EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 16, No. 1, 2023, 253-260 ISSN 1307-5543 – ejpam.com Published by New York Business Global

Multipolar fuzzy KU-ideals in KU-algebras

Halimah Alshehri

Department of Computer Science and Engineering, Faculty Applied Studies and Community Service, King Saud University, Riyadh, Saudi Arabia

Abstract. This article presents the idea of an m-polar fuzzy KU-ideal and investigates its characteristics. The relationship between an m-polar fuzzy KU-subalgebra and an m-polar fuzzy KU-ideal is presented in the discussion

2020 Mathematics Subject Classifications: 03B52, 03E72, 08A72

Key Words and Phrases: KU-algebras, m-Polar fuzzy set, m-Polar fuzzy KU-subalgebra, m-Polar fuzzy KU-ideal

1. Introduction

A fuzzy set is a useful tool developed by Zadeh [11] for dealing with probabilistic uncertainty related to perceptions, state inaccuracies, and preferences. Since that time, fuzzy set theory has gained much attention in a variety of disciplines, including graph theory, statistics, life and medical sciences, engineering, social sciences, decision-making, computer networks, robotics automata theory, artificial intelligence, pattern recognition, and many others. In [8] and [9], a new algebraic structure called KU-algebras was constructed. Mostafa et al. [7] introduced the notion of fuzzy KU-ideals of KU-algebras and then investigated several basic properties related to fuzzy KU-ideals. Recently, Akram and Sarwar [3] applied the notion of m-polar fuzzy set theory to the graph theory. Also, Al-Masarwah and Ahmad [4] discussed the notion of m-polar fuzzy sets with an application to BCK/BCI-algebras. In this study, we will introduce the notions of m-polar fuzzy subalgebras and m-polar fuzzy (closed, commutative) ideals and investigate several properties. This manuscript aims to apply the notion of an m-polar fuzzy set to fuzzy KU-ideal in KU-algebras. The notions of an m-polar fuzzy KU-ideal were introduced and their properties were investigated. The relationship between an m-polar fuzzy KU-subalgebra and an m-polar fuzzy KU-ideal was examined. Moreover, the relationship between an m-polar fuzzy KU-ideal and the ideal of BCK/BCI-algebras was presented.

DOI: https://doi.org/10.29020/nybg.ejpam.v16i1.4618

Email address: haalshehri@ksu.edu.sa (H. Alshehri)

2. Preliminaries

We first recall some elementary aspects which are used in the present paper. Throughout this paper, X always denotes a KU-algebra without any specifications.

Definition 1 (8). Let X be a nonempty set with a binary operation * and a constant 0, then (X, *, 0) is called a KU-algebra, if for all $u, v, w \in X$ the following axioms are hold: $(ku\ 1)\ (u*v)*[(v*w))*(u*w)]=0$,

- $(ku\ 2)\ u*0=0,$
- $(ku \ 3) \ 0 * u = u,$
- (ku 4) u * v = 0 and v * u = 0 implies u = v,
- $(ku\ 5)\ u*u=0$

On a KU-algebra (X, *, 0) we can define a binary relation < on X by putting: u < $v \iff v * u = 0$. Then (X, \leq) is a partially ordered set and 0 is its smallest element. Thus (X, *, 0) satisfies the following conditions: for all $u, v, w \in X$.

- $(1): (v * w) * (u * w) \le (u * v)$
- (2): $0 \le u$
- (3): $u \le v, v \le u$ implies u = v,
- $(4): v * u \leq u.$

A subset S of a KU-algebra X is called KU-subalgebra of X, if $u, v \in S$, implies $(u*v) \in S$. A non-empty subset I of a KU-algebra X is said to be a KU-ideal of X if it satisfies:

- $(K1) 0 \in I$,
- (K2) $u * (v * w) \in I$ and $v \in I$ imply $u * w \in I$ for all u, v and $w \in X$.

Theorem 1 (7). In a KU-algebra (X, *, 0), the following axioms are satisfied: for all $u, v, w \in X$,

- (1) $u \le v \text{ imply } v * w \le u * w$,
- (2) u * (v * w) = v * (u * w), for all $u, v, w \in X$,
- (3) ((v * u) * u) < v

Definition 2 (7). Let μ be a fuzzy set on a KU-algebra X, then μ is called a fuzzy KUsubalgebra of X if $\mu(u * v) \ge \min\{\mu(u), \mu(v)\}$, for all $u, v \in X$.

