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Abstract. In this paper, the notions of SVN hyper UP -algebra and SVNS hyper UP -algebra
are introduced, and some of their structural properties are investigated. Moreover, the Cartesian
product of SVNS hyper UP -algebra is discussed and proved to be a SVNS hyper UP - algebra.
Finally, the homomorphic image and preimage of SVNS hyper UP -algebra under SVNS functions
are studied and showed also to be SVNS hyper UP -algebra.
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1. Introduction

The concept of fuzzy sets and fuzzy logic has been used widely in many applications
involving uncertainties. Such concept was initiated by L. Zadeh [10]. Resulting from
vagueness or partial belongingness of an element in a set, fuzzy set is successful in han-
dling uncertainties. However, there are still some situations which it cannot cover like
problems involving incomplete information. Motivated by this, a lot of researchers ex-
tended this concept and presented a different theories regarding uncertainty which include
intuitionistic fuzzy set theory [3], interval-valued intuitionistic fuzzy set theory [9] and so
on. Later on, Smarandache [18] generalized intuitionistic fuzzy set theory by introduc-
ing the concept of neutrosophic set in 1998. Neutrosophic set is a part of neutrosophy
which studies the origin, nature, and scope of neutralities, as well as their interactions
with different ideational spectra. It is a powerful general formal framework that has been
recently proposed. To have its real life application in engineering and science, neutro-
sophic set needs to be specified from a technical point of view. That is why single valued
neutrosophic set was introduced by Wang et al. [22] together with its various proper-
ties. Single-valued neutrosophic set has been developing rapidly due to its wide range of
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theoretical elegance and application areas. The reader may refer to the following articles
[7, 8, 16, 17, 19, 20] as references. In 1999, Molodtsov [14] studied another mathematical
theory called soft set theory by giving parameterized approach to uncertainties. On the
other hand, Maji [12] unified the fundamental theories of neutrosophic set and soft set,
and came up with the concept of neutrosophic soft set. Some theoretical advancement
and applications have been reported in the following literatures [1, 4, 5, 11].

The hyper algebraic structure theory was introduced in 1934 by F. Marty [13] at the
8th congress of Scandinavian Mathematicians. This theory is then applied by Y. B. Jun et
al. [21] to BCK-algebras to produce the notion of hyper BCK-algebras as a generalization
of the BCK-algebras. After that, many researchers have been inspired to generalize some
existing algebras and one of them is D. Romano [15]. He has come up with the concept
of hyper UP -algebras to generalize UP -algebras.

In this paper, we utilize the notions of single-valued neutrosophic sets and single-valued
neutrosophic soft sets to hyper UP -algebra to generate SVN hyper UP -algebra and SVNS
hyper UP -algebra. Several of their basic properties are studied. In addition, we define
the Cartesian product of SVNS hyper UP -algebra, and image and preimage of SVNS
hyper UP -algebra under SVNS function. Each of them is discussed and illustrated with
corresponding examples.

2. Preliminary Concepts

Definition 1. [15] Let P(H) to be the power set of H. Consider P∗(H) = P(H) \ {∅}.
A hyperoperation on a nonempty set H is a function ◦ : H ×H −→ P∗(H). The image of
(x, y) ∈ H ×H under ◦ is denoted by x ◦ y. If x ∈ H and A,B are nonempty subsets of
H, then we define

(i) A ◦B =
⋃

a∈A,b∈B
a ◦ b;

(ii) A ◦ x = A ◦ {x}; and

(iii) x ◦B = {x} ◦B.

Definition 2. [15] Let x, y ∈ H and A,B ⊆ H. Then

(i) x ≪ y if and only if 0 ∈ x ◦ y; and

(ii) A ≪ B if and only if for any a ∈ A, there exists b ∈ B such that a ≪ b.

We call ≪ a hyperorder on H.

Remark 1. [15] For all A,B ⊆ H, A ≪ B implies 0 ∈ A ◦B.

Definition 3. [15] Let X be a nonempty set such that 0 ∈ X and (X, ◦,≪, 0) be a
hyperstructure. Then (X, ◦,≪, 0) is called a hyper UP-algebra if the following formulas
are valid: ∀x, y, z ∈ X,

(HUP1) y ◦ z ≪ (x ◦ y) ◦ (x ◦ z),



A. Cano, G. Petalcorin / Eur. J. Pure Appl. Math, 16 (1) (2023), 548-576 550

(HUP2) x ◦ 0 = {0},
(HUP3) 0 ◦ x = {x}, and

(HUP4) x ≪ y ∧ y ≪ x =⇒ x = y.

Example 1. Let X = {0, r, s, t} be a set. If we define a hyper operation “◦” as following:

◦ 0 r s t

0 {0} {r} {s} {t}
r {0} {0, r} {0, s} {r, s}
s {0} {r, s} {0, s} {r}
t {0} {0, r, s, t} {s, t} {0}

,

then the routine calculation will show that (X, ◦,≪, 0) is a hyper UP -algebra.

Example 2. Let X = {0, u, v}. Define a hyper operation “◦” as follows:

◦ 0 u v

0 {0} {u} {v}
u {0} {0, u} {0, v}
v {0} {u, v} {0, v}

.

By routine calculation, (X, ◦,≪, 0) is a hyper UP -algebra.

Example 3. Let X = {0, a, b}. Define a hyper operation “◦” as follows:

◦ 0 a b

0 {0} {a} {b}
a {0} {0, a, b} {0, b}
b {0} {0, a, b} {0}

.

Observe that a ≪ b and b ≪ a. But a ̸= b. Thus, (X, ◦,≪, 0) does not satisfy (HUP4)
and so it is not a hyper UP -algebra.

Proposition 1. [15] Let (H, ◦,≪, 0) be a hyper UP-algebra. Then the following hold for
all x, y, z ∈ H and for every nonempty subsets A,B,C ⊆ H:
(i) A ⊆ B implies A ≪ B (v) z ≪ x ◦ z
(ii) 0 ◦ 0 = {0} (vi) A ◦ 0 = {0}
(iii) x ≪ 0 (vii) 0 ◦A = A
(iv) x ≪ x (viii) (0 ◦ 0) ◦ x = {x}

Proposition 2. [15] Let S be a nonempty subset of a hyper UP-algebra (X, ◦,≪, 0). Then
S is a hyper UP-subalgebra of X if and only if ∀x, y ∈ S, x ◦ y ⊆ S.

Definition 4. [15] Let (X1, ◦1,≪1, 01) and (X2, ◦2,≪2, 02) be hyper UP -algebras. A
mapping f : X1 −→ X2 is called a hyper homomorphism if for all a, b ∈ X1,

(i) f(01) = 02 and
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(ii) f(a ◦1 b) = f(a) ◦2 f(b).

Definition 5. [2] Let f : (X1, ◦1,≪1, 01) −→ (X2, ◦2,≪2, 02) be a hyper homomorphism.
We say that f is a hyper monomorphism if f is one-to-one and f is a hyper epimorphism
if f is onto. We also say that f is a hyper isomorphism if f is both one-to-one and onto.
In this case, X1 and X2 are hyper isomorphic which is denoted as X1

∼=H X2.

Definition 6. [2] Let (X1, ◦1,≪1, 01) and (X2, ◦2,≪2, 02) be hyper UP -algebras. Define
a set X1 ×X2 by

X1 ×X2 = {(a, b) : a ∈ X1 and b ∈ X2}.

with a hyperoperation “ ◦ ” on X1 ×X2 given by

(a, b) ◦ (c, d) = (a ◦1 c, b ◦2 d)

and a hyperorder “≪” given by

(a, b) ≪ (c, d) ⇐⇒ a ≪1 c and b ≪2 d

for all (a, b), (c, d) ∈ X1 ×X2.. Then (X1 ×X2, ◦,≪, (01, 02)) is called the hyper product
of X1 and X2.

Definition 7. [18] Let U be the universe. A neutrosophic set A is characterized by a
truth membership function TA, an indeterminacy membership function IA, and a falsity
membership function FA where TA, IA,FA are real standard or non-standard elements of
]−0, 1+[ with −0 = 0− ϵ and 1+ = 1 + ϵ for any infinitesimal number ϵ. It can be written
as

A = {⟨x, (TA(x), IA(x),FA(x))⟩ |x ∈ U}

where TA, IA,FA : U −→]−0, 1+[ and −0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+.

However, it is difficult to use a neutrosophic set with values from real standard or non-
standard subsets of ]−0, 1+[ in real life application especially scientific and engineering
problem [22]. So, this paper considers the neutrosophic set which takes values from the
interval [0, 1].

Definition 8. [22] Let X be a space of points (objects), with a generic element in X
denoted by x. A single valued neutrosophic set (SVNS ) A in X is characterized by truth-
membership function TA, indeterminacy-membership function IA and falsity-membership
function FA. For each point x ∈ X, TA(x), IA(x),FA(x) ∈ [0, 1].

Definition 9. [14] Given an initial universe set U and set E of parameters or attributes
with respect to U , let P(U) denote the power set of U and A ⊆ E. A pair (F,A) is called
a soft set over U , where F is a mapping given by F : A −→ P(U).

