xkx. So  $\tilde{\mu}(xy) = \tilde{\mu}(xkx) \succeq \tilde{\mu}(x) \land \tilde{\mu}(x) = \tilde{\mu}(x)$ . Similarly, we can show that  $\tilde{\mu}(xy) \succeq \tilde{\mu}(y)$ . Thus  $\tilde{\mu}$  is an IVF left ideal of S. Hence  $\tilde{\mu}$  is an IVF ideal of S.

**Theorem 9.** Let S be a regular semigroup. Then  $\tilde{\mu}$  is an IVF bi-interior ideal of S if and only if  $\tilde{\mu}$  is an IVF quasi-ideal of S.

*Proof.* Let  $\tilde{\mu}$  be an IVF bi-interior ideal of S and  $x \in S$ . Then  $(\tilde{\chi}_S \circ \tilde{\mu} \circ \tilde{\chi}_S)(x) \land (\tilde{\mu} \circ \tilde{\mu}_{\chi_S} \circ \tilde{\mu})(x) \succeq \tilde{\mu}(x)$ . Suppose  $(\tilde{\chi}_S \circ \tilde{\mu})(x) \succeq \tilde{\mu}(x)$ . Since S is regular, there exists  $y \in S$  such that x = xyx. Then

$$(\tilde{\mu} \circ \tilde{\chi_S} \circ \tilde{\mu})(x) = \bigcup_{x = xyx} \{ \tilde{\mu}(xy) \land (\tilde{\chi_S} \circ \tilde{\mu})(x) \} \supseteq \bigcup_{x = xyx} \{ \tilde{\mu}(x) \land \tilde{\mu}(x) \} = \tilde{\mu}(x).$$

Which is a contradiction. Therefore  $\tilde{\mu}$  is an IVF quasi-ideal of S. By Theorem 8, converse is true.

**Theorem 10.** If  $\tilde{\mu}$  be an IVF bi-interior ideal of a regular semigroup S. Then  $\tilde{\mu}$  is an IVF ideal of a semigroup S.

*Proof.* Suppose that  $\tilde{\mu}$  is an IVF bi-interior ideal of S. Then by Theorem 9,  $\tilde{\mu}$  is an IVF quasi-ideal of S. Thus by Theorem 8,  $\tilde{\mu}$  is an IVF ideal of S. Hence the theorem is complete.

The following theorems are a tool in characterization regular semigroup in terms of IVF bi-interior ideals on semigroups.

**Theorem 11.** [4] For non-empty subsets G and H of a semigroup S, we have

- (1)  $\tilde{\chi_G} \circ \tilde{\chi_H} = \chi_{\tilde{G}H},$
- (2)  $\tilde{\chi_G} \sqcap \tilde{\chi_H} = \chi_{\tilde{G} \cap H}.$

*Proof.* It is straightforward.

**Theorem 12.** Let S be a semigroup. Then S is a regular semigroup if and only if  $B = SBS \cap SBS$ , for every bi-interior ideal of S.

The following theorems are characterization regular semigroup in terms of IVF biinterior ideals in semigroups.

**Theorem 13.** Let S be a semigroup. Then S is a regular if and only if  $\tilde{\mu} = \tilde{\chi}_S \circ \tilde{\mu} \circ \tilde{\chi}_S \sqcap \tilde{\mu} \circ \tilde{\chi}_S \circ \tilde{\mu}$  for every IVF bi-interior ideal of a semigroup S.

*Proof.* Let  $\tilde{\mu}$  be an IVF bi-interior ideal of the regular semigroup S and let  $x \in S$ . Since S is regular, there exists  $a \in S$  such that x = xax. Thus

$$\begin{split} (\tilde{\mu} \circ \tilde{\chi_S} \circ \tilde{\mu})(x) &= \bigcup_{x=xax} \{ \tilde{\mu}(x) \land (\tilde{\chi_S} \circ \tilde{\mu})(ax) \} \\ &= \bigcup_{x=xax} \{ \tilde{\mu}(x) \land \bigcup_{ax=yz} \{ \tilde{\chi_S}(y) \land \tilde{\mu}(z) \} \} \\ &\supseteq \bigcup_{x=xax} \{ \tilde{\mu}(x) \land \tilde{\mu}(x) \} = \tilde{\mu}(x). \end{split}$$

Similarly,  $(\tilde{\chi}_S \circ \tilde{\mu} \circ \tilde{\chi}_S)(x) \preceq \tilde{\mu}(x)$ . Therefore  $\tilde{\mu} = \tilde{\chi}_S \circ \tilde{\mu} \circ \tilde{\chi}_S \sqcap \tilde{\mu} \circ \tilde{\chi}_S \circ \tilde{\mu}$ .

Conversely, suppose that B is a bi-interior ideal of a semigroup S. Then by Theorem 5,  $\chi_B^{\circ}$  is an IVF bi-interior ideal of the semigroup S. Thus by Theorem 11,

$$\tilde{\mu}_{\chi_B}(x) = \tilde{\chi_S} \circ \tilde{\mu}_{\chi_B} \circ \tilde{\chi_S}(x) \land \tilde{\mu}_{\chi_B} \circ \tilde{\chi_S} \circ \tilde{\mu}_{\chi_B}(x) = \tilde{\mu}_{\chi_{SBS}}(x) \land \tilde{\mu}_{\chi_{BSB}}(x) = \tilde{\mu}_{\chi_{SBS \cap BSB}}(x).$$

Therefore  $B = SBS \cap BSB$ . By Theorem 12, S is a regular semigroup.

