EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 16, No. 1, 2023, 548-576
ISSN 1307-5543 - ejpam.com
Published by New York Business Global

Single-valued Neutrosophic Soft sets in Hyper $U P$-Algebra

Allan N. Cano ${ }^{1, *}$, Gaudencio C. Petalcorin, Jr. ${ }^{1}$
${ }^{1}$ Department of Mathematics and Statistics, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, 9200 Iligan City, Philippines

Abstract

In this paper, the notions of $S V N$ hyper $U P$-algebra and $S V N S$ hyper $U P$-algebra are introduced, and some of their structural properties are investigated. Moreover, the Cartesian product of $S V N S$ hyper $U P$-algebra is discussed and proved to be a $S V N S$ hyper $U P$ - algebra. Finally, the homomorphic image and preimage of SVNS hyper $U P$-algebra under $S V N S$ functions are studied and showed also to be $S V N S$ hyper $U P$-algebra.

2020 Mathematics Subject Classifications: 08A30
Key Words and Phrases: Hyper $U P$-algebra, single-valued neutrosophic set, single-valued neutrosophic soft set

1. Introduction

The concept of fuzzy sets and fuzzy logic has been used widely in many applications involving uncertainties. Such concept was initiated by L. Zadeh [10]. Resulting from vagueness or partial belongingness of an element in a set, fuzzy set is successful in handling uncertainties. However, there are still some situations which it cannot cover like problems involving incomplete information. Motivated by this, a lot of researchers extended this concept and presented a different theories regarding uncertainty which include intuitionistic fuzzy set theory [3], interval-valued intuitionistic fuzzy set theory [9] and so on. Later on, Smarandache [18] generalized intuitionistic fuzzy set theory by introducing the concept of neutrosophic set in 1998. Neutrosophic set is a part of neutrosophy which studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. It is a powerful general formal framework that has been recently proposed. To have its real life application in engineering and science, neutrosophic set needs to be specified from a technical point of view. That is why single valued neutrosophic set was introduced by Wang et al. [22] together with its various properties. Single-valued neutrosophic set has been developing rapidly due to its wide range of

[^0]Email addresses: allan.cano@g.msuiit.edu.ph (A. Cano), gaudencio.petalcorin@g.msuiit.edu.ph (G. Petalcorin)
theoretical elegance and application areas. The reader may refer to the following articles [$7,8,16,17,19,20]$ as references. In 1999, Molodtsov [14] studied another mathematical theory called soft set theory by giving parameterized approach to uncertainties. On the other hand, Maji [12] unified the fundamental theories of neutrosophic set and soft set, and came up with the concept of neutrosophic soft set. Some theoretical advancement and applications have been reported in the following literatures $[1,4,5,11]$.

The hyper algebraic structure theory was introduced in 1934 by F. Marty [13] at the 8th congress of Scandinavian Mathematicians. This theory is then applied by Y. B. Jun et al. [21] to BCK-algebras to produce the notion of hyper BCK-algebras as a generalization of the BCK-algebras. After that, many researchers have been inspired to generalize some existing algebras and one of them is D. Romano [15]. He has come up with the concept of hyper $U P$-algebras to generalize $U P$-algebras.

In this paper, we utilize the notions of single-valued neutrosophic sets and single-valued neutrosophic soft sets to hyper $U P$-algebra to generate $S V N$ hyper $U P$-algebra and $S V N S$ hyper $U P$-algebra. Several of their basic properties are studied. In addition, we define the Cartesian product of $S V N S$ hyper $U P$-algebra, and image and preimage of $S V N S$ hyper $U P$-algebra under $S V N S$ function. Each of them is discussed and illustrated with corresponding examples.

2. Preliminary Concepts

Definition 1. [15] Let $\mathcal{P}(H)$ to be the power set of H. Consider $\mathcal{P}^{*}(H)=\mathcal{P}(H) \backslash\{\varnothing\}$. A hyperoperation on a nonempty set H is a function $0: H \times H \longrightarrow \mathcal{P}^{*}(H)$. The image of $(x, y) \in H \times H$ under \circ is denoted by $x \circ y$. If $x \in H$ and A, B are nonempty subsets of H, then we define
(i) $A \circ B=\bigcup_{a \in A, b \in B} a \circ b$;
(ii) $A \circ x=A \circ\{x\}$; and
(iii) $x \circ B=\{x\} \circ B$.

Definition 2. [15] Let $x, y \in H$ and $A, B \subseteq H$. Then
(i) $x \ll y$ if and only if $0 \in x \circ y$; and
(ii) $A \ll B$ if and only if for any $a \in A$, there exists $b \in B$ such that $a \ll b$.

We call \ll a hyperorder on H.
Remark 1. [15] For all $A, B \subseteq H, A \ll B$ implies $0 \in A \circ B$.
Definition 3. [15] Let X be a nonempty set such that $0 \in X$ and $(X, 0, \ll, 0)$ be a hyperstructure. Then $(X, \circ, \ll, 0)$ is called a hyper UP-algebra if the following formulas are valid: $\forall x, y, z \in X$,
(HUP1) $\quad y \circ z \ll(x \circ y) \circ(x \circ z)$,

(HUP2)	$x \circ 0=\{0\}$,
(HUP3)	$0 \circ x=\{x\}$, and
(HUP4)	$x \ll y \wedge y \ll x \Longrightarrow x=y$.

Example 1. Let $X=\{0, r, s, t\}$ be a set. If we define a hyper operation "o" as following:

\circ	0	r	s	t
0	$\{0\}$	$\{r\}$	$\{s\}$	$\{t\}$
r	$\{0\}$	$\{0, r\}$	$\{0, s\}$	$\{r, s\}$,
s	$\{0\}$	$\{r, s\}$	$\{0, s\}$	$\{r\}$
t	$\{0\}$	$\{0, r, s, t\}$	$\{s, t\}$	$\{0\}$

then the routine calculation will show that $(X, \circ, \ll, 0)$ is a hyper $U P$-algebra.
Example 2. Let $X=\{0, u, v\}$. Define a hyper operation "o" as follows:

\circ	0	u	v
0	$\{0\}$	$\{u\}$	$\{v\}$
u	$\{0\}$	$\{0, u\}$	$\{0, v\}$
v	$\{0\}$	$\{u, v\}$	$\{0, v\}$

By routine calculation, $(X, 0, \ll, 0)$ is a hyper $U P$-algebra.
Example 3. Let $X=\{0, a, b\}$. Define a hyper operation " \circ " as follows:

\circ	0	a	b
0	$\{0\}$	$\{a\}$	$\{b\}$
a	$\{0\}$	$\{0, a, b\}$	$\{0, b\}$
b	$\{0\}$	$\{0, a, b\}$	$\{0\}$

Observe that $a \ll b$ and $b \ll a$. But $a \neq b$. Thus, $(X, \circ, \ll, 0)$ does not satisfy (HUP4) and so it is not a hyper $U P$-algebra.

Proposition 1. [15] Let $(H, \circ, \ll, 0)$ be a hyper UP-algebra. Then the following hold for all $x, y, z \in H$ and for every nonempty subsets $A, B, C \subseteq H$:
(i) $A \subseteq B$ implies $A \ll B$
(v) $z \ll x \circ z$
(ii) $0 \circ 0=\{0\}$
(vi) $A \circ 0=\{0\}$
(iii) $x \ll 0$
(vii) $0 \circ A=A$
(iv) $x \ll x$
(viii) $(0 \circ 0) \circ x=\{x\}$

Proposition 2. [15] Let S be a nonempty subset of a hyper UP-algebra ($X, \circ, \lll, 0$). Then S is a hyper UP-subalgebra of X if and only if $\forall x, y \in S, x \circ y \subseteq S$.

Definition 4. [15] Let $\left(X_{1}, \circ_{1},<_{1}, 0_{1}\right)$ and ($X_{2}, \circ_{2},<_{2}, 0_{2}$) be hyper $U P$-algebras. A mapping $f: X_{1} \longrightarrow X_{2}$ is called a hyper homomorphism if for all $a, b \in X_{1}$,
(i) $f\left(0_{1}\right)=0_{2}$ and
(ii) $f\left(a \circ_{1} b\right)=f(a) \circ_{2} f(b)$.

Definition 5. [2] Let $f:\left(X_{1}, \circ_{1}, \lll{ }_{1}, 0_{1}\right) \longrightarrow\left(X_{2}, \circ_{2}, \lll{ }_{2}, 0_{2}\right)$ be a hyper homomorphism. We say that f is a hyper monomorphism if f is one-to-one and f is a hyper epimorphism if f is onto. We also say that f is a hyper isomorphism if f is both one-to-one and onto. In this case, X_{1} and X_{2} are hyper isomorphic which is denoted as $X_{1} \cong_{\mathcal{H}} X_{2}$.

Definition 6. [2] Let $\left(X_{1}, \circ_{1}, \ll 1^{1}, 0_{1}\right)$ and $\left(X_{2}, \circ_{2}, \lll_{2}, 0_{2}\right)$ be hyper $U P$-algebras. Define a set $X_{1} \times X_{2}$ by

$$
X_{1} \times X_{2}=\left\{(a, b): a \in X_{1} \text { and } b \in X_{2}\right\}
$$

with a hyperoperation "○" on $X_{1} \times X_{2}$ given by

$$
(a, b) \circ(c, d)=\left(a \circ_{1} c, b \circ_{2} d\right)
$$

and a hyperorder "<<" given by

$$
(a, b) \ll(c, d) \Longleftrightarrow a \lll 1 c \text { and } b \lll 2 d
$$

for all $(a, b),(c, d) \in X_{1} \times X_{2} .$. Then $\left(X_{1} \times X_{2}, \circ, \ll,\left(0_{1}, 0_{2}\right)\right)$ is called the hyper product of X_{1} and X_{2}.

Definition 7. [18] Let U be the universe. A neutrosophic set A is characterized by a truth membership function \mathcal{T}_{A}, an indeterminacy membership function \mathcal{I}_{A}, and a falsity membership function \mathcal{F}_{A} where $\mathcal{T}_{A}, \mathcal{I}_{A}, \mathcal{F}_{A}$ are real standard or non-standard elements of $]^{-} 0,1^{+}\left[\right.$with ${ }^{-} 0=0-\epsilon$ and $1^{+}=1+\epsilon$ for any infinitesimal number ϵ. It can be written as

$$
A=\left\{\left\langle x,\left(\mathcal{T}_{A}(x), \mathcal{I}_{A}(x), \mathcal{F}_{A}(x)\right)\right\rangle \mid x \in U\right\}
$$

where $\left.\mathcal{T}_{A}, \mathcal{I}_{A}, \mathcal{F}_{A}: U \longrightarrow\right]^{-} 0,1^{+}\left[\right.$and ${ }^{-} 0 \leq \mathcal{T}_{A}(x)+\mathcal{I}_{A}(x)+\mathcal{F}_{A}(x) \leq 3^{+}$.
However, it is difficult to use a neutrosophic set with values from real standard or nonstandard subsets of $]^{-} 0,1^{+}$[in real life application especially scientific and engineering problem [22]. So, this paper considers the neutrosophic set which takes values from the interval $[0,1]$.

Definition 8. [22] Let X be a space of points (objects), with a generic element in X denoted by x. A single valued neutrosophic set (SVNS) A in X is characterized by truthmembership function \mathcal{T}_{A}, indeterminacy-membership function \mathcal{I}_{A} and falsity-membership function \mathcal{F}_{A}. For each point $x \in X, \mathcal{T}_{A}(x), \mathcal{I}_{A}(x), \mathcal{F}_{A}(x) \in[0,1]$.

Definition 9. [14] Given an initial universe set U and set E of parameters or attributes with respect to U, let $\mathcal{P}(U)$ denote the power set of U and $A \subseteq E$. A pair (F, A) is called a soft set over U, where F is a mapping given by $F: A \longrightarrow \mathcal{P}(U)$.

For any $\epsilon \in A, F(\epsilon)$ may be considered as the set of ϵ-approximate elements of the soft set (F, A).

The concept of neutrosophic soft set was first defined by Maji [12] and later on, it was modified by Deli and Broumi [6] as given below:

Definition 10. Let U be an initial universe set and E be a set of parameters. Let $\mathcal{N}(U)$ denote the set of all neutrosophic sets of U. Then a neutrosophic soft set (F, E) over U is a set defined by a set valued function F representing a mapping $F: E \longrightarrow \mathcal{N}(U)$ where F is called approximate function of the neutrosophic soft set (F, E).

In other words, the neutrosophic soft set is a parameterized family of some elements of the set $\mathcal{N}(U)$ and therefore it can be written as a set of ordered pairs

$$
(F, E)=\left\{\left(e,\left\{\left\langle x,\left(\mathcal{T}_{F(e)}(x), \mathcal{I}_{F(e)}(x), \mathcal{F}_{F(e)}(x)\right)\right\rangle\right\}\right) \mid x \in U, e \in E\right\}
$$

where $\mathcal{T}_{F(e)}(x), \mathcal{I}_{F(e)}(x), \mathcal{F}_{F(e)}(x) \in[0,1]$, respectively called the truth-membership, indeterminacymembership, falsity-membership function of $F(e)$. Since supremum of each $\mathcal{T}, \mathcal{I}, \mathcal{F}$ is 1 so the inequality $0 \leq \mathcal{T}_{F(e)}(x)+\mathcal{I}_{F(e)}(x)+\mathcal{F}_{F(e)}(x) \leq 3$ is obvious.