For any ϵ ∈ A, F (ϵ) may be considered as the set of ϵ-approximate elements of the soft
set (F,A).
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The concept of neutrosophic soft set was first defined by Maji [12] and later on, it was
modified by Deli and Broumi [6] as given below:

Definition 10. Let U be an initial universe set and E be a set of parameters. Let N (U)
denote the set of all neutrosophic sets of U . Then a neutrosophic soft set (F,E) over U is
a set defined by a set valued function F representing a mapping F : E −→ N (U) where
F is called approximate function of the neutrosophic soft set (F,E).

In other words, the neutrosophic soft set is a parameterized family of some elements
of the set N (U) and therefore it can be written as a set of ordered pairs

(F,E) = {(e, {
〈
x, (TF (e)(x), IF (e)(x),FF (e)(x))

〉
})|x ∈ U, e ∈ E}

where TF (e)(x), IF (e)(x),FF (e)(x) ∈ [0, 1], respectively called the truth-membership, indeterminacy-
membership, falsity-membership function of F (e). Since supremum of each T , I,F is 1 so
the inequality 0 ≤ TF (e)(x) + IF (e)(x) + FF (e)(x) ≤ 3 is obvious.

Definition 11. [6] The complement of a neutrosophic soft set (F,E) over U is denoted
by (F,E)c and is defined by

(F,E)c = {(e, {
〈
x, (FF (e)(x), 1− IF (e)(x), TF (e)(x))

〉
})|x ∈ U, e ∈ E}.

Definition 12. [6] Let (H,E) and (G,E) be two neutrosophic soft sets over the common
universe U . Then (H,E) is said to be neutrosophic soft subset of (G,E) if ∀e ∈ E
and ∀x ∈ U , TH(e)(x) ≤ TG(e)(x), IH(e)(x) ≥ IG(e)(x),FH(e)(x) ≥ FG(e)(x). We write
(H,E) ⊆ (G,E) and (G,E) is a neutrosophic soft superset of (H,E).

Definition 13. [5] A binary operation ∗ : [0, 1] × [0, 1] −→ [0, 1] is continuous t-norm if
∗ satisfies the following conditions :

(i) ∗ is commutative and associative.

(ii) ∗ is continuous.

(iii) a ∗ 1 = 1 ∗ a = a, ∀a ∈ [0, 1].

(iv) a ∗ b ≤ c ∗ d if a ≤ c, b ≤ d with a, b, c, d ∈ [0, 1].

A few examples of continuous t-norm are a ∗ b = ab, a ∗ b = min{a, b}, a ∗ b =
max{a+ b− 1, 0}.

Definition 14. [5] A binary operation ⋄ : [0, 1] × [0, 1] −→ [0, 1] is continuous t-conorm
(s− norm) if ⋄ satisfies the following conditions :

(i) ⋄ is commutative and associative.

(ii) ⋄ is continuous.

(iii) a ⋄ 0 = 0 ⋄ a = a, ∀a ∈ [0, 1].
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(iv) a ⋄ b ≤ c ⋄ d if a ≤ c, b ≤ d with a, b, c, d ∈ [0, 1].

A few examples of continuous s-norm are a ⋄ b = a + b − ab, a ⋄ b = max{a, b},
a ⋄ b = min{a+ b, 1}.

Definition 15. [6] Let (H,E) and (G,E) be two neutrosophic soft sets over the common
universe U .

(i) Then the union of (H,E) and (G,E) is denoted by (H,E)∪ (G,E) = (K,E) and is
defined by:

(K,E) = {(e, {
〈
x, (TK(e)(x), IK(e)(x),FK(e)(x))

〉
})|x ∈ U, e ∈ E}

where

TK(e)(x) = TH(e)(x) ⋄ TG(e)(x)

IK(e)(x) = IH(e)(x) ∗ IG(e)(x)

FK(e)(x) = FH(e)(x) ∗ FG(e)(x).

(ii) Then the intersection of (H,E) and (G,E) is denoted by (H,E) ∩ (G,E) = (F,E)
and is defined by:

(F,E) = {(e, {
〈
x, (TF (e)(x), IF (e)(x),FF (e)(x))

〉
})|x ∈ U, e ∈ E}

where

TF (e)(x) = TH(e)(x) ∗ TG(e)(x)

IF (e)(x) = IH(e)(x) ⋄ IG(e)(x)

FF (e)(x) = FH(e)(x) ⋄ FG(e)(x).

In this paper, we use the minimality and maximality as binary operations ∗ and ⋄
respectively to define the union and intersection of two NSS sets.

Example 4. Consider U = {s1, s2, s3} be the set of all students and E = {a1, a2} be the
set of parameters where

a1 stands for the parameter ‘brilliant’,

a2 stands for the parameter ‘healthy’.

Define a mapping H : E −→ N (U) by

H(a1) = {⟨s1, (0.1, 0.5, 0.4)⟩ , ⟨s2, (0.6, 0.6, 0.7)⟩ , ⟨s3, (0.5, 0.6, 0.4)⟩}
H(a2) = {⟨s1, (0.8, 0.4, 0.5)⟩ , ⟨s2, (0.7, 0.7, 0.3)⟩ , ⟨s3, (0.7, 0.5, 0.6)⟩}.

and a mapping G : E −→ N (U) by

G(a1) = {⟨s1, (0.8, 0.5, 0.6)⟩ , ⟨s2, (0.5, 0.7, 0.6)⟩ , ⟨s3, (0.4, 0.7, 0.5)⟩},
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G(a2) = {⟨s1, (0.7, 0.6, 0.5)⟩ , ⟨s2, (0.6, 0.8, 0.4)⟩ , ⟨s3, (0.5, 0.8, 0.6)⟩}.

Then the neutrosophic soft sets (H,E) and (G,E) are collections of approximations as
below:

(H,E) = {(a1, {⟨s1, (0.1, 0.5, 0.4)⟩ , ⟨s2, (0.6, 0.6, 0.7)⟩ , ⟨s3, (0.5, 0.6, 0.4)⟩})
(a2, {⟨s1, (0.8, 0.4, 0.5)⟩ , ⟨s2, (0.7, 0.7, 0.3)⟩ , ⟨s3, (0.7, 0.5, 0.6)⟩})}

and

(G,E) = {(a1, {⟨s1, (0.8, 0.5, 0.6)⟩ , ⟨s2, (0.5, 0.7, 0.6)⟩ , ⟨s3, (0.4, 0.7, 0.5)⟩})
(a2, {⟨s1, (0.7, 0.6, 0.5)⟩ , ⟨s2, (0.6, 0.8, 0.4)⟩ , ⟨s3, (0.5, 0.8, 0.6)⟩})}.

Thus, their union and intersection are

(H,E) ∪ (G,E) = {(a1, {⟨s1, (0.8, 0.5, 0.4)⟩ , ⟨s2, (0.6, 0.6, 0.6)⟩ , ⟨s3, (0.5, 0.6, 0.4)⟩})
(a2, {⟨s1, (0.8, 0.4, 0.5)⟩ , ⟨s2, (0.7, 0.7, 0.3)⟩ , ⟨s3, (0.7, 0.5, 0.6)⟩})}

and

(H,E) ∩ (G,E) = {(a1, {⟨s1, (0.1, 0.5, 0.6)⟩ , ⟨s2, (0.5, 0.7, 0.7)⟩ , ⟨s3, (0.4, 0.7, 0.5)⟩})
(a2, {⟨s1, (0.7, 0.6, 0.5)⟩ , ⟨s2, (0.6, 0.8, 0.4)⟩ , ⟨s3, (0.5, 0.8, 0.6)⟩})},

respectively.

3. Main Results

3.1. Single-Valued Neutrosophic Hyper UP-subalgebra

In this section, we introduce the concept of single-valued neutrosophic hyper UP -
subalgebra and prove some of its basic properties. From here onwards, we simply denote
a hyper UP -algebra (X, ◦,≪, 0) by X.

Given a single-valued neutrosophic set A = (TA, IA,FA) in a hyper UP -algebra X and
a subset S of X, we denote the following:

∗TA(S) = sup
y∈S

TA(y) and ∗TA(S) = inf
y∈S

TA(y);

∗IA(S) = sup
y∈S

IA(y) and ∗IA(S) = inf
y∈S

IA(y);

∗FA(S) = sup
y∈S

FA(y) and ∗FA(S) = inf
y∈S

FA(y).

Definition 16. Let A = (TA, IA,FA) be a single-valued neutrosophic set in a hyper UP -
algebra X. Then A is said to be a single-valued neutrosophic (SVN) hyper UP-subalgebra
of X if for all x, y ∈ X,

∗TA(x ◦ y) ≥ min{TA(x), TA(y)},
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∗IA(x ◦ y) ≤ max{IA(x), IA(y)}, and
∗FA(x ◦ y) ≤ max{FA(x),FA(y)}.

Example 5. Consider a hyperUP -algebra (X, ◦,≪, 0) of Example 1 whereX = {0, r, s, t}.
Also, define a single-valued neutrosophic set A = (TA, IA,FA) in X by the following:

TA(x) =

(
0 r s t

0.87 0.42 0.56 0.29

)
,

IA(x) =

(
0 r s t

0.39 0.79 0.76 0.94

)
, and

FA(x) =

(
0 r s t

0.49 0.83 0.53 0.95

)
.