Definition 3 (7). Let X be a KU-algebra. A fuzzy set μ in X is called a fuzzy KU-ideal of X if it satisfies:

 $(FK1) \ \mu(0) \ge \mu(u), \ (FK2) \ \mu(u*w) \ge \min\{\mu(u*(v*w)), \mu(v)\}, \ for \ all \ u,v \ \ and \ w \in X.$

Lemma 1 (7). If A fuzzy KU-subalgebra of X, then $\mu(0) \geq \mu(u)$, for all $u \in X$.

Proposition 1 (7). If A fuzzy KU-ideal of X and $u \leq v$, then $\mu(u) \geq \mu(v)$, for all $u, v \in X$.

Theorem 2 (7). A fuzzy KU-ideal of X is a fuzzy KU-subalgebra of X.

By an m-polar fuzzy set of a set X (see [5]), we mean a function $\hat{O}: X \to [0,1]^m$. The membership value of every element $u \in X$ is denoted by

$$\hat{O}(u) := \{ (\pi_1 \circ \hat{O})(u), (\pi_2 \circ \hat{O})(u), ..., (\pi_m \circ \hat{O})(u) \},$$

Where $\pi_i : [0,1]^m \to [0,1]$ is the i-th projection for all i = 1, 2, ..., m. Given an m-polar fuzzy set on a set X, we consider the set

$$U(\hat{O}; \hat{r}) := \{ u \in X | \hat{O}(u) > \hat{r} \}$$

that is,

$$U(\hat{O}; \hat{r}) := \{ u \in X | (\pi_i \circ \hat{O})(u) \ge r_i, i = 1, 2, ..., m \},\$$

which is called an m-polar \hat{r} -level cut set of \hat{O} .

$$\hat{O}(v) = \begin{cases} \hat{t} = (t_1, t_2, ..., t_m) \in (0, 1]^m & ; u = v \\ \hat{0} = (0, 0, 0) & ; u \neq v \end{cases}$$

and it is denoted by $u_{\hat{t}}$. We say that u is the support of $u_{\hat{t}}$, and \hat{t} is the value of $u_{\hat{t}}$.

We say that an m-polar fuzzy point $u_{\hat{t}}$ is contained in an m-polar fuzzy set \hat{O} denoted by $u_{\hat{t}} \in \hat{O}$, if $\hat{O}(u) \geq \hat{t}$, that is, $(\pi_i \circ \hat{O})(u) \geq t_i$ for all i = 1, 2, ..., m.

Definition 4 (4). An m-polar fuzzy set \hat{O} of BCK/BCI-algebra X is called an m-polar fuzzy subalgebra if the following assertion is valid:

$$\hat{O}(u * v) > \min\{\hat{O}(u), \hat{O}(v)\}$$

that is,

$$(\pi_i \circ \hat{O})(u * v) \ge \min\{(\pi_i \circ \hat{O})(u), (\pi_i \circ \hat{O})(v)\}\$$

for all $u, v \in X, i = 1, 2, ..., m$.

Definition 5 (4). An m-polar fuzzy set \hat{O} of BCK/BCI-algebra X is called an m-polar fuzzy ideal if the following assertion is valid:

$$\hat{O}(0) \geq \hat{O}(u) \geq \min\{\hat{O}(u*v), \hat{O}(v)\}$$

that is,

$$(\pi_i \circ \hat{O})(0) \ge (\pi_i \circ \hat{O})(u) \ge \min\{(\pi_i \circ \hat{O})(u * v), (\pi_i \circ \hat{O})(v)\}$$

for all $u, v \in X, i = 1, 2, ..., m$.

3. m-Polar fuzzy KU-subalgebras and KU-ideals

In this section, we introduce the notions of an m-polar fuzzy KU-subalgebras, an m-polar fuzzy KU-ideals in KU-algebras and investigate some of their related properties.

Definition 6. An m-polar fuzzy set \hat{O} of X is called an m-polar fuzzy KU-subalgebra if the following assertion is valid for all $u, v \in X$.

$$\hat{O}(u * v) \ge \min\{\hat{O}(u), \hat{O}(v)\}\tag{1}$$

that is,

$$(\pi_i \circ \hat{O})(u * v) \ge \min\{(\pi_i \circ \hat{O})(u), (\pi_i \circ \hat{O})(v)\}\$$

for all $u, v \in X, i = 1, 2, ..., m$.