Definition 11. [6] The complement of a neutrosophic soft set (F, E) over U is denoted by $(F, E)^{c}$ and is defined by

$$
(F, E)^{c}=\left\{\left(e,\left\{\left\langle x,\left(\mathcal{F}_{F(e)}(x), 1-\mathcal{I}_{F(e)}(x), \mathcal{T}_{F(e)}(x)\right)\right\rangle\right\}\right) \mid x \in U, e \in E\right\} .
$$

Definition 12. [6] Let (H, E) and (G, E) be two neutrosophic soft sets over the common universe U. Then (H, E) is said to be neutrosophic soft subset of (G, E) if $\forall e \in E$ and $\forall x \in U, \mathcal{T}_{H(e)}(x) \leq \mathcal{T}_{G(e)}(x), \mathcal{I}_{H(e)}(x) \geq \mathcal{I}_{G(e)}(x), \mathcal{F}_{H(e)}(x) \geq \mathcal{F}_{G(e)}(x)$. We write $(H, E) \subseteq(G, E)$ and (G, E) is a neutrosophic soft superset of (H, E).
Definition 13. [5] A binary operation $*:[0,1] \times[0,1] \longrightarrow[0,1]$ is continuous t-norm if * satisfies the following conditions :
(i) $*$ is commutative and associative.
(ii) $*$ is continuous.
(iii) $a * 1=1 * a=a, \forall a \in[0,1]$.
(iv) $a * b \leq c * d$ if $a \leq c, b \leq d$ with $a, b, c, d \in[0,1]$.

A few examples of continuous t-norm are $a * b=a b, a * b=\min \{a, b\}, a * b=$ $\max \{a+b-1,0\}$.

Definition 14. [5] A binary operation $\diamond:[0,1] \times[0,1] \longrightarrow[0,1]$ is continuous t-conorm $(s-$ norm $)$ if \diamond satisfies the following conditions :
(i) \diamond is commutative and associative.
(ii) \diamond is continuous.
(iii) $a \diamond 0=0 \diamond a=a, \forall a \in[0,1]$.
$(i v) a \diamond b \leq c \diamond d$ if $a \leq c, b \leq d$ with $a, b, c, d \in[0,1]$.
A few examples of continuous s-norm are $a \diamond b=a+b-a b, a \diamond b=\max \{a, b\}$, $a \diamond b=\min \{a+b, 1\}$.

Definition 15. [6] Let (H, E) and (G, E) be two neutrosophic soft sets over the common universe U.
(i) Then the union of (H, E) and (G, E) is denoted by $(H, E) \cup(G, E)=(K, E)$ and is defined by:

$$
(K, E)=\left\{\left(e,\left\{\left\langle x,\left(\mathcal{T}_{K(e)}(x), \mathcal{I}_{K(e)}(x), \mathcal{F}_{K(e)}(x)\right)\right\rangle\right\}\right) \mid x \in U, e \in E\right\}
$$

where

$$
\begin{aligned}
& \mathcal{T}_{K(e)}(x)=\mathcal{T}_{H(e)}(x) \diamond \mathcal{T}_{G(e)}(x) \\
& \mathcal{I}_{K(e)}(x)=\mathcal{I}_{H(e)}(x) * \mathcal{I}_{G(e)}(x) \\
& \mathcal{F}_{K(e)}(x)=\mathcal{F}_{H(e)}(x) * \mathcal{F}_{G(e)}(x)
\end{aligned}
$$

(ii) Then the intersection of (H, E) and (G, E) is denoted by $(H, E) \cap(G, E)=(F, E)$ and is defined by:

$$
(F, E)=\left\{\left(e,\left\{\left\langle x,\left(\mathcal{T}_{F(e)}(x), \mathcal{I}_{F(e)}(x), \mathcal{F}_{F(e)}(x)\right)\right\rangle\right\}\right) \mid x \in U, e \in E\right\}
$$

where

$$
\begin{aligned}
& \mathcal{T}_{F(e)}(x)=\mathcal{T}_{H(e)}(x) * \mathcal{T}_{G(e)}(x) \\
& \mathcal{I}_{F(e)}(x)=\mathcal{I}_{H(e)}(x) \diamond \mathcal{I}_{G(e)}(x) \\
& \mathcal{F}_{F(e)}(x)=\mathcal{F}_{H(e)}(x) \diamond \mathcal{F}_{G(e)}(x)
\end{aligned}
$$

In this paper, we use the minimality and maximality as binary operations $*$ and \diamond respectively to define the union and intersection of two $N S S$ sets.

Example 4. Consider $U=\left\{s_{1}, s_{2}, s_{3}\right\}$ be the set of all students and $E=\left\{a_{1}, a_{2}\right\}$ be the set of parameters where
a_{1} stands for the parameter 'brilliant',
a_{2} stands for the parameter 'healthy'.

Define a mapping $H: E \longrightarrow \mathcal{N}(U)$ by

$$
\begin{aligned}
H\left(a_{1}\right) & =\left\{\left\langle s_{1},(0.1,0.5,0.4)\right\rangle,\left\langle s_{2},(0.6,0.6,0.7)\right\rangle,\left\langle s_{3},(0.5,0.6,0.4)\right\rangle\right\} \\
H\left(a_{2}\right) & =\left\{\left\langle s_{1},(0.8,0.4,0.5)\right\rangle,\left\langle s_{2},(0.7,0.7,0.3)\right\rangle,\left\langle s_{3},(0.7,0.5,0.6)\right\rangle\right\}
\end{aligned}
$$

and a mapping $G: E \longrightarrow \mathcal{N}(U)$ by

$$
G\left(a_{1}\right)=\left\{\left\langle s_{1},(0.8,0.5,0.6)\right\rangle,\left\langle s_{2},(0.5,0.7,0.6)\right\rangle,\left\langle s_{3},(0.4,0.7,0.5)\right\rangle\right\}
$$

$$
G\left(a_{2}\right)=\left\{\left\langle s_{1},(0.7,0.6,0.5)\right\rangle,\left\langle s_{2},(0.6,0.8,0.4)\right\rangle,\left\langle s_{3},(0.5,0.8,0.6)\right\rangle\right\}
$$

Then the neutrosophic soft sets (H, E) and (G, E) are collections of approximations as below:

$$
\begin{aligned}
(H, E)= & \left\{\left(a_{1},\left\{\left\langle s_{1},(0.1,0.5,0.4)\right\rangle,\left\langle s_{2},(0.6,0.6,0.7)\right\rangle,\left\langle s_{3},(0.5,0.6,0.4)\right\rangle\right\}\right)\right. \\
& \left.\left(a_{2},\left\{\left\langle s_{1},(0.8,0.4,0.5)\right\rangle,\left\langle s_{2},(0.7,0.7,0.3)\right\rangle,\left\langle s_{3},(0.7,0.5,0.6)\right\rangle\right\}\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
(G, E)= & \left\{\left(a_{1},\left\{\left\langle s_{1},(0.8,0.5,0.6)\right\rangle,\left\langle s_{2},(0.5,0.7,0.6)\right\rangle,\left\langle s_{3},(0.4,0.7,0.5)\right\rangle\right\}\right)\right. \\
& \left.\left(a_{2},\left\{\left\langle s_{1},(0.7,0.6,0.5)\right\rangle,\left\langle s_{2},(0.6,0.8,0.4)\right\rangle,\left\langle s_{3},(0.5,0.8,0.6)\right\rangle\right\}\right)\right\}
\end{aligned}
$$

Thus, their union and intersection are

$$
\begin{aligned}
(H, E) \cup(G, E)= & \left\{\left(a_{1},\left\{\left\langle s_{1},(0.8,0.5,0.4)\right\rangle,\left\langle s_{2},(0.6,0.6,0.6)\right\rangle,\left\langle s_{3},(0.5,0.6,0.4)\right\rangle\right\}\right)\right. \\
& \left.\left(a_{2},\left\{\left\langle s_{1},(0.8,0.4,0.5)\right\rangle,\left\langle s_{2},(0.7,0.7,0.3)\right\rangle,\left\langle s_{3},(0.7,0.5,0.6)\right\rangle\right\}\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
(H, E) \cap(G, E)= & \left\{\left(a_{1},\left\{\left\langle s_{1},(0.1,0.5,0.6)\right\rangle,\left\langle s_{2},(0.5,0.7,0.7)\right\rangle,\left\langle s_{3},(0.4,0.7,0.5)\right\rangle\right\}\right)\right. \\
& \left.\left(a_{2},\left\{\left\langle s_{1},(0.7,0.6,0.5)\right\rangle,\left\langle s_{2},(0.6,0.8,0.4)\right\rangle,\left\langle s_{3},(0.5,0.8,0.6)\right\rangle\right\}\right)\right\}
\end{aligned}
$$

respectively.

3. Main Results

3.1. Single-Valued Neutrosophic Hyper UP-subalgebra

In this section, we introduce the concept of single-valued neutrosophic hyper $U P-$ subalgebra and prove some of its basic properties. From here onwards, we simply denote a hyper $U P$-algebra $(X, \circ, \ll, 0)$ by X.

Given a single-valued neutrosophic set $A=\left(\mathcal{T}_{A}, \mathcal{I}_{A}, \mathcal{F}_{A}\right)$ in a hyper $U P$-algebra X and a subset S of X, we denote the following:

$$
\begin{aligned}
{ }^{*} \mathcal{T}_{A}(S) & =\sup _{y \in S} \mathcal{T}_{A}(y) \text { and }{ }_{*} \mathcal{T}_{A}(S)=\inf _{y \in S} \mathcal{T}_{A}(y) \\
{ }^{*} \mathcal{I}_{A}(S) & =\sup _{y \in S} \mathcal{I}_{A}(y) \text { and }{ }_{*} \mathcal{I}_{A}(S)=\inf _{y \in S} \mathcal{I}_{A}(y) \\
{ }^{*} \mathcal{F}_{A}(S) & =\sup _{y \in S} \mathcal{F}_{A}(y) \text { and }{ }_{*} \mathcal{F}_{A}(S)=\inf _{y \in S} \mathcal{F}_{A}(y)
\end{aligned}
$$

Definition 16. Let $A=\left(\mathcal{T}_{A}, \mathcal{I}_{A}, \mathcal{F}_{A}\right)$ be a single-valued neutrosophic set in a hyper $U P-$ algebra X. Then A is said to be a single-valued neutrosophic (SVN) hyper UP-subalgebra of X if for all $x, y \in X$,

$$
* \mathcal{T}_{A}(x \circ y) \geq \min \left\{\mathcal{T}_{A}(x), \mathcal{T}_{A}(y)\right\}
$$

$$
\begin{aligned}
& { }^{*} \mathcal{I}_{A}(x \circ y) \leq \max \left\{\mathcal{I}_{A}(x), \mathcal{I}_{A}(y)\right\}, \text { and } \\
& { }^{*} \mathcal{F}_{A}(x \circ y) \leq \max \left\{\mathcal{F}_{A}(x), \mathcal{F}_{A}(y)\right\} .
\end{aligned}
$$

Example 5. Consider a hyper $U P$-algebra ($X, \circ, \ll, 0$) of Example 1 where $X=\{0, r, s, t\}$. Also, define a single-valued neutrosophic set $A=\left(\mathcal{T}_{A}, \mathcal{I}_{A}, \mathcal{F}_{A}\right)$ in X by the following:

$$
\begin{aligned}
\mathcal{T}_{A}(x) & =\left(\begin{array}{cccc}
0 & r & s & t \\
0.87 & 0.42 & 0.56 & 0.29
\end{array}\right), \\
\mathcal{I}_{A}(x) & =\left(\begin{array}{cccc}
0 & r & s & t \\
0.39 & 0.79 & 0.76 & 0.94
\end{array}\right), \text { and } \\
\mathcal{F}_{A}(x) & =\left(\begin{array}{cccc}
0 & r & s & t \\
0.49 & 0.83 & 0.53 & 0.95
\end{array}\right) .
\end{aligned}
$$

By routine calculation, A is a $S V N$ hyper $U P$-subalgebra of X.
Example 6. Consider $X=\mathbb{N} \cup\{0\}$ and a hyperoperation "०" on X defined by

$$
x \circ y= \begin{cases}\{0\} & \text { if } y=0 \\ \{0, y\} & \text { if } y=x, y \neq 0 \\ \{y\} & \text { otherwise }\end{cases}
$$

By thorough inspection, X is a hyper $U P$-algebra. Define a single-valued neutrosophic set $A=\left(\mathcal{T}_{A}, \mathcal{I}_{A}, \mathcal{F}_{A}\right)$ in X by

$$
\begin{aligned}
& \mathcal{T}_{A}(x)= \begin{cases}1 & \text { if } x=0, \\
0.5 & \text { if } x \neq 0 .\end{cases} \\
& \mathcal{I}_{A}(x)= \begin{cases}0 & \text { if } x=0, \\
0.5 & \text { if } x \neq 0 .\end{cases} \\
& \mathcal{F}_{A}(x)= \begin{cases}0 & \text { if } x=0, \\
0.5 & \text { if } x \neq 0 .\end{cases}
\end{aligned}
$$