By routine calculation, A is a SVN hyper UP -subalgebra of X.

Example 6. Consider X = N ∪ {0} and a hyperoperation “◦” on X defined by

x ◦ y =


{0} if y = 0,

{0, y} if y = x, y ̸= 0,

{y} otherwise.

By thorough inspection, X is a hyper UP -algebra. Define a single-valued neutrosophic set
A = (TA, IA,FA) in X by

TA(x) =

{
1 if x = 0,

0.5 if x ̸= 0.

IA(x) =

{
0 if x = 0,

0.5 if x ̸= 0.

FA(x) =

{
0 if x = 0,

0.5 if x ̸= 0.

Again, by thorough inspection, A is a SVN hyper UP -subalgebra of X.

Proposition 3. Let A = (TA, IA,FA) be a SVN hyper UP-subalgebra of X. Then for all
x, y ∈ X,

(i)
TA(0) ≥ TA(x)
IA(0) ≤ IA(x)
FA(0) ≤ FA(x).

(ii)
∗TA(0 ◦ x) = TA(x)
∗IA(0 ◦ x) = IA(x)
∗FA(0 ◦ x) = FA(x)



A. Cano, G. Petalcorin / Eur. J. Pure Appl. Math, 16 (1) (2023), 548-576 556

(iii)
∗TA(x ◦ 0) = TA(0)
∗IA(x ◦ 0) = IA(0)
∗FA(x ◦ 0) = FA(0)

(iv) If
TA(x) = TA(0)
IA(x) = IA(0)
FA(x) = FA(0)

, then
∗TA(x ◦ y) ≥ TA(y)
∗IA(x ◦ y) ≤ IA(y)
∗FA(x ◦ y) ≤ FA(y)

.

(v) If
TA(y) = TA(0)
IA(y) = IA(0)
FA(y) = FA(0)

, then
∗TA(x ◦ y) ≥ TA(x)
∗IA(x ◦ y) ≤ IA(x)
∗FA(x ◦ y) ≤ FA(x)

.

(vi) If
∗TA(x ◦ y) = TA(x)
∗IA(x ◦ y) = IA(x)
∗FA(x ◦ y) = FA(x)

, then
TA(x) = TA(0)
IA(x) = IA(0)
FA(x) = FA(0)

and
TA(y) = TA(0)
IA(y) = IA(0)
FA(y) = FA(0)

.

Proof. Let A = (TA, IA,FA) be a SVN hyper UP -subalgebra in X and let x, y ∈ X

(i) Note that x ≪ x. Then 0 ∈ x ◦ x. By hypothesis,

TA(0) ≥ ∗TA(x ◦ x) ≥ min{TA(x), TA(x)} = TA(x),
IA(0) ≤ ∗IA(x ◦ x) ≤ max{IA(x), IA(x)} = IA(x), and

FA(0) ≤ ∗FA(x ◦ x) ≤ max{FA(x),FA(x)} = FA(x).

(ii-iii) The proofs are straightforward since 0 ◦ x = {x} and x ◦ 0 = {0}.

(iv) Assume that TA(x) = TA(0). By hypothesis and by (i), ∗TA(x◦y) ≥ min{TA(0), TA(y)} =
TA(y). Using similar routine, IA(x) = IA(0) implies that ∗IA(x ◦ y) ≤ IA(y) and
FA(x) = FA(0) implies that ∗FA(x ◦ y) ≤ FA(y).

(v) Using similar arguments from (iv), the claim is true.

(vi) Assume that ∗TA(x◦y) = TA(x). Taking x = 0, we have ∗TA(0◦y) = TA(0). By (ii),
TA(y) =∗ TA(0◦y) = TA(0). Similarly, ∗IA(x◦y) = IA(x) implies that IA(y) = IA(0)
and ∗FA(x ◦ y) = FA(x) implies that FA(y) = FA(0). On the other hand, if we take
y = 0, we get ∗TA(x ◦ 0) = TA(x). By (iii), TA(0) =∗ TA(x ◦ 0) = TA(x). Also,
IA(x) = IA(0) and FA(x) = FA(0) will follow.

Proposition 4. If A = (TA, IA,FA) is a SVN hyper UP-subalgebra of X, then the set
K = {x ∈ X|TA(x) = TA(0), IA(x) = IA(0),FA(x) = FA(0)} is a hyper UP-subalgebra of
X.

Proof. Let A = (TA, IA,FA) be a SVN hyper UP -subalgebra of X and let K = {x ∈
X|TA(x) = TA(0), IA(x) = IA(0),FA(x) = FA(0)}. Note that K ̸= ∅ since 0 ∈ K.
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Now, suppose x, y ∈ K and z ∈ x ◦ y. Then TA(x) = TA(0) = TA(y), IA(x) = IA(0) =
IA(y),FA(x) = FA(0) = FA(y). By Proposition 3(i) and by hypothesis, we get

TA(z) ≥ ∗TA(x ◦ y)
≥ min{TA(x), TA(y)}
= min{TA(0), TA(0)}
= TA(0),

IA(z) ≤ ∗IA(x ◦ y)
≤ max{IA(x), IA(y)}
= max{IA(0), IA(0)}
= IA(0),

and similarly,
FA(z) ≤ FA(0).

Thus, TA(z) = TA(0), IA(z) = IA(0), and FA(z) = FA(0). That is, z ∈ K and so x◦y ⊆ K.
By Proposition 2, K is a hyper UP -subalgebra of X.

We define the following α, β, γ-level subsets of X and their intersection:

Tα
A = {x ∈ X : TA(x) ≥ α},
IβA = {x ∈ X : IA(x) ≤ β},
F γ
A = {x ∈ X : FA(x) ≤ γ}, and

A(α,β,γ) = Tα
A ∩ IβA ∩ F γ

A.

where A = (TA, IA,FA) is a SVN set in X and α, β, γ ∈ [0, 1].

Theorem 1. Let A = (TA, IA,FA) be a SVN set in X. Then A is a SVN hyper UP-
subalgebra of X if and only if A(α,β,γ) is a hyper UP-subalgebra of X for all α, β, γ ∈ [0, 1].

Proof. Let A = (TA, IA,FA) be a SVN set in X.
(⇒) Assume thatA is a SVN hyperUP -subalgebra ofX. Note that TA(x), IA(x),FA(x) ∈

[0, 1] ∀x ∈ X. Then take α = TA(x), β = IA(x) and γ = FA(x). By Proposition
3(i), TA(0) ≥ TA(x) = α, IA(0) ≤ IA(x) = β, and FA(0) ≤ FA(x) = γ. Hence,
0 ∈ Tα

A ∩ IαA ∩ Fα
A = A(α,β,γ) and so A(α,β,γ) ̸= ∅. Now, we let x, y ∈ A(α,β,γ) for all

α, β, γ ∈ [0, 1]. Dealing first with Tα
A , we have x, y ∈ Tα

A . Let z ∈ x ◦ y. Then TA(x) ≥ α,
TA(y) ≥ α, and TA(z) ≥∗ TA(x ◦ y). By assumption,

TA(z) ≥ ∗TA(x ◦ y)
≥ min{TA(x), TA(y)}
= α.
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Thus, z ∈ Tα
A and so x ◦ y ⊆ Tα

A . For I
β
A, we have x, y ∈ IβA. Then IA(x) ≤ β, IA(y) ≤ β,

and IA(z) ≤∗ IA(x ◦ y). By assumption,

IA(z) ≤ ∗IA(x ◦ y)
≤ max{IA(x), IA(y)}
= β.

Thus, z ∈ IβA and so x ◦ y ⊆ IβA. Using similar arguments, x ◦ y ⊆ F γ
A for x, y ∈ F γ

A. Now,

it follows that x ◦ y ⊆ Tα
A ∩ IβA ∩ F γ

A = A(α,β,γ). By Proposition 2, A(α,β,γ) is a hyper
UP -subalgebra.

(⇐) Assume that A(α,β,γ) is a hyper UP -subalgebra of X for all α, β, γ ∈ [0, 1] and
let x, y ∈ X. Note that TA(x), TA(y), IA(x), IA(y),FA(x),FA(y) ∈ [0, 1]. Then take
α = min{TA(x), TA(y)}, β = max{IA(x), IA(y)}, and γ = max{TA(x), TA(y)} and so we
have TA(x) ≥ α, TA(y) ≥ α, IA(x) ≤ β, IA(y) ≤ β, FA(x) ≤ γ, and FA(y) ≤ γ. Thus,

x, y ∈ Tα
A ∩ IβA ∩ F γ

A = A(α,β,γ). By assumption, x ◦ y ⊆ A(α,β,γ). This means that

∗TA(x ◦ y) ≥ α = min{TA(x), TA(y)},
∗IA(x ◦ y) ≤ β = max{IA(x), IA(y)}, and
∗FA(x ◦ y) ≤ γ = max{FA(x),FA(y)}.

Hence, A is a SVN hyper UP -subalgebra of X.