Example 1. Let $X = \{0, 1, 2, 3, 4\}$ be KU-algebra with a binary operation * defined by the following table

*	0	1	2	3	4
0	0	1	2	3	4
1	0	0	2	3	3
2	0	0	0	1	4
3	0	0	0	0	3
4	0	0	0	0	0

Define a 3-polar fuzzy set $\hat{O} = X \rightarrow [0,1]^3$ by:

$$\hat{O}(u) = \begin{cases} (0.3, 0.4, 0.6) & ; u = 0 \\ (0.2, 0.3, 0.2) & ; u = 1 \\ (0.1, 0.2, 0.3) & ; u = 2 \\ (0.2, 0.3, 0.4) & ; u = 3 \\ (0.2, 0.3, 0.5) & ; u = 4 \end{cases}$$

It is routine to verify that \hat{O} is a 3-polar fuzzy KU-subalgebra of X.

Theorem 3. Let \hat{O} be an m-polar fuzzy set of X. Then \hat{O} is an m-polar fuzzy KU-subalgebra of X if and only if $U(\hat{O}; r) \neq \phi$ is a KU-subalgebra of X for all $\hat{r} = (r_1, r_2, ..., r_m) \in [0, 1]^m$.

Proof. Assume that \hat{O} is an m-polar fuzzy subalgebra of X and let $\hat{r} \in [0,1]^m$ be such that $U(\hat{O};r) \neq \phi$. Let $u,v \in U(\hat{O};\hat{r})$. Then $\hat{O}(u) \geq \hat{r}$ and $\hat{O}(v) \geq \hat{r}$. It follows from definition 6 that $\hat{O}(u*v) \geq min\{\hat{O}(u),\hat{O}(v)\} \geq \hat{r}$, so that $(u*v) \in U(\hat{O};\hat{r})$. Hence $U(\hat{O};\hat{r})$ is a subalgebra of X.

Conversely, assume that $U(\hat{O}; \hat{r})$ is a subalgebra of X. Suppose that there exist $u, v \in X$ such that $\hat{O}(u*v) < min\{\hat{O}(u), \hat{O}(v)\}$. Then there exists $\hat{r} = (r_1, r_2, ..., r_m) \in [0, 1]^m$ such that $\hat{O}(u*v) < \hat{r} \le min\{\hat{O}(u), \hat{O}(v)\}$. It follows that $u, v \in U(\hat{O}; \hat{r})$, but $u*v \notin U(\hat{O}; \hat{r})$. This is a contradiction, and so $\hat{O}(u*v) \ge min\{\hat{O}(u), \hat{O}(v)\}$, $\forall u, v \in X$. Therefore \hat{O} is an m-polar fuzzy KU-subalgebra of X.

Lemma 2. Every m-polar fuzzy subalgebra \hat{O} of X satisfies the following inequality:

$$(\forall u \in X)(\hat{O}(0) \ge \hat{O}(u)) \tag{2}$$

that is,

$$(\pi_i \circ \hat{O})(0) \ge (\pi_i \circ \hat{O})(u)$$

for all $u \in X, i = 1, 2, ..., m$.

Proof. Note that u * u = 0 for all $u \in X$. Using definition 6, we have

$$\hat{O}(0) = \hat{O}(u * u) \ge \min\{\hat{O}(u), \hat{O}(u)\} = \hat{O}(u).$$

for all $u \in X$.

Proposition 2. If every an m-polar fuzzy subalgebra \hat{O} of X satisfies the following inequality:

$$(\forall u, v \in X)(\hat{O}(u * v) \ge \hat{O}(v)) \tag{3}$$

Then, $\hat{O}(0) = \hat{O}(u)$ that is,

$$(\pi_i \circ \hat{O})(u * v) \ge (\pi_i \circ \hat{O})(v)$$

Then, $(\pi_i \circ \hat{O})(0) = (\pi_i \circ \hat{O})(u)$, for all $u, v \in X, i = 1, 2, ..., m$.