Again, by thorough inspection, A is a $S V N$ hyper $U P$-subalgebra of X.
Proposition 3. Let $A=\left(\mathcal{T}_{A}, \mathcal{I}_{A}, \mathcal{F}_{A}\right)$ be a SVN hyper UP-subalgebra of X. Then for all $x, y \in X$,

$$
\begin{array}{ll}
& \mathcal{T}_{A}(0) \geq \mathcal{T}_{A}(x) \\
\text { (i) } & \mathcal{I}_{A}(0) \leq \mathcal{I}_{A}(x) \\
& \mathcal{F}_{A}(0) \leq \mathcal{F}_{A}(x) . \\
& \\
& { }^{*} \mathcal{T}_{A}(0 \circ x)=\mathcal{T}_{A}(x) \\
(i i) & { }^{*} \mathcal{I}_{A}(0 \circ x)=\mathcal{I}_{A}(x) \\
& { }^{*} \mathcal{F}_{A}(0 \circ x)=\mathcal{F}_{A}(x)
\end{array}
$$

$\begin{array}{ll}(i i i) & * \mathcal{T}_{A}(x \circ 0)=\mathcal{T}_{A}(0) \\ & { }^{\prime} \mathcal{I}_{A}(x \circ 0)=\mathcal{I}_{A}(0) \\ & * \mathcal{F}_{A}(x \circ 0)=\mathcal{F}_{A}(0)\end{array}$

$$
\mathcal{T}_{A}(x)=\mathcal{T}_{A}(0) \quad * \mathcal{T}_{A}(x \circ y) \geq \mathcal{T}_{A}(y)
$$

(iv) If $\mathcal{I}_{A}(x)=\mathcal{I}_{A}(0)$, then ${ }^{*} \mathcal{I}_{A}(x \circ y) \leq \mathcal{I}_{A}(y)$. $\mathcal{F}_{A}(x)=\mathcal{F}_{A}(0) \quad{ }^{*} \mathcal{F}_{A}(x \circ y) \leq \mathcal{F}_{A}(y)$

$$
\mathcal{T}_{A}(y)=\mathcal{T}_{A}(0) \quad * \mathcal{T}_{A}(x \circ y) \geq \mathcal{T}_{A}(x)
$$

(v) If $\mathcal{I}_{A}(y)=\mathcal{I}_{A}(0)$, then ${ }^{*} \mathcal{I}_{A}(x \circ y) \leq \mathcal{I}_{A}(x)$. $\mathcal{F}_{A}(y)=\mathcal{F}_{A}(0) \quad * \mathcal{F}_{A}(x \circ y) \leq \mathcal{F}_{A}(x)$

$$
{ }_{*} \mathcal{T}_{A}(x \circ y)=\mathcal{T}_{A}(x) \quad \mathcal{T}_{A}(x)=\mathcal{T}_{A}(0) \quad \mathcal{T}_{A}(y)=\mathcal{T}_{A}(0)
$$

$\begin{array}{lllll}\text { (vi) If } & { }^{*} \mathcal{I}_{A}(x \circ y)=\mathcal{I}_{A}(x) \\ & { }^{*} \mathcal{F}_{A}(x \circ y)=\mathcal{F}_{A}(x)\end{array}$, then $\begin{array}{lll}\mathcal{I}_{A}(x)=\mathcal{I}_{A}(0) & \text { and } & \mathcal{I}_{A}(y)=\mathcal{I}_{A}(0)\end{array}$.
Proof. Let $A=\left(\mathcal{T}_{A}, \mathcal{I}_{A}, \mathcal{F}_{A}\right)$ be a $S V N$ hyper $U P$-subalgebra in X and let $x, y \in X$
(i) Note that $x \ll x$. Then $0 \in x \circ x$. By hypothesis,

$$
\begin{aligned}
& \mathcal{T}_{A}(0) \geq{ }^{*} \mathcal{T}_{A}(x \circ x) \geq \min \left\{\mathcal{T}_{A}(x), \mathcal{T}_{A}(x)\right\}=\mathcal{T}_{A}(x), \\
& \mathcal{I}_{A}(0) \leq{ }^{*} \mathcal{I}_{A}(x \circ x) \leq \max \left\{\mathcal{I}_{A}(x), \mathcal{I}_{A}(x)\right\}=\mathcal{I}_{A}(x), \text { and } \\
& \mathcal{F}_{A}(0) \leq{ }^{*} \mathcal{F}_{A}(x \circ x) \leq \max \left\{\mathcal{F}_{A}(x), \mathcal{F}_{A}(x)\right\}=\mathcal{F}_{A}(x)
\end{aligned}
$$

(ii-iii) The proofs are straightforward since $0 \circ x=\{x\}$ and $x \circ 0=\{0\}$.
(iv) Assume that $\mathcal{T}_{A}(x)=\mathcal{T}_{A}(0)$. By hypothesis and by $(i),{ }_{*} \mathcal{T}_{A}(x \circ y) \geq \min \left\{\mathcal{T}_{A}(0), \mathcal{T}_{A}(y)\right\}=$ $\mathcal{T}_{A}(y)$. Using similar routine, $\mathcal{I}_{A}(x)=\mathcal{I}_{A}(0)$ implies that ${ }^{*} \mathcal{I}_{A}(x \circ y) \leq \mathcal{I}_{A}(y)$ and $\mathcal{F}_{A}(x)=\mathcal{F}_{A}(0)$ implies that ${ }^{*} \mathcal{F}_{A}(x \circ y) \leq \mathcal{F}_{A}(y)$.
(v) Using similar arguments from $(i v)$, the claim is true.
(vi) Assume that ${ }_{*} \mathcal{T}_{A}(x \circ y)=\mathcal{T}_{A}(x)$. Taking $x=0$, we have ${ }_{*} \mathcal{T}_{A}(0 \circ y)=\mathcal{T}_{A}(0)$. By $(i i)$, $\mathcal{T}_{A}(y)={ }_{*} \mathcal{T}_{A}(0 \circ y)=\mathcal{T}_{A}(0)$. Similarly, ${ }^{*} \mathcal{I}_{A}(x \circ y)=\mathcal{I}_{A}(x)$ implies that $\mathcal{I}_{A}(y)=\mathcal{I}_{A}(0)$ and ${ }^{*} \mathcal{F}_{A}(x \circ y)=\mathcal{F}_{A}(x)$ implies that $\mathcal{F}_{A}(y)=\mathcal{F}_{A}(0)$. On the other hand, if we take $y=0$, we get ${ }_{*} \mathcal{T}_{A}(x \circ 0)=\mathcal{T}_{A}(x)$. By $(i i i), \mathcal{T}_{A}(0)={ }_{*} \mathcal{T}_{A}(x \circ 0)=\mathcal{T}_{A}(x)$. Also, $\mathcal{I}_{A}(x)=\mathcal{I}_{A}(0)$ and $\mathcal{F}_{A}(x)=\mathcal{F}_{A}(0)$ will follow.

Proposition 4. If $A=\left(\mathcal{T}_{A}, \mathcal{I}_{A}, \mathcal{F}_{A}\right)$ is a SVN hyper UP-subalgebra of X, then the set $K=\left\{x \in X \mid \mathcal{T}_{A}(x)=\mathcal{T}_{A}(0), \mathcal{I}_{A}(x)=\mathcal{I}_{A}(0), \mathcal{F}_{A}(x)=\mathcal{F}_{A}(0)\right\}$ is a hyper UP-subalgebra of X.

Proof. Let $A=\left(\mathcal{T}_{A}, \mathcal{I}_{A}, \mathcal{F}_{A}\right)$ be a $S V N$ hyper $U P$-subalgebra of X and let $K=\{x \in$ $\left.X \mid \mathcal{T}_{A}(x)=\mathcal{T}_{A}(0), \mathcal{I}_{A}(x)=\mathcal{I}_{A}(0), \mathcal{F}_{A}(x)=\mathcal{F}_{A}(0)\right\}$. Note that $K \neq \varnothing$ since $0 \in K$.

Now, suppose $x, y \in K$ and $z \in x \circ y$. Then $\mathcal{T}_{A}(x)=\mathcal{T}_{A}(0)=\mathcal{T}_{A}(y), \mathcal{I}_{A}(x)=\mathcal{I}_{A}(0)=$ $\mathcal{I}_{A}(y), \mathcal{F}_{A}(x)=\mathcal{F}_{A}(0)=\mathcal{F}_{A}(y)$. By Proposition $3(i)$ and by hypothesis, we get

$$
\begin{aligned}
\mathcal{T}_{A}(z) & \geq{ }^{*} \mathcal{T}_{A}(x \circ y) \\
& \geq \min \left\{\mathcal{T}_{A}(x), \mathcal{T}_{A}(y)\right\} \\
& =\min \left\{\mathcal{T}_{A}(0), \mathcal{T}_{A}(0)\right\} \\
& =\mathcal{T}_{A}(0), \\
\mathcal{I}_{A}(z) & \leq{ }^{*} \mathcal{I}_{A}(x \circ y) \\
& \leq \max \left\{\mathcal{I}_{A}(x), \mathcal{I}_{A}(y)\right\} \\
& =\max \left\{\mathcal{I}_{A}(0), \mathcal{I}_{A}(0)\right\} \\
& =\mathcal{I}_{A}(0),
\end{aligned}
$$

and similarly,

$$
\mathcal{F}_{A}(z) \leq \mathcal{F}_{A}(0) .
$$

Thus, $\mathcal{T}_{A}(z)=\mathcal{T}_{A}(0), \mathcal{I}_{A}(z)=\mathcal{I}_{A}(0)$, and $\mathcal{F}_{A}(z)=\mathcal{F}_{A}(0)$. That is, $z \in K$ and so $x \circ y \subseteq K$. By Proposition $2, K$ is a hyper $U P$-subalgebra of X.

We define the following α, β, γ-level subsets of X and their intersection:

$$
\begin{aligned}
T_{A}^{\alpha} & =\left\{x \in X: \mathcal{T}_{A}(x) \geq \alpha\right\}, \\
I_{A}^{\beta} & =\left\{x \in X: \mathcal{I}_{A}(x) \leq \beta\right\}, \\
F_{A}^{\gamma} & =\left\{x \in X: \mathcal{F}_{A}(x) \leq \gamma\right\}, \text { and } \\
A^{(\alpha, \beta, \gamma)} & =T_{A}^{\alpha} \cap I_{A}^{\beta} \cap F_{A}^{\gamma} .
\end{aligned}
$$

where $A=\left(\mathcal{T}_{A}, \mathcal{I}_{A}, \mathcal{F}_{A}\right)$ is a $S V N$ set in X and $\alpha, \beta, \gamma \in[0,1]$.
Theorem 1. Let $A=\left(\mathcal{T}_{A}, \mathcal{I}_{A}, \mathcal{F}_{A}\right)$ be a $S V N$ set in X. Then A is a $S V N$ hyper UPsubalgebra of X if and only if $A^{(\alpha, \beta, \gamma)}$ is a hyper UP-subalgebra of X for all $\alpha, \beta, \gamma \in[0,1]$.

Proof. Let $A=\left(\mathcal{T}_{A}, \mathcal{I}_{A}, \mathcal{F}_{A}\right)$ be a $S V N$ set in X.
(\Rightarrow) Assume that A is a $S V N$ hyper $U P$-subalgebra of X. Note that $\mathcal{T}_{A}(x), \mathcal{I}_{A}(x), \mathcal{F}_{A}(x) \in$ $[0,1] \forall x \in X$. Then take $\alpha=\mathcal{T}_{A}(x), \beta=\mathcal{I}_{A}(x)$ and $\gamma=\mathcal{F}_{A}(x)$. By Proposition $3(i), \mathcal{T}_{A}(0) \geq \mathcal{T}_{A}(x)=\alpha, \mathcal{I}_{A}(0) \leq \mathcal{I}_{A}(x)=\beta$, and $\mathcal{F}_{A}(0) \leq \mathcal{F}_{A}(x)=\gamma$. Hence, $0 \in T_{A}^{\alpha} \cap I_{A}^{\alpha} \cap F_{A}^{\alpha}=A^{(\alpha, \beta, \gamma)}$ and so $A^{(\alpha, \beta, \gamma)} \neq \varnothing$. Now, we let $x, y \in A^{(\alpha, \beta, \gamma)}$ for all $\alpha, \beta, \gamma \in[0,1]$. Dealing first with T_{A}^{α}, we have $x, y \in T_{A}^{\alpha}$. Let $z \in x \circ y$. Then $\mathcal{T}_{A}(x) \geq \alpha$, $\mathcal{T}_{A}(y) \geq \alpha$, and $\mathcal{T}_{A}(z) \geq_{*} \mathcal{T}_{A}(x \circ y)$. By assumption,

$$
\begin{aligned}
\mathcal{T}_{A}(z) & \geq{ }_{*} \mathcal{T}_{A}(x \circ y) \\
& \geq \min \left\{\mathcal{T}_{A}(x), \mathcal{T}_{A}(y)\right\} \\
& =\alpha .
\end{aligned}
$$