Corollary 1. Let A = (TA, IA,FA) be a SVN hyper UP-subalgebra of X. If 0 ≤ α ≤
α

′ ≤ 1, 0 ≤ β ≤ β
′ ≤ 1, and 0 ≤ γ ≤ γ

′ ≤ 1, then A(α
′
,β,γ) is a hyper UP-subalgebra of

A(α,β
′
,γ

′
).

Proof. Let A = (TA, IA,FA) be a SVN hyper UP -subalgebra of X and let 0 ≤ α ≤
α

′ ≤ 1, 0 ≤ β ≤ β
′ ≤ 1, and 0 ≤ γ ≤ γ

′ ≤ 1. By Theorem 1, A(α
′
,β,γ) and A(α,β

′
,γ

′
)

are both hyper UP -subalgebra of X. We are left to show that A(α
′
,β,γ) ⊆ A(α,β

′
,γ

′
). Let

y ∈ Tα
′

A . Then TA(y) ≥ α
′ ≥ α. Thus, y ∈ Tα

A and so Tα
′

A ⊆ Tα
A . Next, let z ∈ IβA.

Then IA(z) ≤ β ≤ β
′
. Thus, z ∈ Iβ

′

A and so IβA ⊆ Iβ
′

A . Similarly, F γ
A ⊆ F γ

′

A . Hence,

A(α
′
,β,γ) = Tα

′

A ∩ IβA ∩ F γ
A ⊆ Tα

A ∩ Iβ
′

A ∩ F γ
′

A = A(α,β
′
,γ

′
). Consequently, A(α

′
,β,γ) is a hyper

UP -subalgebra of A(α,β
′
,γ

′
).

For fixed numbers α1, α2, β1, β2, γ1, γ2 ∈ [0, 1] such that α1 ≥ α2, β1 ≥ β2,γ1 ≥ γ2, and
a nonempty subset G of X, we define a SVN set

AG

[
α1, β2, γ2
α2, β1, γ1

]
=

(
TAG

[
α1

α2

]
, IAG

[
β2
β1

]
,FAG

[
γ2
γ1

])
where

TAG

[
α1

α2

]
(x) =

{
α1 if x ∈ G

α2 otherwise
,
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IAG

[
β2
β1

]
(x) =

{
β2 if x ∈ G

β1 otherwise
,

and

FAG

[
γ2
γ1

]
(x) =

{
γ2 if x ∈ G

γ1 otherwise
.

Theorem 2. Let G be a nonempty subset of X and AG

[
α1, β2, γ2
α2, β1, γ1

]
be a SVN set in X.

Then AG

[
α1, β2, γ2
α2, β1, γ1

]
satisfies Proposition 3(i) if and only if 0 ∈ G.

Proof. Let G be a nonempty subset of X and AG

[
α1, β2, γ2
α2, β1, γ1

]
be a SVN set in X.

(⇒) Assume that AG

[
α1, β2, γ2
α2, β1, γ1

]
satisfies Proposition 3(i). Since G ̸= ∅, there

exists g ∈ G. Thus, TAG

[
α1

α2

]
(g) = α1. Now,

TAG

[
α1

α2

]
(0) ≥ TAG

[
α1

α2

]
(g)

= α1

≥ TAG

[
α1

α2

]
(0).

That is, TAG

[
α1

α2

]
(0) = α1. Hence, 0 ∈ G.

(⇐) Assume that 0 ∈ G. Then TAG

[
α1

α2

]
(0) = α1, IAG

[
β2
β1

]
(0) = β2 and

FAG

[
γ2
γ1

]
(0) = γ2. For all x ∈ X,

TAG

[
α1

α2

]
(0) = α1 ≥ TAG

[
α1

α2

]
(x),

IAG

[
β2
β1

]
(0) = β2 ≤ IAG

[
β2
β1

]
(x)

and

FAG

[
γ2
γ1

]
(0) = γ2 ≤ FAG

[
γ2
γ1

]
(x).

Hence, AG

[
α1, β2, γ2
α2, β1, γ1

]
satisfies Proposition 3(i).
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Theorem 3. Let AG

[
α1, β2, γ2
α2, β1, γ1

]
be a SVN set in X. Then AG

[
α1, β2, γ2
α2, β1, γ1

]
is a SVN

hyper UP-subalgebra of X if and only if a nonempty subset of G is a hyper UP-subalgebra
of X.

Proof. Let AG

[
α1, β2, γ2
α2, β1, γ1

]
be a SVN set in X.

(⇒) Assume that AG

[
α1, β2, γ2
α2, β1, γ1

]
is a SVN hyper UP -subalgebra of X. Since G ̸= ∅,

we let x, y ∈ G and z ∈ x ◦ y. Then

TAG

[
α1

α2

]
(x) = α1 = TAG

[
α1

α2

]
(y).

By assumption,

TAG

[
α1

α2

]
(z) ≥ ∗TAG

[
α1

α2

]
(x ◦ y)

≥ min

{
TAG

[
α1

α2

]
(x), TAG

[
α1

α2

]
(y)

}
= α1

≥ TAG

[
α1

α2

]
(z).

That is, TAG

[
α1

α2

]
(z) = α1. Thus, z ∈ G and so x ◦ y ⊆ G. By Proposition 2, G is a

hyper UP -subalgebra of X.
(⇐) Assume that G is a hyper UP -subalgebra of X and suppose x, y ∈ X. Consider the
following cases:

Case 1. x, y ∈ G
By assumption, x ◦ y ⊆ G. Thus,

∗TAG

[
α1

α2

]
(x ◦ y) = α1 ≥ α1 = min

{
TAG

[
α1

α2

]
(x), TAG

[
α1

α2

]
(y)

}
,

∗IAG

[
β2
β1

]
(x ◦ y) = β2 ≤ β2 = max

{
IAG

[
β2
β1

]
(x), IAG

[
β2
β1

]
(y)

}
,

and
∗FAG

[
γ2
γ1

]
(x ◦ y) = γ2 ≤ γ2 = max

{
FAG

[
γ2
γ1

]
(x),FAG

[
γ2
γ1

]
(y)

}
.

Case 2. x ∈ G and y /∈ G
So we have

∗TAG

[
α1

α2

]
(x ◦ y) ≥ α2
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= min{α1, α2}

= min

{
TAG

[
α1

α2

]
(x), TAG

[
α1

α2

]
(y)

}
,

∗IAG

[
β2
β1

]
(x ◦ y) ≤ β1

= max{β2, β1}

= max

{
IAG

[
β2
β1

]
(x), IAG

[
β2
β1

]
(y)

}
,

and

∗FAG

[
γ2
γ1

]
(x ◦ y) ≤ γ1

= max{γ2, γ1}

= max

{
FAG

[
γ2
γ1

]
(x),FAG

[
γ2
γ1

]
(y)

}
.
Case 3. x /∈ G and y ∈ G
Using similar routine done in case 2, we have

∗TAG

[
α1

α2

]
(x ◦ y) ≥ min

{
TAG

[
α1

α2

]
(x), TAG

[
α1

α2

]
(y)

}
,

∗IAG

[
β2
β1

]
(x ◦ y) ≤ max

{
IAG

[
β2
β1

]
(x), IAG

[
β1
β2

]
(y)

}
,

and
∗FAG

[
γ2
γ1

]
(x ◦ y) ≤ max

{
FAG

[
γ2
γ1

]
(x),FAG

[
γ2
γ1

]
(y)

}
.

Case 4. x /∈ G and y /∈ G
Now,

∗TAG

[
α1

α2

]
(x ◦ y) ≥ α2

= min{α2, α2}

= min

{
TAG

[
α1

α2

]
(x), TAG

[
α1

α2

]
(y)

}
,

∗IAG

[
β2
β1

]
(x ◦ y) ≤ β1

= max{β1, β1}
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= max

{
IAG

[
β2
β1

]
(x), IAG

[
β2
β1

]
(y)

}
,

and

∗FAG

[
γ2
γ1

]
(x ◦ y) ≤ γ1

= max{γ1, γ1}

= max

{
FAG

[
γ2
γ1

]
(x),FAG

[
γ2
γ1

]
(y)

}
.

Hence, AG

[
α1, β2, γ2
α2, β1, γ1

]
is a SVN hyper UP -subalgebra of X.

Theorem 4. Let G be a hyper UP-subalgebra of X. Then there exists a SVN hyper
UP-subalgebra A = (TA, IA,FA) of X such that A(α,β,γ) = G for α, β, γ ∈ [0, 1].

Proof. Let G be a hyper UP -subalgebra of X. For fixed α, β, γ ∈ (0, 1], consider

A = AG

[
α, 0, 0
0, β, γ

]
. Since G be a hyper UP -subalgebra of X, AG

[
α, 0, 0
0, β, γ

]
is a SVN

hyper UP -subalgebra of X by Theorem 3. Now, let x ∈ G. Then

TA(x) = TAG

[
α
0

]
(x) = α ≥ α,

IA(x) = IAG

[
0
β

]
(x) = 0 ≤ β,

and

FA(x) = FAG

[
0
γ

]
(x) = 0 ≤ γ.