Proof. Let $u \in X$. Using (ku 2) and (3), we have $\hat{O}(u) = \hat{O}(u * 0) \ge \hat{O}(0)$. It follows from Lemma 2 that $\hat{O}(0) = \hat{O}(u)$.

Definition 7. An m-polar fuzzy set \hat{O} of X is called an m-polar fuzzy KU-ideal if the following conditions are valid:

$$(\forall u \in X)(\hat{O}(0) \ge \hat{O}(u))$$

$$(\forall u, v, w \in X)(\hat{O}(u * w) \ge \min\{\hat{O}(u * (v * w)), \hat{O}(v)\}$$
(4)

that is,

$$(\forall u \in X)((\pi_i \circ \hat{O})(0) \ge (\pi_i \circ \hat{O})(u))$$

$$(\forall u, v, w \in X)((\pi_i \circ \hat{O})(u * w) \ge \min\{(\pi_i \circ \hat{O})(u * (v * w)), (\pi_i \circ \hat{O})(v)\}$$

for all i = 1, 2, ..., m.

Proposition 3. If \hat{O} is an m-polar fuzzy KU-ideal of X and $u \leq v$, then

$$(\hat{O}(u) \ge \hat{O}(v))(\forall u, v \in X) \tag{5}$$

that is,

$$((\pi_i \circ \hat{O})(u) \ge (\pi_i \circ \hat{O})(v))(\forall u, v \in X, i = 1, 2, ..., m)$$

Proof. If $u \leq v$, then v * u = 0 and (ku 3) 0 * u = u. Since \hat{O} is an m-polar fuzzy KU-ideal of X, we get

$$\hat{O}(0*u) = \hat{O}(u) \ge \min\{\hat{O}(0*(u*v)), O(v)\} = \min\{\hat{O}(0*0), O(v)\} = \min\{\hat{O}(0), O(v)\} = \hat{O}(v).$$

for all $u, v \in X$.

Proposition 4. Let \hat{O} be an m-polar fuzzy KU-ideal of X. If $u * v \leq w$, holds in X then,

$$(\hat{O}(v) \ge \min\{\hat{O}(u), \hat{O}(w)\})(\forall u, v, w \in X) \tag{6}$$

that is,

$$((\pi_i \circ \hat{O})(v) \ge min\{(\pi_i \circ \hat{O})(u), (\pi_i \circ \hat{O})(w)\}) (\forall u, v, w \in X, i = 1, 2, ..., m)$$

Proof. Assume that the inequality $u * v \le w$, holds in X. Then w * (u * v) = 0 and (4)

$$\hat{O}(u*v) \ge \min\{\hat{O}(u*(w*v)), \hat{O}(w)\} = \min\{\hat{O}(w*(u*v)), \hat{O}(w)\} = \min\{\hat{O}(0), \hat{O}(w)\} = \hat{O}(w)$$
(7)

Now,

$$\hat{O}(0*v) = \hat{O}(v) = min\{\hat{O}(0*(u*v)), \hat{O}(u)\} = min\{\hat{O}(u*v), \hat{O}(u)\} \ge min\{\hat{O}(w), \hat{O}(u)\}$$
 (by using (7)), i.e. $\hat{O}(v) \ge min\{\hat{O}(u), \hat{O}(w)\}$. This completes the proof.

Theorem 4. If \hat{O} is an m-polar fuzzy KU-subalgebra of X satisfies the condition in proposition 4, then \hat{O} is an m-polar fuzzy KU-ideal of X.

Proof. Let \hat{O} be an m-polar fuzzy KU-subalgebra of X satisfies the condition in proposition 4 and by lemma 2. We have $\hat{O}(0) \geq \hat{O}(u)$ for all $u \in X$. By theorem 1(3), we have $(u*(v*w))*(u*w) \leq v$, for all $u,v,w \in X$. it follows from proposition 4, that $\hat{O}(u*w) \geq min\{\hat{O}(u*(v*w)),\hat{O}(v)\}$ for all $u,v,w \in X$. Therefore, \hat{O} is an m-polar fuzzy KU-ideal of X.

Proposition 5. Every m-polar fuzzy KU-ideal of X is an m-polar fuzzy ideal.

Proof. Straightforward.