Thus, $z \in T_{A}^{\alpha}$ and so $x \circ y \subseteq T_{A}^{\alpha}$. For I_{A}^{β}, we have $x, y \in I_{A}^{\beta}$. Then $\mathcal{I}_{A}(x) \leq \beta, \mathcal{I}_{A}(y) \leq \beta$, and $\mathcal{I}_{A}(z) \leq^{*} \mathcal{I}_{A}(x \circ y)$. By assumption,

$$
\begin{aligned}
\mathcal{I}_{A}(z) & \leq{ }^{*} \mathcal{I}_{A}(x \circ y) \\
& \leq \max \left\{\mathcal{I}_{A}(x), \mathcal{I}_{A}(y)\right\} \\
& =\beta .
\end{aligned}
$$

Thus, $z \in I_{A}^{\beta}$ and so $x \circ y \subseteq I_{A}^{\beta}$. Using similar arguments, $x \circ y \subseteq F_{A}^{\gamma}$ for $x, y \in F_{A}^{\gamma}$. Now, it follows that $x \circ y \subseteq T_{A}^{\alpha} \cap I_{A}^{\beta} \cap F_{A}^{\gamma}=A^{(\alpha, \beta, \gamma)}$. By Proposition 2, $A^{(\alpha, \beta, \gamma)}$ is a hyper $U P$-subalgebra.
(\Leftarrow) Assume that $A^{(\alpha, \beta, \gamma)}$ is a hyper $U P$-subalgebra of X for all $\alpha, \beta, \gamma \in[0,1]$ and let $x, y \in X$. Note that $\mathcal{T}_{A}(x), \mathcal{T}_{A}(y), \mathcal{I}_{A}(x), \mathcal{I}_{A}(y), \mathcal{F}_{A}(x), \mathcal{F}_{A}(y) \in[0,1]$. Then take $\alpha=\min \left\{\mathcal{T}_{A}(x), \mathcal{T}_{A}(y)\right\}, \beta=\max \left\{\mathcal{I}_{A}(x), \mathcal{I}_{A}(y)\right\}$, and $\gamma=\max \left\{\mathcal{T}_{A}(x), \mathcal{T}_{A}(y)\right\}$ and so we have $\mathcal{T}_{A}(x) \geq \alpha, \mathcal{T}_{A}(y) \geq \alpha, \mathcal{I}_{A}(x) \leq \beta, \mathcal{I}_{A}(y) \leq \beta, \mathcal{F}_{A}(x) \leq \gamma$, and $\mathcal{F}_{A}(y) \leq \gamma$. Thus, $x, y \in T_{A}^{\alpha} \cap I_{A}^{\beta} \cap F_{A}^{\gamma}=A^{(\alpha, \beta, \gamma)}$. By assumption, $x \circ y \subseteq A^{(\alpha, \beta, \gamma)}$. This means that

$$
\begin{aligned}
& { }^{*} \mathcal{T}_{A}(x \circ y) \geq \alpha=\min \left\{\mathcal{T}_{A}(x), \mathcal{T}_{A}(y)\right\}, \\
& { }^{*} \mathcal{I}_{A}(x \circ y) \leq \beta=\max \left\{\mathcal{I}_{A}(x), \mathcal{I}_{A}(y)\right\}, \text { and } \\
& { }^{*} \mathcal{F}_{A}(x \circ y) \leq \gamma=\max \left\{\mathcal{F}_{A}(x), \mathcal{F}_{A}(y)\right\} .
\end{aligned}
$$

Hence, A is a $S V N$ hyper $U P$-subalgebra of X.
Corollary 1. Let $A=\left(\mathcal{T}_{A}, \mathcal{I}_{A}, \mathcal{F}_{A}\right)$ be a SVN hyper UP-subalgebra of X. If $0 \leq \alpha \leq$ $\alpha^{\prime} \leq 1,0 \leq \beta \leq \beta^{\prime} \leq 1$, and $0 \leq \gamma \leq \gamma^{\prime} \leq 1$, then $A^{\left(\alpha^{\prime}, \beta, \gamma\right)}$ is a hyper UP-subalgebra of $A^{\left(\alpha, \beta^{\prime}, \gamma^{\prime}\right)}$.

Proof. Let $A=\left(\mathcal{T}_{A}, \mathcal{I}_{A}, \mathcal{F}_{A}\right)$ be a $S V N$ hyper $U P$-subalgebra of X and let $0 \leq \alpha \leq$ $\alpha^{\prime} \leq 1,0 \leq \beta \leq \beta^{\prime} \leq 1$, and $0 \leq \gamma \leq \gamma^{\prime} \leq 1$. By Theorem 1, $A^{\left(\alpha^{\prime}, \beta, \gamma\right)}$ and $A^{\left(\alpha, \beta^{\prime}, \gamma^{\prime}\right)}$ are both hyper $U P$-subalgebra of X. We are left to show that $A^{\left(\alpha^{\prime}, \beta, \gamma\right)} \subseteq A^{\left(\alpha, \beta^{\prime}, \gamma^{\prime}\right)}$. Let $y \in T_{A}^{\alpha^{\prime}}$. Then $\mathcal{T}_{A}(y) \geq \alpha^{\prime} \geq \alpha$. Thus, $y \in T_{A}^{\alpha}$ and so $T_{A}^{\alpha^{\prime}} \subseteq T_{A}^{\alpha}$. Next, let $z \in I_{A}^{\beta}$. Then $\mathcal{I}_{A}(z) \leq \beta \leq \beta^{\prime}$. Thus, $z \in I_{A}^{\beta^{\prime}}$ and so $I_{A}^{\beta} \subseteq I_{A}^{\beta^{\prime}}$. Similarly, $F_{A}^{\gamma} \subseteq F_{A}^{\gamma^{\prime}}$. Hence, $A^{\left(\alpha^{\prime}, \beta, \gamma\right)}=T_{A}^{\alpha^{\prime}} \cap I_{A}^{\beta} \cap F_{A}^{\gamma} \subseteq T_{A}^{\alpha} \cap I_{A}^{\beta^{\prime}} \cap F_{A}^{\gamma^{\prime}}=A^{\left(\alpha, \beta^{\prime}, \gamma^{\prime}\right)}$. Consequently, $A^{\left(\alpha^{\prime}, \beta, \gamma\right)}$ is a hyper $U P$-subalgebra of $A^{\left(\alpha, \beta^{\prime}, \gamma\right)}$.

For fixed numbers $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, \gamma_{1}, \gamma_{2} \in[0,1]$ such that $\alpha_{1} \geq \alpha_{2}, \beta_{1} \geq \beta_{2}, \gamma_{1} \geq \gamma_{2}$, and a nonempty subset G of X, we define a $S V N$ set

$$
A_{G}\left[\begin{array}{l}
\alpha_{1}, \beta_{2}, \gamma_{2} \\
\alpha_{2}, \beta_{1}, \gamma_{1}
\end{array}\right]=\left(\mathcal{T}_{A_{G}}\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right], \mathcal{I}_{A_{G}}\left[\begin{array}{c}
\beta_{2} \\
\beta_{1}
\end{array}\right], \mathcal{F}_{A_{G}}\left[\begin{array}{l}
\gamma_{2} \\
\gamma_{1}
\end{array}\right]\right)
$$

where

$$
\mathcal{T}_{A_{G}}\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right](x)= \begin{cases}\alpha_{1} & \text { if } x \in G \\
\alpha_{2} & \text { otherwise }\end{cases}
$$

$$
\mathcal{I}_{A_{G}}\left[\begin{array}{l}
\beta_{2} \\
\beta_{1}
\end{array}\right](x)=\left\{\begin{array}{ll}
\beta_{2} & \text { if } x \in G \\
\beta_{1} & \text { otherwise }
\end{array},\right.
$$

and

$$
\mathcal{F}_{A_{G}}\left[\begin{array}{l}
\gamma_{2} \\
\gamma_{1}
\end{array}\right](x)=\left\{\begin{array}{ll}
\gamma_{2} & \text { if } x \in G \\
\gamma_{1} & \text { otherwise }
\end{array} .\right.
$$

Theorem 2. Let G be a nonempty subset of X and $A_{G}\left[\begin{array}{l}\alpha_{1}, \beta_{2}, \gamma_{2} \\ \alpha_{2}, \beta_{1}, \gamma_{1}\end{array}\right]$ be a SVN set in X. Then $A_{G}\left[\begin{array}{l}\alpha_{1}, \beta_{2}, \gamma_{2} \\ \alpha_{2}, \beta_{1}, \gamma_{1}\end{array}\right]$ satisfies Proposition 3(i) if and only if $0 \in G$.

Proof. Let G be a nonempty subset of X and $A_{G}\left[\begin{array}{l}\alpha_{1}, \beta_{2}, \gamma_{2} \\ \alpha_{2}, \beta_{1}, \gamma_{1}\end{array}\right]$ be a $S V N$ set in X.
(\Rightarrow) Assume that $A_{G}\left[\begin{array}{l}\alpha_{1}, \beta_{2}, \gamma_{2} \\ \alpha_{2}, \beta_{1}, \gamma_{1}\end{array}\right]$ satisfies Proposition $3(i)$. Since $G \neq \varnothing$, there exists $g \in G$. Thus, $\mathcal{T}_{A_{G}}\left[\begin{array}{l}\alpha_{1} \\ \alpha_{2}\end{array}\right](g)=\alpha_{1}$. Now,

$$
\begin{aligned}
\mathcal{T}_{A_{G}}\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right](0) & \geq \mathcal{T}_{A_{G}}\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right](g) \\
& =\alpha_{1} \\
& \geq \mathcal{T}_{A_{G}}\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right](0)
\end{aligned}
$$

That is, $\mathcal{T}_{A_{G}}\left[\begin{array}{l}\alpha_{1} \\ \alpha_{2}\end{array}\right](0)=\alpha_{1}$. Hence, $0 \in G$.
(\Leftarrow) Assume that $0 \in G$. Then $\mathcal{T}_{A_{G}}\left[\begin{array}{l}\alpha_{1} \\ \alpha_{2}\end{array}\right](0)=\alpha_{1}, \mathcal{I}_{A_{G}}\left[\begin{array}{l}\beta_{2} \\ \beta_{1}\end{array}\right](0)=\beta_{2}$ and $\mathcal{F}_{A_{G}}\left[\begin{array}{l}\gamma_{2} \\ \gamma_{1}\end{array}\right](0)=\gamma_{2}$. For all $x \in X$,

$$
\begin{aligned}
& \mathcal{T}_{A_{G}}\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right](0)=\alpha_{1} \geq \mathcal{T}_{A_{G}}\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right](x), \\
& \mathcal{I}_{A_{G}}\left[\begin{array}{l}
\beta_{2} \\
\beta_{1}
\end{array}\right](0)=\beta_{2} \leq \mathcal{I}_{A_{G}}\left[\begin{array}{l}
\beta_{2} \\
\beta_{1}
\end{array}\right](x)
\end{aligned}
$$

and

$$
\mathcal{F}_{A_{G}}\left[\begin{array}{l}
\gamma_{2} \\
\gamma_{1}
\end{array}\right](0)=\gamma_{2} \leq \mathcal{F}_{A_{G}}\left[\begin{array}{l}
\gamma_{2} \\
\gamma_{1}
\end{array}\right](x) .
$$

Hence, $A_{G}\left[\begin{array}{c}\alpha_{1}, \beta_{2}, \gamma_{2} \\ \alpha_{2}, \beta_{1}, \gamma_{1}\end{array}\right]$ satisfies Proposition $3(i)$.

Theorem 3. Let $A_{G}\left[\begin{array}{l}\alpha_{1}, \beta_{2}, \gamma_{2} \\ \alpha_{2}, \beta_{1}, \gamma_{1}\end{array}\right]$ be a SVN set in X. Then $A_{G}\left[\begin{array}{l}\alpha_{1}, \beta_{2}, \gamma_{2} \\ \alpha_{2}, \beta_{1}, \gamma_{1}\end{array}\right]$ is a SVN hyper UP-subalgebra of X if and only if a nonempty subset of G is a hyper UP-subalgebra of X.