Thus, x ∈ Tα
A ∩ IβA ∩ F γ

A = A(α,β,γ) and so G ⊆ A(α,β,γ). Also, let y ∈ A(α,β,γ). Then

TA(y) ≥ α, IA(y) ≤ β, and FA(y) ≤ γ. Suppose that y /∈ G. Then 0 = TAG

[
α
0

]
(y) =

TA(y) ≥ α. It follows that α = 0. This is a contradiction since α ∈ (0, 1]. Thus, y ∈ G
and so A(α,β,γ) ⊆ G. Consequently, A(α,β,γ) = G.

Theorem 5. Given a chain of hyper UP-subalgebras of X:

A0 ⊂ A1 ⊂ A2 ⊂ A3 ⊂ . . . ⊂ An = X.

Then there exists a SVN hyper UP- subalgebra A = (TA, IA,FA) of X such that A(αk,βk,γk) =
Ak where αk, βk, γk ∈ [0, 1] for 0 ≤ k ≤ n.
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Proof. Let {αk|k = 0, 1, . . . , n} be a finite decreasing sequence and {βk|k = 0, 1, . . . , n},
{γk|k = 0, 1, . . . , n} be finite increasing sequences such that αk, βk, γk ∈ [0, 1] for 1 ≤
k ≤ n. Define a SVN set A = (TA, IA,FA) in X by TA(A0) = α0, IA(A0) = β0,
FA(A0) = γ0,TA(Ak \ Ak−1) = αk, IA(Ak \ Ak−1) = βk, and FA(Ak \ Ak−1) = γk for
1 ≤ k ≤ n. We will show that A is a SVN hyper UP -subalgebra of X. Let a, b ∈ X.
Consider the following cases:

Case 1. a, b ∈ Ak \Ak−1

Then TA(a) = αk = TA(b), IA(a) = βk = IA(b), and FA(a) = γk = FA(b). Since Ak is a
hyper UP -subalgebra of X, a ◦ b ⊆ Ak.

Subcase 1.1. a ◦ b ⊆ Ak \Ak−1

∗TA(a ◦ b) = αk ≥ αk = min{TA(a), TA(b)},

∗IA(a ◦ b) = βk ≤ βk = max{IA(a), IA(b)},

and
∗FA(a ◦ b) = γk ≤ γk = max{FA(a),FA(b)}.

Subcase 1.2. a ◦ b ⊆ Ak−1

For some r ∈ [0, k − 1], we have

∗TA(a ◦ b) = αk−1−r ≥ αk = min{TA(a), TA(b)},

∗IA(a ◦ b) = βk−1−r ≤ βk = max{IA(a), IA(b)},

and
∗FA(a ◦ b) = γk−1−r ≤ γk = max{FA(a),FA(b)}.

Subcase 1.3. a◦b = [(a◦b)∩(Ak\Ak−1)]∪[(a◦b)∩Ak−1] where (a◦b)∩(Ak\Ak−1) ̸= ∅
and (a ◦ b) ∩Ak−1 ̸= ∅

∗TA(a ◦ b) = αk ≥ αk = min{TA(a), TA(b)},

∗IA(a ◦ b) = βk ≤ βk = max{IA(a), IA(b)},

and
∗FA(a ◦ b) = γk ≤ γk = max{FA(a),FA(b)}.

Case 2. a ∈ Ai \Ai−1 and b ∈ Aj \Aj−1 for i > j > 0
Then TA(a) = αi, TA(b) = αj , IA(a) = βi, IA(b) = βj , FA(a) = γi, and FA(b) = γj . Since
Ai is a hyper UP -subalgebra of X and Aj ⊂ Ai, we have a ◦ b ⊆ Ai.

Subcase 2.1. a ◦ b ⊆ Ai \Aj

For some r ∈ [0, i− j − 1], we have

∗TA(a ◦ b) = αi−r ≥ αi = min{TA(a), TA(b)},
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∗IA(a ◦ b) = βi−r ≤ βi = max{IA(a), IA(b)},

and
∗FA(a ◦ b) = γi−r ≤ γi = max{FA(a),FA(b)}.

Subcase 2.2. a ◦ b ⊆ Aj

For some r ∈ [0, j], we have

∗TA(a ◦ b) = αj−r ≥ αi = min{TA(a), TA(b)},
∗IA(a ◦ b) = βj−r ≤ βi = max{IA(a), IA(b)},

and
∗FA(a ◦ b) = γj−r ≤ γi = max{FA(a),FA(b)}.

Subcase 2.3. a ◦ b = [(a ◦ b) ∩ (Ai \Aj)] ∪ [(a ◦ b) ∩Aj ] where (a ◦ b) ∩ (Ai \Aj) ̸= ∅
and (a ◦ b) ∩Aj ̸= ∅
For some r ∈ [0, i− j − 1], we have

∗TA(a ◦ b) = αi−r ≥ αi = min{TA(a), TA(b)},
∗IA(a ◦ b) = βi−r ≤ βi = max{IA(a), IA(b)},

and
∗FA(a ◦ b) = γi−r ≤ γi = max{FA(a),FA(b)}.

Thus, A is a SVN hyper UP -subalgebra of X. Furthermore, note that

Tα0
A = {s ∈ X|TA(s) ≥ α0} = A0,

Iβ0

A = {s ∈ X|IA(s) ≤ β0} = A0,

and
F γ0
A = {s ∈ X|FA(s) ≤ γ0} = A0.

Thus, A0 = Tα0
A ∩ Iβ0

A ∩ F γ0
A = A(α0,β0,γ0). For 0 < k ≤ n, let x ∈ Ak. Then x ∈

Ak−i \Ak−i−1 ∃0 ≤ i ≤ k − 1. Thus,

TA(x) = αk−i ≥ αk,

IA(x) = βk−i ≤ βk

and
FA(x) = γk−i ≤ γk

∃0 ≤ i ≤ k − 1. So we have x ∈ Tαk
A ∩ Iβk

A ∩ F γk
A = A(αk,βk,γk) and Ak ⊆ A(αk,βk,γk). Also,

let y ∈ A(αk,βk,γk). Then TA(y) ≥ αk, IA(y) ≤ βk, and FA(y) ≤ γk. The values of TA(y),
IA(y), and FA(y) that will make the three inequalities true are TA(y) = αt, IA(y) = βt,
and FA(y) = γt ∃0 < t ≤ k. This implies that y ∈ Ak−i \Ak−i−1 ∃0 ≤ i ≤ k − 1. That is,
y ∈ Ak since (Ak−i \Ak−i−1) ⊆ Ak ∃0 ≤ i ≤ k−1. Hence, A(αk,βk,γk) ⊆ Ak. Consequently,
A(αk,βk,γk) = Ak.
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3.2. Single-Valued Neutrosophic Soft Hyper UP-subalgebra

In this section, we define the single-valued neutrosophic soft hyper UP -subalgebra and
prove some related properties.

Definition 17. Let (∆, E) be a single-valued neutrosophic soft set over a hyper UP -
algebra X. Then (∆, E) is said to be single-valued neutrosophic soft (SV NS) hyper
UP-subalgebra of X if for all x, y ∈ X and e ∈ E,

∗T∆(e)(x ◦ y) ≥ min{T∆(e)(x), T∆(e)(y)},
∗I∆(e)(x ◦ y) ≤ max{T∆(e)(x), T∆(e)(y)}, and
∗F∆(e)(x ◦ y) ≤ max{T∆(e)(x), T∆(e)(y)};

that is, ∆(e) is a SVN hyper UP -subalgebra of X.

Example 7. Consider the hyper UP -algebra (X, ◦,≪, 0) of Example 2 where X =
{0, u, v}. Let E = {e1, e2} be the set of parameters and let ∆ : E −→ N (X) be de-
fined by

∆(e1) = {⟨0, (0.9, 0.2, 0.45)⟩ , ⟨u, (0.74, 0.57, 0.7)⟩ , ⟨v, (0.8, 0.42, 0.52)⟩} and

∆(e2) = {⟨0, (0.8, 0.2, 0.4)⟩ , ⟨u, (0.4, 0.45, 0.5)⟩ , ⟨v, (0.67, 0.3, 0.5)⟩}.

Then

(∆, E) = {(e1, {⟨0, (0.9, 0.2, 0.45)⟩ , ⟨u, (0.74, 0.57, 0.7)⟩ , ⟨v, (0.8, 0.42, 0.52)⟩}),
(e2, {⟨0, (0.8, 0.2, 0.4)⟩ , ⟨u, (0.4, 0.45, 0.5)⟩ , ⟨v, (0.67, 0.3, 0.5)⟩})}.

is a SVNS set over X. By routine calculation, (∆, E) is a SVNS hyper UP -subalgebra of
X.

Proposition 5. Let (∆, E) be a SVNS hyper UP-subalgebra of X. Then for all x, y ∈ X
and e ∈ E,

(i)

T∆(e)(x) ≤ T∆(e)(0)

I∆(e)(x) ≥ I∆(e)(0)

F∆(e)(x) ≥ F∆(e)(0)
,

(ii)
∗T∆(e)(0 ◦ x) = T∆(e)(x).
∗I∆(e)(0 ◦ x) = I∆(e)(x)
∗F∆(e)(0 ◦ x) = F∆(e)(x).