**Theorem 14.** Let S be a semigroup. Then S is regular if and only if  $\tilde{\mu} \sqcap \tilde{\lambda} \subseteq \tilde{\lambda} \circ \tilde{\mu} \circ \tilde{\lambda} \sqcap \tilde{\mu} \circ \tilde{\lambda} \circ \tilde{\mu}$  for every IVF bi-interior ideal  $\tilde{\mu}$  and every IVF ideal  $\tilde{\lambda}$  of S.

#### REFERENCES

*Proof.* Let  $\tilde{\mu}$  be an IVF bi-interior ideal and  $\tilde{\lambda}$  be an IVF ideal of a regular semigroup S and let  $x \in S$ . Then there exists  $y \in S$  such that x = xyx.

$$\begin{split} (\tilde{\mu} \circ \tilde{\lambda} \circ \tilde{\mu})(x) &= \bigcup_{x=xyx} \left\{ (\tilde{\mu} \circ \tilde{\lambda})(xy) \land \tilde{\mu}(x) \right\} \\ &= \bigcup_{x=xyx} \left\{ \bigcup_{xy=xyxy} \left\{ \tilde{\mu}(x) \cap \tilde{\lambda}(yxy) \right\} \land \tilde{\mu}(x) \right\} \\ &\succeq \left\{ \tilde{\mu}(x) \land \tilde{\lambda}(x) \right\} \land \tilde{\mu}(x) = \tilde{\mu}(x) \land \tilde{\lambda}(x) = (\tilde{\mu} \sqcap \tilde{\lambda})(x). \\ (\tilde{\lambda} \circ \tilde{\mu})(x) &= \bigcup_{x=xyx} \left\{ \tilde{\lambda}(xy) \land \tilde{\mu}(x) \right\} \succeq \left\{ \tilde{\lambda}(x) \land \tilde{\mu}(x) \right\} = (\tilde{\mu} \sqcap \tilde{\lambda})(x). \end{split}$$

Therefore  $\tilde{\mu} \circ \tilde{\lambda} \circ \tilde{\mu} \sqsubseteq \tilde{\mu} \sqcap \tilde{\lambda}$ . Similary, we can prove  $\tilde{\lambda} \circ \tilde{\mu} \circ \tilde{\lambda} \sqsupseteq \tilde{\mu} \sqcap \tilde{\lambda}$ . Hence  $\tilde{\mu} \sqcap \tilde{\lambda} \sqsubseteq \tilde{\lambda} \circ \tilde{\mu} \circ \tilde{\lambda} \sqcap \tilde{\mu} \circ \tilde{\lambda} \circ \tilde{\mu}$ .

Conversely, suppose that the condition holds. Let  $\tilde{\mu}$  be an IVF bi-interior ideal. We have  $\tilde{\mu} \sqcap \tilde{\chi_S} \sqsubseteq \tilde{\chi_S} \circ \tilde{\mu} \circ \tilde{\chi_S} \sqcap \tilde{\mu} \circ \tilde{\chi_S} \circ \tilde{\mu}$  and implies that  $\tilde{\mu} \sqsubseteq \tilde{\chi_S} \circ \tilde{\mu} \circ \tilde{\chi_S} \sqcap \tilde{\mu} \circ \tilde{\chi_S} \circ \tilde{\mu}$ . By Theorem 13, S is a regular semigroup.

## 4. Conclusion

In this paper, we give the concept of IVF bi-interior ideals in semigroups and we study properties of IVF bi-interior ideals in semigroups. Moreover, we prove relationship between IVF bi-interior ideals and bi-interior ideals. In the future we study other kinds of IVF bi-quasi interior ideals in semigroup or algebric system.

#### Acknowledgements

The authors are grateful to the School of Science, University of Phayao for grant support.

## References

- J. Aranzazu, S. Antonio, P. Daniel, F. Javier, and B. Humberto. Interval valued fuzzy sets for color image super-resolution. *Advances in Artificial Intelligence*, pages 373–382, 2011.
- [2] H. Bustince. Indicator of inclusion grade for interval valued fuzzy sets. application to approximate reasoning based on interval valued fuzzy sets. International Journal of Approximate Reasoning, 23:137–209, 1998.
- [3] I. Cristea, A. Mahboob, and N. Mohammad Khan. A new type fuzzy quasi-ideals of ordered semigrouops. Journal of Multiple-Valued Logic and Soft Computing, 17(3):739– 752, 2020.

- [4] T. Gaketem. On interval valued fuzzy almost (m,n)-bi-ideal in semigroups. J. Math. Comput. Sci., 11(6):6657–6665, 2021.
- [5] M. Krishna and M. Rao. Bi-interior ideals of semigroups. Discussiones Mathematicae General algebra and applications, 38:69–78, 2018.
- [6] A. Mahboob, B. Davvaz, and N. M. Khan. Fuzzy (m, n)-ideals in semigroups. Computational and applied mathematics, 38(189):1–18, 2019.
- [7] A. Mahboob and G. Muhiuddin. A new type of fuzzy prime subset in ordered semigroups. New Mathematics and Natural Computing, 17(3):739–752, 2021.
- [8] A. Mahboob, A. Salam, Md. F. Ali, and N. M. Khan. Characterizations of regular ordered semigroups by  $(\varepsilon, \varepsilon \bigvee_{(k,qk)})$ -fuzzy quasi ideals. *Mathematics*, 7:1–16, 2019.
- [9] AL. Narayanan and T. Manikantan. Interval valued fuzzy ideals generated by an interval valued fuzzy subset in semigroups. *Journal of Applied Mathematics and Computing*, 20(1-2):455–464, 2006.
- [10] L.A. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.
- [11] L.A. Zadeh. The concept of a linguistic variable and its application to approximate reasoning. *Information Sciences*, 8:199–249, 1975.
- [12] M. Zulquanain and M. Saeed. A new decision making method on interval value fuzzy soft matrix. British journal of mathematics and computer science, 20(5):1–17, 2017.