Proof. Let $A_{G}\left[\begin{array}{l}\alpha_{1}, \beta_{2}, \gamma_{2} \\ \alpha_{2}, \beta_{1}, \gamma_{1}\end{array}\right]$ be a $S V N$ set in X.
\Leftrightarrow Assume that $A_{G}\left[\begin{array}{l}\alpha_{1}, \beta_{2}, \gamma_{2} \\ \alpha_{2}, \beta_{1}, \gamma_{1}\end{array}\right]$ is a $S V N$ hyper $U P$-subalgebra of X. Since $G \neq \varnothing$, we let $x, y \in G$ and $z \in x \circ y$. Then

$$
\mathcal{T}_{A_{G}}\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right](x)=\alpha_{1}=\mathcal{T}_{A_{G}}\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right](y)
$$

By assumption,

$$
\begin{aligned}
\mathcal{T}_{A_{G}}\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right](z) & \geq{ }^{*} \mathcal{T}_{A_{G}}\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right](x \circ y) \\
& \geq \min \left\{\mathcal{T}_{A_{G}}\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right](x), \mathcal{T}_{A_{G}}\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right](y)\right\} \\
& =\alpha_{1} \\
& \geq \mathcal{T}_{A_{G}}\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right](z) .
\end{aligned}
$$

That is, $\mathcal{T}_{A_{G}}\left[\begin{array}{l}\alpha_{1} \\ \alpha_{2}\end{array}\right](z)=\alpha_{1}$. Thus, $z \in G$ and so $x \circ y \subseteq G$. By Proposition $2, G$ is a hyper $U P$-subalgebra of X.
(\Leftarrow) Assume that G is a hyper $U P$-subalgebra of X and suppose $x, y \in X$. Consider the following cases:

Case 1. $x, y \in G$
By assumption, $x \circ y \subseteq G$. Thus,

$$
\begin{aligned}
& { }^{*} \mathcal{T}_{A_{G}}\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right](x \circ y)=\alpha_{1} \geq \alpha_{1}=\min \left\{\mathcal{T}_{A_{G}}\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right](x), \mathcal{T}_{A_{G}}\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right](y)\right\}, \\
& { }^{*} \mathcal{I}_{A_{G}}\left[\begin{array}{l}
\beta_{2} \\
\beta_{1}
\end{array}\right](x \circ y)=\beta_{2} \leq \beta_{2}=\max \left\{\mathcal{I}_{A_{G}}\left[\begin{array}{l}
\beta_{2} \\
\beta_{1}
\end{array}\right](x), \mathcal{I}_{A_{G}}\left[\begin{array}{l}
\beta_{2} \\
\beta_{1}
\end{array}\right](y)\right\},
\end{aligned}
$$

and

$$
{ }^{*} \mathcal{F}_{A_{G}}\left[\begin{array}{l}
\gamma_{2} \\
\gamma_{1}
\end{array}\right](x \circ y)=\gamma_{2} \leq \gamma_{2}=\max \left\{\mathcal{F}_{A_{G}}\left[\begin{array}{l}
\gamma_{2} \\
\gamma_{1}
\end{array}\right](x), \mathcal{F}_{A_{G}}\left[\begin{array}{l}
\gamma_{2} \\
\gamma_{1}
\end{array}\right](y)\right\} .
$$

Case 2. $x \in G$ and $y \notin G$
So we have

$$
{ }_{*} \mathcal{T}_{A_{G}}\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right](x \circ y) \geq \alpha_{2}
$$

$$
\begin{aligned}
& =\min \left\{\alpha_{1}, \alpha_{2}\right\} \\
& =\min \left\{\mathcal{T}_{A_{G}}\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right](x), \mathcal{T}_{A_{G}}\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{2}
\end{array}\right](y)\right\}, \\
{ }^{*} \mathcal{I}_{A_{G}}\left[\begin{array}{c}
\beta_{2} \\
\beta_{1}
\end{array}\right](x \circ y) & \leq \beta_{1} \\
& =\max \left\{\beta_{2}, \beta_{1}\right\} \\
& =\max \left\{\mathcal{I}_{A_{G}}\left[\begin{array}{l}
\beta_{2} \\
\beta_{1}
\end{array}\right](x), \mathcal{I}_{A_{G}}\left[\begin{array}{c}
\beta_{2} \\
\beta_{1}
\end{array}\right](y)\right\},
\end{aligned}
$$

and

$$
\begin{aligned}
{ }^{*} \mathcal{F}_{A_{G}}\left[\begin{array}{l}
\gamma_{2} \\
\gamma_{1}
\end{array}\right](x \circ y) & \leq \gamma_{1} \\
& =\max \left\{\gamma_{2}, \gamma_{1}\right\} \\
& =\max \left\{\mathcal{F}_{A_{G}}\left[\begin{array}{c}
\gamma_{2} \\
\gamma_{1}
\end{array}\right](x), \mathcal{F}_{A_{G}}\left[\begin{array}{c}
\gamma_{2} \\
\gamma_{1}
\end{array}\right](y)\right\}
\end{aligned}
$$

Case 3. $x \notin G$ and $y \in G$
Using similar routine done in case 2, we have

$$
\begin{aligned}
& { }^{*} \mathcal{T}_{A_{G}}\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right](x \circ y) \geq \min \left\{\mathcal{T}_{A_{G}}\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right](x), \mathcal{T}_{A_{G}}\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right](y)\right\}, \\
& * \mathcal{I}_{A_{G}}\left[\begin{array}{l}
\beta_{2} \\
\beta_{1}
\end{array}\right](x \circ y) \leq \max \left\{\mathcal{I}_{A_{G}}\left[\begin{array}{l}
\beta_{2} \\
\beta_{1}
\end{array}\right](x), \mathcal{I}_{A_{G}}\left[\begin{array}{l}
\beta_{1} \\
\beta_{2}
\end{array}\right](y)\right\},
\end{aligned}
$$

and

$$
{ }^{*} \mathcal{F}_{A_{G}}\left[\begin{array}{l}
\gamma_{2} \\
\gamma_{1}
\end{array}\right](x \circ y) \leq \max \left\{\mathcal{F}_{A_{G}}\left[\begin{array}{c}
\gamma_{2} \\
\gamma_{1}
\end{array}\right](x), \mathcal{F}_{A_{G}}\left[\begin{array}{c}
\gamma_{2} \\
\gamma_{1}
\end{array}\right](y)\right\} .
$$

Case 4. $x \notin G$ and $y \notin G$
Now,

$$
\begin{aligned}
{ }^{*} \mathcal{T}_{A_{G}}\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{2}
\end{array}\right](x \circ y) & \geq \alpha_{2} \\
& =\min \left\{\alpha_{2}, \alpha_{2}\right\} \\
& =\min \left\{\mathcal{T}_{A_{G}}\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right](x), \mathcal{T}_{A_{G}}\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right](y)\right\} \\
{ }^{*} \mathcal{I}_{A_{G}}\left[\begin{array}{c}
\beta_{2} \\
\beta_{1}
\end{array}\right](x \circ y) & \leq \beta_{1} \\
& =\max \left\{\beta_{1}, \beta_{1}\right\}
\end{aligned}
$$

$$
=\max \left\{\mathcal{I}_{A_{G}}\left[\begin{array}{l}
\beta_{2} \\
\beta_{1}
\end{array}\right](x), \mathcal{I}_{A_{G}}\left[\begin{array}{l}
\beta_{2} \\
\beta_{1}
\end{array}\right](y)\right\},
$$

and

$$
\begin{aligned}
{ }^{*} \mathcal{F}_{A_{G}}\left[\begin{array}{c}
\gamma_{2} \\
\gamma_{1}
\end{array}\right](x \circ y) & \leq \gamma_{1} \\
& =\max \left\{\gamma_{1}, \gamma_{1}\right\} \\
& =\max \left\{\mathcal{F}_{A_{G}}\left[\begin{array}{l}
\gamma_{2} \\
\gamma_{1}
\end{array}\right](x), \mathcal{F}_{A_{G}}\left[\begin{array}{c}
\gamma_{2} \\
\gamma_{1}
\end{array}\right](y)\right\} .
\end{aligned}
$$

Hence, $A_{G}\left[\begin{array}{l}\alpha_{1}, \beta_{2}, \gamma_{2} \\ \alpha_{2}, \beta_{1}, \gamma_{1}\end{array}\right]$ is a $S V N$ hyper $U P$-subalgebra of X.
Theorem 4. Let G be a hyper UP-subalgebra of X. Then there exists a SVN hyper UP-subalgebra $A=\left(\mathcal{T}_{A}, \mathcal{I}_{A}, \mathcal{F}_{A}\right)$ of X such that $A^{(\alpha, \beta, \gamma)}=G$ for $\alpha, \beta, \gamma \in[0,1]$.

Proof. Let G be a hyper $U P$-subalgebra of X. For fixed $\alpha, \beta, \gamma \in(0,1]$, consider $A=A_{G}\left[\begin{array}{l}\alpha, 0,0 \\ 0, \beta, \gamma\end{array}\right]$. Since G be a hyper $U P$-subalgebra of $X, A_{G}\left[\begin{array}{c}\alpha, 0,0 \\ 0, \beta, \gamma\end{array}\right]$ is a $S V N$ hyper $U P$-subalgebra of X by Theorem 3 . Now, let $x \in G$. Then

$$
\begin{aligned}
& \mathcal{T}_{A}(x)=\mathcal{T}_{A_{G}}\left[\begin{array}{c}
\alpha \\
0
\end{array}\right](x)=\alpha \geq \alpha, \\
& \mathcal{I}_{A}(x)=\mathcal{I}_{A_{G}}\left[\begin{array}{l}
0 \\
\beta
\end{array}\right](x)=0 \leq \beta
\end{aligned}
$$

and

$$
\mathcal{F}_{A}(x)=\mathcal{F}_{A_{G}}\left[\begin{array}{l}
0 \\
\gamma
\end{array}\right](x)=0 \leq \gamma .
$$

Thus, $x \in T_{A}^{\alpha} \cap I_{A}^{\beta} \cap F_{A}^{\gamma}=A^{(\alpha, \beta, \gamma)}$ and so $G \subseteq A^{(\alpha, \beta, \gamma)}$. Also, let $y \in A^{(\alpha, \beta, \gamma)}$. Then $\mathcal{T}_{A}(y) \geq \alpha, \mathcal{I}_{A}(y) \leq \beta$, and $\mathcal{F}_{A}(y) \leq \gamma$. Suppose that $y \notin G$. Then $0=\mathcal{T}_{A_{G}}\left[\begin{array}{c}\alpha \\ 0\end{array}\right](y)=$ $\mathcal{T}_{A}(y) \geq \alpha$. It follows that $\alpha=0$. This is a contradiction since $\alpha \in(0,1]$. Thus, $y \in G$ and so $A^{(\alpha, \beta, \gamma)} \subseteq G$. Consequently, $A^{(\alpha, \beta, \gamma)}=G$.

Theorem 5. Given a chain of hyper UP-subalgebras of X :

$$
A_{0} \subset A_{1} \subset A_{2} \subset A_{3} \subset \ldots \subset A_{n}=X
$$

Then there exists a SVN hyper UP- subalgebra $A=\left(\mathcal{T}_{A}, \mathcal{I}_{A}, \mathcal{F}_{A}\right)$ of X such that $A^{\left(\alpha_{k}, \beta_{k}, \gamma_{k}\right)}=$ A_{k} where $\alpha_{k}, \beta_{k}, \gamma_{k} \in[0,1]$ for $0 \leq k \leq n$.

Proof. Let $\left\{\alpha_{k} \mid k=0,1, \ldots, n\right\}$ be a finite decreasing sequence and $\left\{\beta_{k} \mid k=0,1, \ldots, n\right\}$, $\left\{\gamma_{k} \mid k=0,1, \ldots, n\right\}$ be finite increasing sequences such that $\alpha_{k}, \beta_{k}, \gamma_{k} \in[0,1]$ for $1 \leq$ $k \leq n$. Define a $S V N$ set $A=\left(\mathcal{T}_{A}, \mathcal{I}_{A}, \mathcal{F}_{A}\right)$ in X by $\mathcal{T}_{A}\left(A_{0}\right)=\alpha_{0}, \mathcal{I}_{A}\left(A_{0}\right)=\beta_{0}$, $\mathcal{F}_{A}\left(A_{0}\right)=\gamma_{0}, \mathcal{T}_{A}\left(A_{k} \backslash A_{k-1}\right)=\alpha_{k}, \mathcal{I}_{A}\left(A_{k} \backslash A_{k-1}\right)=\beta_{k}$, and $\mathcal{F}_{A}\left(A_{k} \backslash A_{k-1}\right)=\gamma_{k}$ for $1 \leq k \leq n$. We will show that A is a $S V N$ hyper $U P$-subalgebra of X. Let $a, b \in X$. Consider the following cases:

Case 1. $a, b \in A_{k} \backslash A_{k-1}$
Then $\mathcal{T}_{A}(a)=\alpha_{k}=\mathcal{T}_{A}(b), \mathcal{I}_{A}(a)=\beta_{k}=\mathcal{I}_{A}(b)$, and $\mathcal{F}_{A}(a)=\gamma_{k}=\mathcal{F}_{A}(b)$. Since A_{k} is a hyper $U P$-subalgebra of $X, a \circ b \subseteq A_{k}$.