(iii)
∗T∆(e)(x ◦ 0) = T∆(e)(0)
∗I∆(e)(x ◦ 0) = I∆(e)(0)
∗F∆(e)(x ◦ 0) = F∆(e)(0)

(iv) If

T∆(e)(x) = T∆(e)(0)

I∆(e)(x) = I∆(e)(0)

F∆(e)(x) = F∆(e)(0)
, then

∗T∆(e)(x ◦ y) ≥ T∆(e)(y)
∗I∆(e)(x ◦ y) ≤ I∆(e)(y)
∗F∆(e)(x ◦ y) ≤ F∆(e)(y)

.
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(v) If

T∆(e)(y) = T∆(e)(0)

I∆(e)(y) = I∆(e)(0)

F∆(e)(y) = F∆(e)(0)
, then

∗T∆(e)(x ◦ y) ≥ T∆(e)(x)
∗I∆(e)(x ◦ y) ≤ I∆(e)(x)
∗F∆(e)(x ◦ y) ≤ F∆(e)(x)

.

(vi) If
∗T∆(e)(x ◦ y) = T∆(e)(x)
∗I∆(e)(x ◦ y) = I∆(e)(x)
∗F∆(e)(x ◦ y) = F∆(e)(x)

, then

T∆(e)(x) = T∆(e)(0)

I∆(e)(x) = I∆(e)(0)

F∆(e)(x) = F∆(e)(0)
and

T∆(e)(y) = T∆(e)(0)

I∆(e)(y) = I∆(e)(0)

F∆(e)(y) = F∆(e)(0)
.

Proof. Using similar arguments from Proposition 3, this proposition is valid.

Theorem 6. Let (∆1, E) and (∆2, E) be two SVNS hyper UP-subalgebras of X. Then

(i) (∆1, E) ∩ (∆2, E) is a SVNS hyper UP-subalgebra of X.

(ii) (∆1, E) ∪ (∆2, E) is not generally a SVNS hyper UP-subalgebra of X.

Proof. Let (∆1, E) and (∆2, E) be two SVNS hyper UP -subalgebras of X.

(i) Let (∆, E) = (∆1, E) ∩ (∆2, E), x, y ∈ X and e ∈ E. Then we have

∗T∆(e)(x ◦ y) = inf
a∈x◦y

T∆(e)(a)

= inf
a∈x◦y

min{T∆1(e)(a), T∆2(e)(a)}

≥ min{ inf
a∈x◦y

T∆1(e)(a), inf
a∈x◦y

T∆2(e)(a)}

= min{∗T∆1(e)(x ◦ y),∗ T∆2(e)(x ◦ y)}
≥ min{min{T∆1(e)(x), T∆1(e)(y)},min{T∆2(e)(x), T∆2(e)(y)}}
= min{min{T∆1(e)(x), T∆2(e)(x)},min{T∆1(e)(y), T∆2(e)(y)}}
= min{T∆(e)(x), T∆(e)(y)}.

Also,

∗I∆(e)(x ◦ y) = sup
a∈x◦y

I∆(e)(a)

= sup
a∈x◦y

max{I∆1(e)(a), I∆2(e)(a)}

≤ max{ sup
a∈x◦y

I∆1(e)(a), sup
a∈x◦y

I∆2(e)(a)}

= max{∗I∆1(e)(x ◦ y),∗ I∆2(e)(x ◦ y)}
≤ max{max{I∆1(e)(x), I∆1(e)(y)},max{I∆2(e)(x), I∆2(e)(y)}}
= max{max{I∆1(e)(x), I∆2(e)(x)},max{I∆1(e)(y), I∆2(e)(y)}}
= max{I∆(e)(x), I∆(e)(y)}.

Similarly,
∗F∆(e)(x ◦ y) ≤ max{F∆(e)(x),F∆(e)(y)}.

Thus, (∆, E) is a SVNS hyper UP -subalgebra of X.
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(ii) Using the hyper UP -algebra (X, ◦,≪, 0) of Example 1 where X = {0, r, s, t}, we
consider the two SVNS hyper UP -subalgebras (∆1, E) and (∆2, E) of X given by:
for e ∈ E,

T∆1(e)(x) =

{
0.5 if x ∈ {0, s},
0 otherwise.

I∆1(e)(x) =

{
0 if x ∈ {0, s},
0.5 otherwise.

F∆1(e)(x) =

{
0 if x ∈ {0, s},
0.5 otherwise.

and

T∆2(e)(x) =

{
0.7 if x ∈ {0, t},
0 otherwise.

I∆2(e)(x) =

{
0 if x ∈ {0, t},
0.7 otherwise.

F∆2(e)(x) =

{
0 if x ∈ {0, t},
0.7 otherwise.

,

respectively. Let (∆, E) = (∆1, E) ∪ (∆2, E). For all e ∈ E, taking x = s and y = t
gives

∗T∆(e)(x ◦ y) = ∗T∆(e)(s ◦ t)
= ∗T∆(e)({r})
= T∆(e)(r)

= max{T∆1(e)(r), T∆2(e)(r)}
= max{0, 0}
= 0

and

min{T∆(e)(x), T∆(e)(y)} = min{T∆(e)(s), T∆(e)(t)}
= min{max{T∆1(e)(s), T∆2(e)(s)},max{T∆1(e)(t), T∆2(e)(t)}}
= min{max{0.5, 0},max{0, 0.7}}
= min{0.5, 0.7}
= 0.5.

That is,

∗T∆(e)(x ◦ y) = 0 < 0.5 = min{T∆(e)(x), T∆(e)(y)}.
Thus, (∆, E) is not a SVNS hyper UP -subalgebra of X.
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3.3. Cartesian Product of SVNS Hyper UP-subalgebra

In this section, we define the Cartesian product of SVNS hyper UP -subalgebra and
prove that it is also a SVNS hyper UP -subalgebra.

Definition 18. Let (∆1, E) and (∆2, E) be two SVNS hyper UP -subalgebras of X1 and
X2, respectively. Then their Cartesian product is (∆, E ×E) = (∆1, E)× (∆2, E), where
∆(a, b) = ∆1(a)×∆2(b) for (a, b) ∈ E × E. Analytically,

∆(a, b) = {
〈
(x, y), (T∆(a,b)(x, y), I∆(a,b)(x, y),F∆(a,b)(x, y))

〉
|(x, y) ∈ X1 ×X2}

where

T∆(a,b)(x, y) = min{T∆1(a)(x), T∆2(b)(y)},
I∆(a,b)(x, y) = max{I∆1(a)(x), I∆2(b)(y)}, and

F∆(a,b)(x, y) = max{F∆1(a)(x),F∆2(b)(y)}.

for (a, b) ∈ E × E.

Example 8. Using E = {e1, e2} as the set of parameters, consider the hyper UP -algebra
X = {01, r, s, t} of Example 1 as X1 with its hyperoperation “◦1” and its SVNS hyper
UP -subalgebra (∆1, E) given by

T∆1(e)(x) =

{
0.5 if x ∈ {01, s},
0 otherwise.

I∆1(e)(x) =

{
0 if x ∈ {01, s},
0.5 otherwise.

F∆1(e)(x) =

{
0 if x ∈ {01, s},
0.5 otherwise.

for e ∈ E. Consider also hyper UP -algebra X = {02, u, v} of Example 2 as X2 with its
hyper operation “ ◦2 ” and its SVNS hyper UP -subalgebra (∆2, E) given by

(∆2, E) = {(e1, {⟨02, (0.9, 0.2, 0.45)⟩ , ⟨u, (0.74, 0.57, 0.7)⟩ , ⟨v, (0.8, 0.42, 0.52)⟩}),
(e2, {⟨02, (0.8, 0.2, 0.4)⟩ , ⟨u, (0.4, 0.45, 0.5)⟩ , ⟨v, (0.67, 0.3, 0.5)⟩})}.