Proposition 6. If \hat{O} is an m-polar fuzzy KU-ideal of X, then

$$(\hat{O}(u*(u*v)) \ge \hat{O}(v))(\forall u, v \in X) \tag{8}$$

that is,

$$((\pi_i \circ \hat{O})(u * (u * v)) \ge (\pi_i \circ \hat{O})(v))(\forall u, v \in X, i = 1, 2, ..., m)$$

REFERENCES 259

Proof. Let \hat{O} be an m-polar fuzzy KU-ideal of a KU-algebra X and let $u, v, w \in X$. Taking w = u * v in (4) and using (ku 2), we get

$$\begin{split} \hat{O}(u*(u*v) &\geq \min\{\hat{O}(u*(v*(u*v))), \hat{O}(v)\} \\ &= \min\{\hat{O}(u*(u*(v*v))), \hat{O}(v)\} \\ &= \min\{\hat{O}(u*(u*0)), \hat{O}(v)\} \\ &= \min\{\hat{O}(0), \hat{O}(v)\} = \hat{O}(v) \end{split}$$

Theorem 5. If \hat{O} is an m-polar fuzzy KU-ideal of X, then the set $B = \{u \in X : \hat{O}(u) = \hat{O}(0)\}$ is an m-polar KU-ideal.

Proof. Since $0 \in X$, then $\hat{O}(0) = \hat{O}(0)$ implies $0 \in B$, so $B \neq \phi$. Let $u * (v * w) \in B$ and $v \in B$ implies $\hat{O}(u * (v * w)) = \hat{O}(0)$ and $\hat{O}(v) = \hat{O}(0)$. Since \hat{O} is an m-polar fuzzy KU-ideal of X, then

$$(\hat{O}(u*w)) \ge \min\{\hat{O}(u*(v*w)), \hat{O}(v)\} = \hat{O}(0).$$

But $\hat{O}(0) \geq \hat{O}(u * w)$. Then $\hat{O}(0) = \hat{O}(u * w)$, it follows that $u * w \in B$, for all $u, v, w \in X$. Hence, the set B is an m-polar KU-ideal.

4. Conclusion

An m-polar fuzzy model is a generalized form of a bipolar fuzzy model. The m-polar fuzzy models provide more precision, flexibility and compatibility to the system when more than one agreement is to be dealt with. This article discussed the KU-ideal of KU-algebras based on m-polar fuzzy sets. The notions of m-polar fuzzy KU-subalgebras and an m-polar fuzzy KU-ideals were introduced, and several properties were investigated.

5. Compliance with ethical standards

Conflict of interest: The author declares that there is no conflict of interest regarding the publication of this paper.

References

- [1] Akram and Farooq, m-Polar fuzzy lie ideals of lie algebras. Quasigroups Relat. Syst. 24(2), 141-150, 2016.
- [2] Akram, Farooq, and Shum, On m-polar fuzzy lie subalgebras, Ital. J. Pure Appl. Math , 36, 445-454, 2016.
- [3] Akram and Sarwar., New applications of m-polar fuzzy competition graphs., New Math. Nat. Comput., 14(2), 249-276, 2018.

REFERENCES 260

[4] Al-Masarwah and Ahmad , m-Polar fuzzy ideals of BCK/BCI-algebras., Journal of King Saud University - Science, 31, 1220-1226. 2019

- [5] Chen , Li , Ma and Wang , m-polar fuzzy sets: an extension of bipolar fuzzy sets., Sci World J ., 416-530 2014.
- [6] Gulistan, Shahzad and Ahmed (2014).1-11., On (α, β) -fuzzy KU-ideals of KU-algebras,, Afr. Mat., , 1-11 2014.
- [7] Mostafa, Abd-Elnaby and Yousef, Fuzzy ideals of KU-Algebras., Int. Math. Forum, 6(63) 3139-3149, 2011.
- [8] Prabpayak and Leerawat., On ideals and congruence in KU-algebras,, scientia Magna, international book series,, Vol.5, No.1,, 54-57, 2009.
- [9] Prabpayak and Leerawat ., On isomorphisms of KU-algebras,, scientia Magna, international book series , 5, no .3., 25-31., 2009.
- [10] Yaqoob, Mostafa and Ansari, On cubic KU-ideals of KU-algebras, , ISRN Algebra, Article ID935905, 10 pages., 2013
- [11] Zadeh, Fuzzy sets, Inf Control, 8, 338-353 1965.