Subcase 1.1. $a \circ b \subseteq A_{k} \backslash A_{k-1}$

$$
\begin{aligned}
& * \mathcal{T}_{A}(a \circ b)=\alpha_{k} \geq \alpha_{k}=\min \left\{\mathcal{T}_{A}(a), \mathcal{T}_{A}(b)\right\}, \\
& { }^{*} \mathcal{I}_{A}(a \circ b)=\beta_{k} \leq \beta_{k}=\max \left\{\mathcal{I}_{A}(a), \mathcal{I}_{A}(b)\right\}
\end{aligned}
$$

and

$$
{ }^{*} \mathcal{F}_{A}(a \circ b)=\gamma_{k} \leq \gamma_{k}=\max \left\{\mathcal{F}_{A}(a), \mathcal{F}_{A}(b)\right\} .
$$

Subcase 1.2. $a \circ b \subseteq A_{k-1}$
For some $r \in[0, k-1]$, we have

$$
\begin{aligned}
& * \mathcal{T}_{A}(a \circ b)=\alpha_{k-1-r} \geq \alpha_{k}=\min \left\{\mathcal{T}_{A}(a), \mathcal{T}_{A}(b)\right\}, \\
& { }^{*} \mathcal{I}_{A}(a \circ b)=\beta_{k-1-r} \leq \beta_{k}=\max \left\{\mathcal{I}_{A}(a), \mathcal{I}_{A}(b)\right\},
\end{aligned}
$$

and

$$
{ }^{*} \mathcal{F}_{A}(a \circ b)=\gamma_{k-1-r} \leq \gamma_{k}=\max \left\{\mathcal{F}_{A}(a), \mathcal{F}_{A}(b)\right\} .
$$

Subcase 1.3. $a \circ b=\left[(a \circ b) \cap\left(A_{k} \backslash A_{k-1}\right)\right] \cup\left[(a \circ b) \cap A_{k-1}\right]$ where $(a \circ b) \cap\left(A_{k} \backslash A_{k-1}\right) \neq \varnothing$ and $(a \circ b) \cap A_{k-1} \neq \varnothing$

$$
\begin{aligned}
& * \mathcal{T}_{A}(a \circ b)=\alpha_{k} \geq \alpha_{k}=\min \left\{\mathcal{T}_{A}(a), \mathcal{T}_{A}(b)\right\}, \\
& { }^{*} \mathcal{I}_{A}(a \circ b)=\beta_{k} \leq \beta_{k}=\max \left\{\mathcal{I}_{A}(a), \mathcal{I}_{A}(b)\right\},
\end{aligned}
$$

and

$$
{ }^{*} \mathcal{F}_{A}(a \circ b)=\gamma_{k} \leq \gamma_{k}=\max \left\{\mathcal{F}_{A}(a), \mathcal{F}_{A}(b)\right\} .
$$

Case 2. $a \in A_{i} \backslash A_{i-1}$ and $b \in A_{j} \backslash A_{j-1}$ for $i>j>0$
Then $\mathcal{T}_{A}(a)=\alpha_{i}, \mathcal{T}_{A}(b)=\alpha_{j}, \mathcal{I}_{A}(a)=\beta_{i}, \mathcal{I}_{A}(b)=\beta_{j}, \mathcal{F}_{A}(a)=\gamma_{i}$, and $\mathcal{F}_{A}(b)=\gamma_{j}$. Since A_{i} is a hyper $U P$-subalgebra of X and $A_{j} \subset A_{i}$, we have $a \circ b \subseteq A_{i}$.

Subcase 2.1. $a \circ b \subseteq A_{i} \backslash A_{j}$
For some $r \in[0, i-j-1]$, we have

$$
{ }_{*} \mathcal{T}_{A}(a \circ b)=\alpha_{i-r} \geq \alpha_{i}=\min \left\{\mathcal{T}_{A}(a), \mathcal{T}_{A}(b)\right\},
$$

$$
{ }^{*} \mathcal{I}_{A}(a \circ b)=\beta_{i-r} \leq \beta_{i}=\max \left\{\mathcal{I}_{A}(a), \mathcal{I}_{A}(b)\right\},
$$

and

$$
{ }^{*} \mathcal{F}_{A}(a \circ b)=\gamma_{i-r} \leq \gamma_{i}=\max \left\{\mathcal{F}_{A}(a), \mathcal{F}_{A}(b)\right\} .
$$

Subcase 2.2. $a \circ b \subseteq A_{j}$
For some $r \in[0, j]$, we have

$$
\begin{aligned}
& { }^{*} \mathcal{T}_{A}(a \circ b)=\alpha_{j-r} \geq \alpha_{i}=\min \left\{\mathcal{T}_{A}(a), \mathcal{T}_{A}(b)\right\}, \\
& { }^{*} \mathcal{I}_{A}(a \circ b)=\beta_{j-r} \leq \beta_{i}=\max \left\{\mathcal{I}_{A}(a), \mathcal{I}_{A}(b)\right\},
\end{aligned}
$$

and

$$
{ }^{*} \mathcal{F}_{A}(a \circ b)=\gamma_{j-r} \leq \gamma_{i}=\max \left\{\mathcal{F}_{A}(a), \mathcal{F}_{A}(b)\right\} .
$$

Subcase 2.3. $a \circ b=\left[(a \circ b) \cap\left(A_{i} \backslash A_{j}\right)\right] \cup\left[(a \circ b) \cap A_{j}\right]$ where $(a \circ b) \cap\left(A_{i} \backslash A_{j}\right) \neq \varnothing$ and $(a \circ b) \cap A_{j} \neq \varnothing$
For some $r \in[0, i-j-1]$, we have

$$
\begin{aligned}
& { }^{*} \mathcal{T}_{A}(a \circ b)=\alpha_{i-r} \geq \alpha_{i}=\min \left\{\mathcal{T}_{A}(a), \mathcal{T}_{A}(b)\right\}, \\
& { }^{*} \mathcal{I}_{A}(a \circ b)=\beta_{i-r} \leq \beta_{i}=\max \left\{\mathcal{I}_{A}(a), \mathcal{I}_{A}(b)\right\},
\end{aligned}
$$

and

$$
{ }^{*} \mathcal{F}_{A}(a \circ b)=\gamma_{i-r} \leq \gamma_{i}=\max \left\{\mathcal{F}_{A}(a), \mathcal{F}_{A}(b)\right\} .
$$

Thus, A is a $S V N$ hyper $U P$-subalgebra of X. Furthermore, note that

$$
\begin{aligned}
T_{A}^{\alpha_{0}} & =\left\{s \in X \mid \mathcal{T}_{A}(s) \geq \alpha_{0}\right\}=A_{0}, \\
I_{A}^{\beta_{0}} & =\left\{s \in X \mid \mathcal{I}_{A}(s) \leq \beta_{0}\right\}=A_{0},
\end{aligned}
$$

and

$$
F_{A}^{\gamma_{0}}=\left\{s \in X \mid \mathcal{F}_{A}(s) \leq \gamma_{0}\right\}=A_{0} .
$$

Thus, $A_{0}=T_{A}^{\alpha_{0}} \cap I_{A}^{\beta_{0}} \cap F_{A}^{\gamma_{0}}=A^{\left(\alpha_{0}, \beta_{0}, \gamma_{0}\right)}$. For $0<k \leq n$, let $x \in A_{k}$. Then $x \in$ $A_{k-i} \backslash A_{k-i-1} \exists 0 \leq i \leq k-1$. Thus,

$$
\begin{aligned}
& \mathcal{T}_{A}(x)=\alpha_{k-i} \geq \alpha_{k}, \\
& \mathcal{I}_{A}(x)=\beta_{k-i} \leq \beta_{k}
\end{aligned}
$$

and

$$
\mathcal{F}_{A}(x)=\gamma_{k-i} \leq \gamma_{k}
$$

$\exists 0 \leq i \leq k-1$. So we have $x \in T_{A}^{\alpha_{k}} \cap I_{A}^{\beta_{k}} \cap F_{A}^{\gamma_{k}}=A^{\left(\alpha_{k}, \beta_{k}, \gamma_{k}\right)}$ and $A_{k} \subseteq A^{\left(\alpha_{k}, \beta_{k}, \gamma_{k}\right)}$. Also, let $y \in A^{\left(\alpha_{k}, \beta_{k}, \gamma_{k}\right)}$. Then $\mathcal{T}_{A}(y) \geq \alpha_{k}, \mathcal{I}_{A}(y) \leq \beta_{k}$, and $\mathcal{F}_{A}(y) \leq \gamma_{k}$. The values of $\mathcal{T}_{A}(y)$, $\mathcal{I}_{A}(y)$, and $\mathcal{F}_{A}(y)$ that will make the three inequalities true are $\mathcal{T}_{A}(y)=\alpha_{t}, \mathcal{I}_{A}(y)=\beta_{t}$, and $\mathcal{F}_{A}(y)=\gamma_{t} \exists 0<t \leq k$. This implies that $y \in A_{k-i} \backslash A_{k-i-1} \exists 0 \leq i \leq k-1$. That is, $y \in A_{k}$ since $\left(A_{k-i} \backslash A_{k-i-1}\right) \subseteq A_{k} \exists 0 \leq i \leq k-1$. Hence, $A^{\left(\alpha_{k}, \beta_{k}, \gamma_{k}\right)} \subseteq A_{k}$. Consequently, $A^{\left(\alpha_{k}, \beta_{k}, \gamma_{k}\right)}=A_{k}$.

3.2. Single-Valued Neutrosophic Soft Hyper $\boldsymbol{U P}$-subalgebra

In this section, we define the single-valued neutrosophic soft hyper $U P$-subalgebra and prove some related properties.

Definition 17. Let (Δ, E) be a single-valued neutrosophic soft set over a hyper $U P$ algebra X. Then (Δ, E) is said to be single-valued neutrosophic soft (SVNS) hyper UP-subalgebra of X if for all $x, y \in X$ and $e \in E$,

$$
\begin{aligned}
& { }^{*} \mathcal{T}_{\Delta(e)}(x \circ y) \geq \min \left\{\mathcal{T}_{\Delta(e)}(x), \mathcal{T}_{\Delta(e)}(y)\right\}, \\
& { }^{*} \mathcal{I}_{\Delta(e)}(x \circ y) \leq \max \left\{\mathcal{T}_{\Delta(e)}(x), \mathcal{T}_{\Delta(e)}(y)\right\}, \text { and } \\
& { }^{*} \mathcal{F}_{\Delta(e)}(x \circ y) \leq \max \left\{\mathcal{T}_{\Delta(e)}(x), \mathcal{T}_{\Delta(e)}(y)\right\} ;
\end{aligned}
$$

that is, $\Delta(e)$ is a $S V N$ hyper $U P$-subalgebra of X.
Example 7. Consider the hyper $U P$-algebra $(X, 0, \lll 0)$ of Example 2 where $X=$ $\{0, u, v\}$. Let $E=\left\{e_{1}, e_{2}\right\}$ be the set of parameters and let $\Delta: E \longrightarrow \mathcal{N}(X)$ be defined by

$$
\begin{aligned}
\Delta\left(e_{1}\right) & =\{\langle 0,(0.9,0.2,0.45)\rangle,\langle u,(0.74,0.57,0.7)\rangle,\langle v,(0.8,0.42,0.52)\rangle\} \text { and } \\
\Delta\left(e_{2}\right) & =\{\langle 0,(0.8,0.2,0.4)\rangle,\langle u,(0.4,0.45,0.5)\rangle,\langle v,(0.67,0.3,0.5)\rangle\} .
\end{aligned}
$$

Then

$$
\begin{aligned}
(\Delta, E)= & \left\{\left(e_{1},\{\langle 0,(0.9,0.2,0.45)\rangle,\langle u,(0.74,0.57,0.7)\rangle,\langle v,(0.8,0.42,0.52)\rangle\}\right),\right. \\
& \left.\left(e_{2},\{\langle 0,(0.8,0.2,0.4)\rangle,\langle u,(0.4,0.45,0.5)\rangle,\langle v,(0.67,0.3,0.5)\rangle\}\right)\right\} .
\end{aligned}
$$

is a $S V N S$ set over X. By routine calculation, (Δ, E) is a $S V N S$ hyper $U P$-subalgebra of X.

Proposition 5. Let (Δ, E) be a SVNS hyper UP-subalgebra of X. Then for all $x, y \in X$ and $e \in E$,