Then the Cartesian product of (∆1, E) and (∆2, E) is

(∆, E) = {((e1, e1), {⟨(01, 02), (0.5, 0.2, 0.45)⟩ , ⟨(01, u), (0.5, 0.57, 0.7)⟩ ,
⟨(01, v), (0.5, 0.42, 0.52)⟩ , ⟨(r, 02), (0, 0.5, 0.5)⟩ , ⟨(r, u), (0, 0.57, 0.7)⟩ ,
⟨(r, v), (0, 0.5, 0.52)⟩ , ⟨(s, 02), (0.5, 0.2, 0.45)⟩ , ⟨(s, u), (0.5, 0.57, 0.7)⟩ ,
⟨(s, v), (0.5, 0.42, 0.52)⟩ , ⟨(t, 02), (0, 0.5, 0.5)⟩ , ⟨(t, u), (0, 0.57, 0.7)⟩ ,
⟨(t, v), (0, 0.5, 0.52)⟩}), ((e1, e2), {⟨(01, 02), (0.5, 0.2.0.4)⟩ ,
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⟨(01, u), (0.4, 0.45, 0.5)⟩ , ⟨(01, v), (0.5, 0.3, 0.5)⟩ , ⟨(r, 02), (0, 0.5, 0.5)⟩ ,
⟨(r, u), (0, 0.5, 0.5)⟩ , ⟨(r, v), (0, 0.5, 0.5)⟩ , ⟨(s, 02), (0.5, 0.2, 0.4)⟩ ,
⟨(s, u), (0.4, 0.45, 0.5)⟩ , ⟨(s, v), (0.5, 0.3, 0.5)⟩ , ⟨(t, 02), (0, 0.5, 0.5)⟩ ,
⟨(t, u), (0, 0.5, 0.5)⟩ , ⟨(t, v), (0, 0.5, 0.5)⟩}), ((e2, e1), {⟨(01, 02), (0.5, 0.2, 0.45)⟩ ,
⟨(01, u), (0.5, 0.57, 0.7)⟩ , ⟨(01, v), (0.5, 0.42, 0.52)⟩ , ⟨(r, 02), (0, 0.5, 0.5)⟩ ,
⟨(r, u), (0, 0.57, 0.7)⟩ , ⟨(r, v), (0, 0.5, 0.52)⟩ , ⟨(s, 02), (0.5, 0.2, 0.45)⟩ ,
⟨(s, u), (0.5, 0.57, 0.7)⟩ , ⟨(s, v), (0.5, 0.42, 0.52)⟩ , ⟨(t, 02), (0, 0.5, 0.5)⟩ ,
⟨(t, u), (0, 0.57, 0.7)⟩ , ⟨(t, v), (0, 0.5, 0.52)⟩}), ((e2, e2), {⟨(01, 02), (0.5, 0.2.0.4)⟩ ,
⟨(01, u), (0.4, 0.45, 0.5)⟩ , ⟨(01, v), (0.5, 0.3, 0.5)⟩ , ⟨(r, 02), (0, 0.5, 0.5)⟩ ,
⟨(r, u), (0, 0.5, 0.5)⟩ , ⟨(r, v), (0, 0.5, 0.5)⟩ , ⟨(s, 02), (0.5, 0.2, 0.4)⟩ ,
⟨(s, u), (0.4, 0.45, 0.5)⟩ , ⟨(s, v), (0.5, 0.3, 0.5)⟩ , ⟨(t, 02), (0, 0.5, 0.5)⟩ ,
⟨(t, u), (0, 0.5, 0.5)⟩ , ⟨(t, v), (0, 0.5, 0.5)⟩})}

Theorem 7. Let (∆1, E) and (∆2, E) be two SVNS hyper UP-subalgebras of (X1, ◦1,≪1

, 01) and (X2, ◦2,≪2, 02), respectively. Then their Cartesian product (∆1, E)× (∆2, E) is
a SVNS hyper UP-subalgebra of (X1 ×X2, ◦,≪, (01, 02)).

Proof. Let (∆1, E) and (∆2, E) be two SVNS hyper UP -subalgebras of X1 and X2,
respectively and let (∆, E × E) = (∆1, E) × (∆2, E), where ∆(a, b) = ∆1(a) ×∆2(b) for
(a, b) ∈ E × E. For (u, v), (x, y) ∈ X1 ×X2, we have

∗T∆(a,b)((u, v) ◦ (x, y)) = ∗T∆(a,b)(u ◦1 x, v ◦2 y)
= inf

(r,t)∈(u◦1x)×(v◦2y)
T∆(a,b)(r, t)

= inf
(r,t)∈(u◦1x)×(v◦2y)

min{T∆1(a)(r), T∆2(b)(t)}

≥ min{ inf
r∈u◦1x

T∆1(a)(r), inf
t∈v◦2y

T∆2(b)(t)}

= min{∗T∆1(a)(u ◦1 x),∗ T∆2(b)(v ◦2 y)}
≥ min{min{T∆1(a)(u), T∆1(a)(x)},min{T∆2(b)(v), T∆2(b)(y)}}
= min{min{T∆1(a)(u), T∆2(b)(v)},min{T∆1(a)(x), T∆2(b)(y)}}
= min{T∆(a,b)(u, v), T∆(a,b)(x, y)}.

Also,

∗I∆(a,b)((u, v) ◦ (x, y)) = ∗I∆(a,b)(u ◦1 x, v ◦2 y)
= sup

(r,t)∈(u◦1x)×(v◦2y)

I∆(a,b)(r, t)

= sup
(r,t)∈(u◦1x)×(v◦2y)

max{I∆1(a)(r), I∆2(b)(t)}

≤ max{ sup
r∈u◦1x

I∆1(a)(r), sup
t∈v◦2y

I∆2(b)(t)}

= max{∗I∆1(a)(u ◦1 x),∗ I∆2(b)(v ◦2 y)}
≤ max{max{I∆1(a)(u), I∆1(a)(x)},max{I∆2(b)(v), I∆2(b)(y)}}
= max{max{I∆1(a)(u), I∆2(b)(v)},max{I∆1(a)(x), I∆2(b)(y)}}
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= max{I∆(a,b)(u, v), I∆(a,b)(x, y)}.

Similarly,
∗F∆(a,b)((u, v) ◦ (x, y)) = max{F∆(a,b)(u, v),F∆(a,b)(x, y)}.

Hence, (∆, E × E) is a SVNS hyper UP -subalgebra of X1 ×X2.

3.4. Homomorphism of SVNS Hyper UP-subalgebra

In this section, we define the image and preimage of SVNS hyper UP -subalgebra and
prove that they are SVNS hyper UP -subalgebra under SVNS homomorphic function.

Definition 19. Let (X1, ◦1,≪1, 01) and (X2, ◦2,≪2, 02) be two hyper UP -algebras and
(∆1, E), (∆2, E) be two SVNS hyper UP -subalgebra of X1 and X2, respectively. Then the
pair (φ, ρ) is called a SVNS function from X1 to X2 where φ : X1 −→ X2 and ρ : E −→ E.

Definition 20. Under the SVNS function (φ, ρ),

(i) The image of (∆1, E) is denoted by (φ, ρ)(∆1, E) and is defined by

(φ, ρ)(∆1, E) = (φ(∆1), ρ(E)) = {(b, φ(∆1)(b))|b ∈ ρ(E)}

where for all b ∈ ρ(E) and y ∈ X2,

Tφ(∆1)(b)(y) =

 max
φ(x)=y

max
ρ(a)=b

T∆1(a)(x) if x ∈ φ−1(y),

0 otherwise,

Iφ(∆1)(b)(y) =

 min
φ(x)=y

min
ρ(a)=b

I∆1(a)(x) if x ∈ φ−1(y),

1 otherwise,
and

Fφ(∆1)(b)(y) =

 min
φ(x)=y

min
ρ(a)=b

F∆1(a)(x) if x ∈ φ−1(y),

1 otherwise.

(ii) The preimage (∆2, E) is denoted by (φ, ρ)−1(∆2, E) and defined by

(φ, ρ)−1(∆2, E) = (φ−1(∆2), ρ
−1(E)) = {(a, φ−1(∆2)(a))|a ∈ ρ−1(E)}

where for all a ∈ ρ−1(E) and x ∈ X1,

Tφ−1(∆2)(a)(x) = T∆2(ρ(a))(φ(x)),

Iφ−1(∆2)(a)(x) = I∆2(ρ(a))(φ(x)), and

Fφ−1(∆2)(a)(x) = F∆2(ρ(a))(φ(x)).
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Definition 21. Let the pair (φ, ρ) be a SVNS function from X1 into X2, then (φ, ρ) is
called a SVNS homomorphism if φ is a hyper homomorphism from X1 to X2 and is said to
be a SVNS isomorphism if φ is a hyper isomorphism from X1 to X2 and ρ is an injective
map from E to E.

Example 9. Let X1 = {01, r, s} with hyperoperation given by

◦ 01 r s

01 {01} {r} {s}
r {01} {01} {s}
s {01} {r} {01}

.

Then X1 is hyper UP -algebra by thorough inspection. Considering X2 = {02, u, v} as the
second hyper UP -algebra of Example 2 and E = N as the set of parameters, we define
mappings φ : X1 −→ X2 by

φ(01) = 02

φ(r) = v

φ(s) = u;

and ρ : E −→ E by ρ(a) = 2a. Let (∆1, E) be a SVNS set over X1 given by

T∆1(a)(x) =

{
1
2a if x ∈ {01, s},
0 otherwise.

I∆1(a)(x) =

{
0 if x ∈ {01, s},
1− 1

a otherwise.

F∆1(a)(x) =

{
0 if x ∈ {01, s},

1
2a+1 otherwise.

for a ∈ E. By inspection, (∆1, E) is a SVNS hyper UP -subalgebra of X1. Thus, the
image of (∆1, E) under (φ, ρ) is

Tφ(∆1)(b)(y) =

{
0 if y ∈ {v},
1
b otherwise.

Iφ(∆1)(b)(y) =

{
1− 2

b if y ∈ {v},
0 otherwise.

Fφ(∆1)(b)(y) =

{
1

b+1 if y ∈ {v},
0 otherwise.

for b ∈ 2N and y ∈ X2.
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Example 10. Consider the two hyper UP -algebras X1 and X2 of Example 9. Define
E = {e1, e2} as set of parameters and mappings φ : X1 −→ X2 by

φ(01) = 02

φ(r) = v

φ(s) = u;

and ρ : E −→ E by

ρ(e1) = e2

ρ(e2) = e1.