$$
\begin{aligned}
& \mathcal{T}_{\Delta(e)}(x) \leq \mathcal{T}_{\Delta(e)}(0) \\
& \text { (i) } \quad \mathcal{I}_{\Delta(e)}(x) \geq \mathcal{I}_{\Delta(e)}(0) \text {, } \\
& \mathcal{F}_{\Delta(e)}(x) \geq \mathcal{F}_{\Delta(e)}(0) \\
& { }_{*} \mathcal{T}_{\Delta(e)}(0 \circ x)=\mathcal{T}_{\Delta(e)}(x) . \\
& \text { (ii) } \quad{ }^{*} \mathcal{I}_{\Delta(e)}(0 \circ x)=\mathcal{I}_{\Delta(e)}(x) \\
& { }^{*} \mathcal{F}_{\Delta(e)}(0 \circ x)=\mathcal{F}_{\Delta(e)}(x) \text {. } \\
& { }_{*} \mathcal{T}_{\Delta(e)}(x \circ 0)=\mathcal{T}_{\Delta(e)}(0) \\
& \text { (iii) } \quad{ }^{*} \mathcal{I}_{\Delta(e)}(x \circ 0)=\mathcal{I}_{\Delta(e)}(0) \\
& { }^{*} \mathcal{F}_{\Delta(e)}(x \circ 0)=\mathcal{F}_{\Delta(e)}(0) \\
& \mathcal{T}_{\Delta(e)}(x)=\mathcal{T}_{\Delta(e)}(0) \quad{ }^{*} \mathcal{T}_{\Delta(e)}(x \circ y) \geq \mathcal{T}_{\Delta(e)}(y) \\
& \text { (iv) If } \mathcal{I}_{\Delta(e)}(x)=\mathcal{I}_{\Delta(e)}(0) \text {, then }{ }^{*} \mathcal{I}_{\Delta(e)}(x \circ y) \leq \mathcal{I}_{\Delta(e)}(y) \text {. } \\
& \mathcal{F}_{\Delta(e)}(x)=\mathcal{F}_{\Delta(e)}(0) \quad{ }^{*} \mathcal{F}_{\Delta(e)}(x \circ y) \leq \mathcal{F}_{\Delta(e)}(y)
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{T}_{\Delta(e)}(y)=\mathcal{T}_{\Delta(e)}(0) \quad{ }^{*} \mathcal{T}_{\Delta(e)}(x \circ y) \geq \mathcal{T}_{\Delta(e)}(x) \\
& \text { (v) If } \mathcal{I}_{\Delta(e)}(y)=\mathcal{I}_{\Delta(e)}(0) \text {, then } \quad{ }^{*} \mathcal{I}_{\Delta(e)}(x \circ y) \leq \mathcal{I}_{\Delta(e)}(x) \text {. } \\
& \mathcal{F}_{\Delta(e)}(y)=\mathcal{F}_{\Delta(e)}(0) \quad{ }^{*} \mathcal{F}_{\Delta(e)}(x \circ y) \leq \mathcal{F}_{\Delta(e)}(x) \\
& { }^{*} \mathcal{T}_{\Delta(e)}(x \circ y)=\mathcal{T}_{\Delta(e)}(x) \quad \mathcal{T}_{\Delta(e)}(x)=\mathcal{T}_{\Delta(e)}(0) \quad \mathcal{T}_{\Delta(e)}(y)=\mathcal{T}_{\Delta(e)}(0) \\
& \begin{array}{lllll}
\text { (vi) If } & { }^{*} \mathcal{I}_{\Delta(e)}(x \circ y)=\mathcal{I}_{\Delta(e)}(x) \\
& * \mathcal{F}_{\Delta(e)}(x \circ y)=\mathcal{F}_{\Delta(e)}(x)
\end{array} \text {, then } \begin{array}{lll}
\mathcal{I}_{\Delta(e)}(x)=\mathcal{I}_{\Delta(e)}(0) & \text { and } & \mathcal{I}_{\Delta(e)}(y)=\mathcal{I}_{\Delta(e)}(0) \\
& \mathcal{F}_{\Delta(e)}(x)=\mathcal{F}_{\Delta(e)}(0) & \mathcal{F}_{\Delta(e)}(y)=\mathcal{F}_{\Delta(e)}(0)
\end{array}
\end{aligned}
$$

Proof. Using similar arguments from Proposition 3, this proposition is valid.
Theorem 6. Let $\left(\Delta_{1}, E\right)$ and $\left(\Delta_{2}, E\right)$ be two SVNS hyper UP-subalgebras of X. Then
(i) $\left(\Delta_{1}, E\right) \cap\left(\Delta_{2}, E\right)$ is a SVNS hyper UP-subalgebra of X.
(ii) $\left(\Delta_{1}, E\right) \cup\left(\Delta_{2}, E\right)$ is not generally a SVNS hyper UP-subalgebra of X.

Proof. Let $\left(\Delta_{1}, E\right)$ and $\left(\Delta_{2}, E\right)$ be two $S V N S$ hyper $U P$-subalgebras of X.
(i) Let $(\Delta, E)=\left(\Delta_{1}, E\right) \cap\left(\Delta_{2}, E\right), x, y \in X$ and $e \in E$. Then we have

$$
\begin{aligned}
* \mathcal{T}_{\Delta(e)}(x \circ y) & =\inf _{a \in x x y} \mathcal{T}_{\Delta(e)}(a) \\
& =\inf _{a \in x \circ y} \min \left\{\mathcal{T}_{\Delta_{1}(e)}(a), \mathcal{T}_{\Delta_{2}(e)}(a)\right\} \\
& \geq \min \left\{\inf _{a \in x \circ y} \mathcal{T}_{\Delta_{1}(e)}(a), \inf _{a \in x \circ y} \mathcal{T}_{\Delta_{2}(e)}(a)\right\} \\
& =\min \left\{\mathcal{T}_{\Delta_{1}(e)}(x \circ y), \mathcal{T}_{\Delta_{2}(e)}(x \circ y)\right\} \\
& \geq \min \left\{\min \left\{\mathcal{T}_{\Delta_{1}(e)}(x), \mathcal{T}_{\Delta_{1}(e)}(y)\right\}, \min \left\{\mathcal{T}_{\Delta_{2}(e)}(x), \mathcal{T}_{\Delta_{2}(e)}(y)\right\}\right\} \\
& =\min \left\{\min \left\{\mathcal{T}_{\Delta_{1}(e)}(x), \mathcal{T}_{\Delta_{2}(e)}(x)\right\}, \min \left\{\mathcal{T}_{\Delta_{1}(e)}(y), \mathcal{T}_{\Delta_{2}(e)}(y)\right\}\right\} \\
& =\min \left\{\mathcal{T}_{\Delta(e)}(x), \mathcal{T}_{\Delta(e)}(y)\right\} .
\end{aligned}
$$

Also,

$$
\begin{aligned}
{ }^{*} \mathcal{I}_{\Delta(e)}(x \circ y) & =\sup _{a \in x \circ y} \mathcal{I}_{\Delta(e)}(a) \\
& =\sup _{a \in x \circ y} \max \left\{\mathcal{I}_{\Delta_{1}(e)}(a), \mathcal{I}_{\Delta_{2}(e)}(a)\right\} \\
& \leq \max \left\{\sup _{a \in x o y} \mathcal{I}_{\Delta_{1}(e)}(a), \sup _{a \in x y} \mathcal{I}_{\Delta_{2}(e)}(a)\right\} \\
& =\max \left\{{ }^{*} \mathcal{I}_{\Delta_{1}(e)}(x \circ y),{ }^{*} \mathcal{I}_{\Delta_{2}(e)}(x \circ y)\right\} \\
& \leq \max \left\{\max \left\{\mathcal{I}_{\Delta_{1}(e)}(x), \mathcal{I}_{\Delta_{1}(e)}(y)\right\}, \max \left\{\mathcal{I}_{\Delta_{2}(e)}(x), \mathcal{I}_{\Delta_{2}(e)}(y)\right\}\right\} \\
& =\max \left\{\max \left\{\mathcal{I}_{\Delta_{1}(e)}(x), \mathcal{I}_{\Delta_{2}(e)}(x)\right\}, \max \left\{\mathcal{I}_{\Delta_{1}(e)}(y), \mathcal{I}_{\Delta_{2}(e)}(y)\right\}\right\} \\
& =\max \left\{\mathcal{I}_{\Delta(e)}(x), \mathcal{I}_{\Delta(e)}(y)\right\} .
\end{aligned}
$$

Similarly,

$$
{ }^{*} \mathcal{F}_{\Delta(e)}(x \circ y) \leq \max \left\{\mathcal{F}_{\Delta(e)}(x), \mathcal{F}_{\Delta(e)}(y)\right\} .
$$

Thus, (Δ, E) is a $S V N S$ hyper $U P$-subalgebra of X.
(ii) Using the hyper $U P$-algebra $(X, \circ, \ll, 0)$ of Example 1 where $X=\{0, r, s, t\}$, we consider the two $S V N S$ hyper $U P$-subalgebras $\left(\Delta_{1}, E\right)$ and $\left(\Delta_{2}, E\right)$ of X given by: for $e \in E$,

$$
\begin{aligned}
& \mathcal{T}_{\Delta_{1}(e)}(x)= \begin{cases}0.5 & \text { if } x \in\{0, s\}, \\
0 & \text { otherwise } .\end{cases} \\
& \mathcal{I}_{\Delta_{1}(e)}(x)= \begin{cases}0 & \text { if } x \in\{0, s\}, \\
0.5 & \text { otherwise } .\end{cases} \\
& \mathcal{F}_{\Delta_{1}(e)}(x)= \begin{cases}0 & \text { if } x \in\{0, s\}, \\
0.5 & \text { otherwise. }\end{cases}
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathcal{T}_{\Delta_{2}(e)}(x)= \begin{cases}0.7 & \text { if } x \in\{0, t\}, \\
0 & \text { otherwise },\end{cases} \\
& \mathcal{I}_{\Delta_{2}(e)}(x)= \begin{cases}0 & \text { if } x \in\{0, t\}, \\
0.7 & \text { otherwise },\end{cases} \\
& \mathcal{F}_{\Delta_{2}(e)}(x)= \begin{cases}0 & \text { if } x \in\{0, t\}, \\
0.7 & \text { otherwise },\end{cases}
\end{aligned}
$$

respectively. Let $(\Delta, E)=\left(\Delta_{1}, E\right) \cup\left(\Delta_{2}, E\right)$. For all $e \in E$, taking $x=s$ and $y=t$ gives

$$
\begin{aligned}
* \mathcal{T}_{\Delta(e)}(x \circ y) & ={ }_{*} \mathcal{T}_{\Delta(e)}(s \circ t) \\
& ={ }_{*} \mathcal{T}_{\Delta(e)}(\{r\}) \\
& =\mathcal{T}_{\Delta(e)}(r) \\
& =\max \left\{T_{\Delta_{1}(e)}(r), T_{\Delta_{2}(e)}(r)\right\} \\
& =\max \{0,0\} \\
& =0
\end{aligned}
$$

and

$$
\begin{aligned}
\min \left\{\mathcal{T}_{\Delta(e)}(x), \mathcal{T}_{\Delta(e)}(y)\right\} & =\min \left\{\mathcal{T}_{\Delta(e)}(s), \mathcal{T}_{\Delta(e)}(t)\right\} \\
& =\min \left\{\max \left\{T_{\Delta_{1}(e)}(s), T_{\Delta_{2}(e)}(s)\right\}, \max \left\{T_{\Delta_{1}(e)}(t), T_{\Delta_{2}(e)}(t)\right\}\right\} \\
& =\min \{\max \{0.5,0\}, \max \{0,0.7\}\} \\
& =\min \{0.5,0.7\} \\
& =0.5
\end{aligned}
$$

That is,

$$
{ }_{*} \mathcal{T}_{\Delta(e)}(x \circ y)=0<0.5=\min \left\{\mathcal{T}_{\Delta(e)}(x), \mathcal{T}_{\Delta(e)}(y)\right\} .
$$

Thus, (Δ, E) is not a $S V N S$ hyper $U P$-subalgebra of X.

3.3. Cartesian Product of $S V N S$ Hyper $U P$-subalgebra

In this section, we define the Cartesian product of $S V N S$ hyper $U P$-subalgebra and prove that it is also a $S V N S$ hyper $U P$-subalgebra.

Definition 18. Let $\left(\Delta_{1}, E\right)$ and $\left(\Delta_{2}, E\right)$ be two $S V N S$ hyper $U P$-subalgebras of X_{1} and X_{2}, respectively. Then their Cartesian product is $(\Delta, E \times E)=\left(\Delta_{1}, E\right) \times\left(\Delta_{2}, E\right)$, where $\Delta(a, b)=\Delta_{1}(a) \times \Delta_{2}(b)$ for $(a, b) \in E \times E$. Analytically,

$$
\Delta(a, b)=\left\{\left\langle(x, y),\left(\mathcal{T}_{\Delta(a, b)}(x, y), \mathcal{I}_{\Delta(a, b)}(x, y), \mathcal{F}_{\Delta(a, b)}(x, y)\right)\right\rangle \mid(x, y) \in X_{1} \times X_{2}\right\}
$$

where

$$
\begin{aligned}
& \mathcal{T}_{\Delta(a, b)}(x, y)=\min \left\{\mathcal{T}_{\Delta_{1}(a)}(x), \mathcal{T}_{\Delta_{2}(b)}(y)\right\}, \\
& \mathcal{I}_{\Delta(a, b)}(x, y)=\max \left\{\mathcal{I}_{\Delta_{1}(a)}(x), \mathcal{I}_{\Delta_{2}(b)}(y)\right\}, \text { and } \\
& \mathcal{F}_{\Delta(a, b)}(x, y)=\max \left\{\mathcal{F}_{\Delta_{1}(a)}(x), \mathcal{F}_{\Delta_{2}(b)}(y)\right\} .
\end{aligned}
$$

for $(a, b) \in E \times E$.
Example 8. Using $E=\left\{e_{1}, e_{2}\right\}$ as the set of parameters, consider the hyper $U P$-algebra $X=\left\{0_{1}, r, s, t\right\}$ of Example 1 as X_{1} with its hyperoperation " \circ_{1} " and its $S V N S$ hyper $U P$-subalgebra $\left(\Delta_{1}, E\right)$ given by

$$
\begin{aligned}
& \mathcal{T}_{\Delta_{1}(e)}(x)= \begin{cases}0.5 & \text { if } x \in\left\{0_{1}, s\right\}, \\
0 & \text { otherwise } .\end{cases} \\
& \mathcal{I}_{\Delta_{1}(e)}(x)= \begin{cases}0 & \text { if } x \in\left\{0_{1}, s\right\}, \\
0.5 & \text { otherwise. }\end{cases} \\
& \mathcal{F}_{\Delta_{1}(e)}(x)= \begin{cases}0 & \text { if } x \in\left\{0_{1}, s\right\}, \\
0.5 & \text { otherwise } .\end{cases}
\end{aligned}
$$

for $e \in E$. Consider also hyper $U P$-algebra $X=\left\{0_{2}, u, v\right\}$ of Example 2 as X_{2} with its hyper operation " o_{2} " and its $S V N S$ hyper $U P$-subalgebra $\left(\Delta_{2}, E\right)$ given by

$$
\begin{aligned}
\left(\Delta_{2}, E\right)= & \left\{\left(e_{1},\left\{\left\langle 0_{2},(0.9,0.2,0.45)\right\rangle,\langle u,(0.74,0.57,0.7)\rangle,\langle v,(0.8,0.42,0.52)\rangle\right\}\right),\right. \\
& \left.\left(e_{2},\left\{\left\langle 0_{2},(0.8,0.2,0.4)\right\rangle,\langle u,(0.4,0.45,0.5)\rangle,\langle v,(0.67,0.3,0.5)\rangle\right\}\right)\right\} .
\end{aligned}
$$