Also, consider the SVNS hyper UP -subalgebra (∆, E) of X2 from Example 7 which is
given by

∆(e1) = {⟨02, (0.9, 0.2, 0.45)⟩ , ⟨u, (0.74, 0.57, 0.7)⟩ , ⟨v, (0.8, 0.42, 0.52)⟩} and

∆(e2) = {⟨02, (0.8, 0.2, 0.4)⟩ , ⟨u, (0.4, 0.45, 0.5)⟩ , ⟨v, (0.67, 0.3, 0.5)⟩}.

Thus, the preimage of (∆, E) under (φ, ρ) is given by

Tφ−1(∆)(e1)(01) = T∆(ρ(e1))(φ(01)) = T∆(e2)(02) = 0.8

Iφ−1(∆)(e1)(01) = I∆(ρ(e1))(φ(01)) = I∆(e2)(02) = 0.2

Fφ−1(∆)(e1)(01) = F∆(ρ(e1))(φ(01)) = F∆(e2)(02) = 0.4

Tφ−1(∆)(e1)(r) = T∆(ρ(e1))(φ(r)) = T∆(e2)(v) = 0.67

Iφ−1(∆)(e1)(r) = I∆(ρ(e1))(φ(r)) = I∆(e2)(v) = 0.3

Fφ−1(∆)(e1)(r) = F∆(ρ(e1))(φ(r)) = F∆(e2)(v) = 0.5

Tφ−1(∆)(e1)(s) = T∆(ρ(e1))(φ(s)) = T∆(e2)(u) = 0.4

Iφ−1(∆)(e1)(s) = I∆(ρ(e1))(φ(s)) = I∆(e2)(u) = 0.45

Fφ−1(∆)(e1)(s) = F∆(ρ(e1))(φ(s)) = F∆(e2)(u) = 0.5

Tφ−1(∆)(e2)(01) = T∆(ρ(e2))(φ(01)) = T∆(e1)(02) = 0.9

Iφ−1(∆)(e2)(01) = I∆(ρ(e2))(φ(01)) = I∆(e1)(02) = 0.2

Fφ−1(∆)(e2)(01) = F∆(ρ(e2))(φ(01)) = F∆(e1)(02) = 0.45

Tφ−1(∆)(e2)(r) = T∆(ρ(e2))(φ(r)) = T∆(e1)(v) = 0.8

Iφ−1(∆)(e2)(r) = I∆(ρ(e2))(φ(r)) = I∆(e1)(v) = 0.42

Fφ−1(∆)(e2)(r) = F∆(ρ(e2))(φ(r)) = F∆(e1)(v) = 0.52

Tφ−1(∆)(e2)(s) = T∆(ρ(e2))(φ(s)) = T∆(e1)(u) = 0.74.

Iφ−1(∆)(e2)(s) = I∆(ρ(e2))(φ(s)) = I∆(e1)(u) = 0.57.

Fφ−1(∆)(e2)(s) = F∆(ρ(e2))(φ(s)) = F∆(e1)(u) = 0.7.

Theorem 8. Let (φ, ρ) be a SVNS homomorphism from (X1, ◦1,≪1, 01) to (X2, ◦2,≪2

, 02). If (∆1, E) is a SVNS hyper UP-subalgebra of X1, then (φ, ρ)(∆1, E) is a SVNS hyper
UP-subalgebra of X2.
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Proof. Let (φ, ρ) be a SVNS homomorphism from X1 to X2, (∆1, E) is a SVNS hyper
UP -subalgebra of X1, b ∈ ρ(E), and x, y ∈ X2.

(i) For φ−1(x) = ∅ or φ−1(y) = ∅, the proof is straightforward.

(ii) Assume that there exist x0, y0 ∈ X1 such that φ(x0) = x and φ(y0) = y. Then
x ◦2 y = φ(x0) ◦2 φ(y0) = φ(x0 ◦1 y0). Now,

∗Tφ(∆1)(b)(x ◦2 y) = inf
z∈x◦2y

Tφ(∆1)(b)(z)

= inf
z0∈x0◦1y0

[
max

φ(z0)=z
max
ρ(a)=b

T∆1(a)(z0)

]
≥ inf

z0∈x0◦1y0

[
max
ρ(a)=b

T∆1(a)(z0)

]
= max

ρ(a)=b

[
inf

z0∈x0◦1y0
T∆1(a)(z0)

]
= max

ρ(a)=b

[
∗T∆1(a)(x0 ◦1 y0)

]
≥ max

ρ(a)=b

[
min{T∆1(a)(x0), T∆1(a)(y0)}

]
= min{max

ρ(a)=b
T∆1(a)(x0), max

ρ(a)=b
T∆1(a)(y0)}

Since the inequality is satisfied for all x0, y0 ∈ X1 satisfying φ(x0) = x and φ(y0) = y,
it follows that

∗Tφ(∆1)(b)(x ◦2 y) ≥ min{ max
φ(x0)=x

max
ρ(a)=b

T∆1(a)(x0), max
φ(y0)=y

max
ρ(a)=b

T∆1(a)(y0)}

= min{Tφ(∆1)(b)(x), Tφ(∆1)(b)(y)}.

Also,

∗Iφ(∆1)(b)(x ◦2 y) = sup
z∈x◦2y

Iφ(∆1)(b)(z)

= sup
z0∈x0◦1y0

[
min

φ(z0)=z
min
ρ(a)=b

I∆1(a)(z0)

]
≤ sup

z0∈x0◦1y0

[
min
ρ(a)=b

I∆1(a)(z0)

]
= min

ρ(a)=b

[
sup

z0∈x0◦1y0
I∆1(a)(z0)

]
= min

ρ(a)=b

[
∗I∆1(a)(x0 ◦1 y0)

]
≤ min

ρ(a)=b

[
max{I∆1(a)(x0), I∆1(a)(y0)}

]
= max{ min

ρ(a)=b
I∆1(a)(x0), min

ρ(a)=b
I∆1(a)(y0)}



A. Cano, G. Petalcorin / Eur. J. Pure Appl. Math, 16 (1) (2023), 548-576 574

Since the inequality is satisfied for all x0, y0 ∈ X1 satisfying φ(x0) = x and φ(y0) = y,
it follows that

∗Iφ(∆1)(b)(x ◦2 y) ≤ max{ min
φ(x0)=x

min
ρ(a)=b

I∆1(a)(x0), max
φ(y0)=y

max
ρ(a)=b

I∆1(a)(y0)}

= max{Iφ(∆1)(b)(x), Iφ(∆1)(b)(y)}.

Similarly,
∗Fφ(∆1)(b)(x ◦2 y) ≤ max{Fφ(∆1)(b)(x),Fφ(∆1)(b)(y)}.

Hence, (φ, ρ)(∆1, E) is a SVNS hyper UP -subalgebra of X2.

Theorem 9. Let (φ, ρ) be a SVNS homomorphism from (X1, ◦1,≪1, 01) to (X2, ◦2,≪2

, 02). If (∆2, E) is a SVNS hyper UP-subalgebra of X2, then (φ, ρ)−1(∆2, E) is a SVNS
hyper UP-subalgebra of X1.

Proof. Let (φ, ρ) be a SVNS homomorphism from X1 to X2, (∆2, E) be a SVNS hyper
UP -subalgebra of X2, a ∈ ρ−1(E), x, y ∈ X1. Now,

∗Tφ−1(∆2)(a)(x ◦1 y) = ∗T∆2(ρ(a))(φ(x ◦1 y))
= ∗T∆2(ρ(a))(φ(x) ◦2 φ(y))
≥ min{T∆2(ρ(a))(φ(x)), T∆2(ρ(a))(φ(y))}
= min{Tφ−1(∆2)(a)(x), Tφ−1(∆2)(a)(y)},

∗Iφ−1(∆2)(a)(x ◦1 y) = ∗I∆2(ρ(a))(φ(x ◦1 y))
= ∗I∆2(ρ(a))(φ(x) ◦2 φ(y))
≤ max{I∆2(ρ(a))(φ(x)), I∆2(ρ(a))(φ(y))}
= max{Iφ−1(∆2)(a)(x), Iφ−1(∆2)(a)(y)},

and similarly,

∗Fφ−1(∆2)(a)(x ◦1 y) = max{Fφ−1(∆2)(a)(x),Fφ−1(∆2)(a)(y)}.

Thus, (φ, ρ)−1(∆2, S2) is a SVNS hyper UP -subalgebra of X1.

4. Conclusions

In this paper, we have introduced the SVN and SVNS hyper UP -subalgebra together
with their properties. Aside from that, the concept of Cartesian product of SVNS hyper
UP -subalgebra and the homomorphic image and preimage of SVNS hyper UP -subalgebra
have been investigated. This study contributes to the development of the notion of hyper
UP -algebra under neutrosophic soft environment. It also opens a door for further study by
establishing SVNS hyper UP -filter, SVNS hyper UP -ideals and some of their variations.
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