Then the Cartesian product of $\left(\Delta_{1}, E\right)$ and $\left(\Delta_{2}, E\right)$ is

$$
\begin{aligned}
(\Delta, E)= & \left\{\left(\left(e_{1}, e_{1}\right),\left\{\left\langle\left(0_{1}, 0_{2}\right),(0.5,0.2,0.45)\right\rangle,\left\langle\left(0_{1}, u\right),(0.5,0.57,0.7)\right\rangle,\right.\right.\right. \\
& \left\langle\left(0_{1}, v\right),(0.5,0.42,0.52)\right\rangle,\left\langle\left(r, 0_{2}\right),(0,0.5,0.5)\right\rangle,\langle(r, u),(0,0.57,0.7)\rangle, \\
& \langle(r, v),(0,0.5,0.52)\rangle,\left\langle\left(s, 0_{2}\right),(0.5,0.2,0.45)\right\rangle,\langle(s, u),(0.5,0.57,0.7)\rangle, \\
& \langle(s, v),(0.5,0.42,0.52)\rangle,\left\langle\left(t, 0_{2}\right),(0,0.5,0.5)\right\rangle,\langle(t, u),(0,0.57,0.7)\rangle, \\
& \langle(t, v),(0,0.5,0.52)\rangle\}),\left(\left(e_{1}, e_{2}\right),\left\{\left\langle\left(0_{1}, 0_{2}\right),(0.5,0.2 .0 .4)\right\rangle,\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle\left(0_{1}, u\right),(0.4,0.45,0.5)\right\rangle,\left\langle\left(0_{1}, v\right),(0.5,0.3,0.5)\right\rangle,\left\langle\left(r, 0_{2}\right),(0,0.5,0.5)\right\rangle, \\
& \langle(r, u),(0,0.5,0.5)\rangle,\langle(r, v),(0,0.5,0.5)\rangle,\left\langle\left(s, 0_{2}\right),(0.5,0.2,0.4)\right\rangle, \\
& \langle(s, u),(0.4,0.45,0.5)\rangle,\langle(s, v),(0.5,0.3,0.5)\rangle,\left\langle\left(t, 0_{2}\right),(0,0.5,0.5)\right\rangle, \\
& \langle(t, u),(0,0.5,0.5)\rangle,\langle(t, v),(0,0.5,0.5)\rangle\}),\left(\left(e_{2}, e_{1}\right),\left\{\left\langle\left(0_{1}, 0_{2}\right),(0.5,0.2,0.45)\right\rangle,\right.\right. \\
& \left\langle\left(0_{1}, u\right),(0.5,0.57,0.7)\right\rangle,\left\langle\left(0_{1}, v\right),(0.5,0.42,0.52)\right\rangle,\left\langle\left(r, 0_{2}\right),(0,0.5,0.5)\right\rangle, \\
& \langle(r, u),(0,0.57,0.7)\rangle,\langle(r, v),(0,0.5,0.52)\rangle,\left\langle\left(s, 0_{2}\right),(0.5,0.2,0.45)\right\rangle, \\
& \langle(s, u),(0.5,0.57,0.7)\rangle,\langle(s, v),(0.5,0.42,0.52)\rangle,\left\langle\left(t, 0_{2}\right),(0,0.5,0.5)\right\rangle, \\
& \langle(t, u),(0,0.57,0.7)\rangle,\langle(t, v),(0,0.5,0.52)\rangle\}),\left(\left(e_{2}, e_{2}\right),\left\{\left\langle\left(0_{1}, 0_{2}\right),(0.5,0.2 .0 .4)\right\rangle,\right.\right. \\
& \left\langle\left(0_{1}, u\right),(0.4,0.45,0.5)\right\rangle,\left\langle\left(0_{1}, v\right),(0.5,0.3,0.5)\right\rangle,\left\langle\left(r, 0_{2}\right),(0,0.5,0.5)\right\rangle, \\
& \langle(r, u),(0,0.5,0.5)\rangle,\langle(r, v),(0,0.5,0.5)\rangle,\left\langle\left(s, 0_{2}\right),(0.5,0.2,0.4)\right\rangle, \\
& \langle(s, u),(0.4,0.45,0.5)\rangle,\langle(s, v),(0.5,0.3,0.5)\rangle,\left\langle\left(t, 0_{2}\right),(0,0.5,0.5)\right\rangle, \\
& \langle(t, u),(0,0.5,0.5)\rangle,\langle(t, v),(0,0.5,0.5)\rangle\})\}
\end{aligned}
$$

Theorem 7. Let $\left(\Delta_{1}, E\right)$ and $\left(\Delta_{2}, E\right)$ be two SVNS hyper UP-subalgebras of $\left(X_{1}, \circ_{1},<_{1}\right.$, $\left.0_{1}\right)$ and $\left(X_{2}, 0_{2}, \ll 2,0_{2}\right)$, respectively. Then their Cartesian product $\left(\Delta_{1}, E\right) \times\left(\Delta_{2}, E\right)$ is a SVNS hyper UP-subalgebra of $\left(X_{1} \times X_{2}, \circ, \ll,\left(0_{1}, 0_{2}\right)\right)$.

Proof. Let $\left(\Delta_{1}, E\right)$ and $\left(\Delta_{2}, E\right)$ be two SVNS hyper $U P$-subalgebras of X_{1} and X_{2}, respectively and let $(\Delta, E \times E)=\left(\Delta_{1}, E\right) \times\left(\Delta_{2}, E\right)$, where $\Delta(a, b)=\Delta_{1}(a) \times \Delta_{2}(b)$ for $(a, b) \in E \times E$. For $(u, v),(x, y) \in X_{1} \times X_{2}$, we have

$$
\begin{aligned}
& { }_{*} \mathcal{T}_{\Delta(a, b)}((u, v) \circ(x, y))={ }_{*} \mathcal{T}_{\Delta(a, b)}\left(u \circ_{1} x, v \circ_{2} y\right) \\
& =\inf _{(r, t) \in\left(u 0_{1} x\right) \times\left(v o_{2} y\right)} \mathcal{T}_{\Delta(a, b)}(r, t) \\
& =\inf _{(r, t) \in\left(u 0_{1} x\right) \times\left(v o_{2} y\right)} \min \left\{\mathcal{T}_{\Delta_{1}(a)}(r), \mathcal{T}_{\Delta_{2}(b)}(t)\right\} \\
& \geq \min \left\{\inf _{r \in u 0_{1} x} \mathcal{T}_{\Delta_{1}(a)}(r), \inf _{t \in v 0_{2} y} \mathcal{T}_{\Delta_{2}(b)}(t)\right\} \\
& \left.=\min \left\{{ }_{*} \mathcal{T}_{\Delta_{1}(a)}\left(u \circ_{1} x\right)\right)_{*} \mathcal{T}_{\Delta_{2}(b)}\left(v \circ_{2} y\right)\right\} \\
& \geq \min \left\{\min \left\{\mathcal{T}_{\Delta_{1}(a)}(u), \mathcal{T}_{\Delta_{1}(a)}(x)\right\}, \min \left\{\mathcal{T}_{\Delta_{2}(b)}(v), \mathcal{T}_{\Delta_{2}(b)}(y)\right\}\right\} \\
& =\min \left\{\min \left\{\mathcal{T}_{\Delta_{1}(a)}(u), \mathcal{T}_{\Delta_{2}(b)}(v)\right\}, \min \left\{\mathcal{T}_{\Delta_{1}(a)}(x), \mathcal{T}_{\Delta_{2}(b)}(y)\right\}\right\} \\
& =\min \left\{\mathcal{T}_{\Delta(a, b)}(u, v), \mathcal{T}_{\Delta(a, b)}(x, y)\right\} \text {. }
\end{aligned}
$$

Also,

$$
\begin{aligned}
& { }^{*} \mathcal{I}_{\Delta(a, b)}((u, v) \circ(x, y))={ }^{*} \mathcal{I}_{\Delta(a, b)}\left(u \circ_{1} x, v \circ_{2} y\right) \\
& =\sup _{(r, t) \in\left(u 0_{1} x\right) \times\left(v o_{2} y\right)} \mathcal{I}_{\Delta(a, b)}(r, t) \\
& =\sup _{(r, t) \in\left(u 0_{1} x\right) \times\left(v 0_{2} y\right)} \max \left\{\mathcal{I}_{\Delta_{1}(a)}(r), \mathcal{I}_{\Delta_{2}(b)}(t)\right\} \\
& \leq \max \left\{\sup _{r \in u 0_{1} x} \mathcal{I}_{\Delta_{1}(a)}(r), \sup _{t \in v 0_{2} y} \mathcal{I}_{\Delta_{2}(b)}(t)\right\} \\
& =\max \left\{{ }^{*} \mathcal{I}_{\Delta_{1}(a)}\left(u \circ_{1} x\right),{ }^{*} \mathcal{I}_{\Delta_{2}(b)}\left(v \circ_{2} y\right)\right\} \\
& \leq \max \left\{\max \left\{\mathcal{I}_{\Delta_{1}(a)}(u), \mathcal{I}_{\Delta_{1}(a)}(x)\right\}, \max \left\{\mathcal{I}_{\Delta_{2}(b)}(v), \mathcal{I}_{\Delta_{2}(b)}(y)\right\}\right\} \\
& =\max \left\{\max \left\{\mathcal{I}_{\Delta_{1}(a)}(u), \mathcal{I}_{\Delta_{2}(b)}(v)\right\}, \max \left\{\mathcal{I}_{\Delta_{1}(a)}(x), \mathcal{I}_{\Delta_{2}(b)}(y)\right\}\right\}
\end{aligned}
$$

$$
=\max \left\{\mathcal{I}_{\Delta(a, b)}(u, v), \mathcal{I}_{\Delta(a, b)}(x, y)\right\} .
$$

Similarly,

$$
{ }^{*} \mathcal{F}_{\Delta(a, b)}((u, v) \circ(x, y))=\max \left\{\mathcal{F}_{\Delta(a, b)}(u, v), \mathcal{F}_{\Delta(a, b)}(x, y)\right\}
$$

Hence, $(\Delta, E \times E)$ is a $S V N S$ hyper $U P$-subalgebra of $X_{1} \times X_{2}$.

3.4. Homomorphism of $S V N S$ Hyper $U P$-subalgebra

In this section, we define the image and preimage of $S V N S$ hyper $U P$-subalgebra and prove that they are $S V N S$ hyper $U P$-subalgebra under $S V N S$ homomorphic function.

Definition 19. Let $\left(X_{1}, \circ_{1},<_{1}, 0_{1}\right)$ and $\left(X_{2}, \circ_{2}, \ll 2^{2}, 0_{2}\right)$ be two hyper $U P$-algebras and $\left(\Delta_{1}, E\right),\left(\Delta_{2}, E\right)$ be two $S V N S$ hyper $U P$-subalgebra of X_{1} and X_{2}, respectively. Then the pair (φ, ρ) is called a $S V N S$ function from X_{1} to X_{2} where $\varphi: X_{1} \longrightarrow X_{2}$ and $\rho: E \longrightarrow E$.

Definition 20. Under the $S V N S$ function (φ, ρ),
(i) The image of $\left(\Delta_{1}, E\right)$ is denoted by $(\varphi, \rho)\left(\Delta_{1}, E\right)$ and is defined by

$$
(\varphi, \rho)\left(\Delta_{1}, E\right)=\left(\varphi\left(\Delta_{1}\right), \rho(E)\right)=\left\{\left(b, \varphi\left(\Delta_{1}\right)(b)\right) \mid b \in \rho(E)\right\}
$$

where for all $b \in \rho(E)$ and $y \in X_{2}$,

$$
\begin{aligned}
& \mathcal{T}_{\varphi\left(\Delta_{1}\right)(b)}(y)= \begin{cases}\max _{\varphi(x)=y} \max _{\rho(a)=b} \mathcal{T}_{\Delta_{1}(a)}(x) & \text { if } x \in \varphi^{-1}(y) \\
0 & \text { otherwise },\end{cases} \\
& \mathcal{I}_{\varphi\left(\Delta_{1}\right)(b)}(y)=\left\{\begin{array}{ll}
\min _{\varphi(x)=y} \min _{\rho(a)=b} \mathcal{I}_{\Delta_{1}(a)}(x) & \text { if } x \in \varphi^{-1}(y), \\
1 & \text { otherwise },
\end{array}\right. \text { and } \\
& \mathcal{F}_{\varphi\left(\Delta_{1}\right)(b)}(y)= \begin{cases}\min _{\varphi(x)=y} \min _{\rho(a)=b} \mathcal{F}_{\Delta_{1}(a)}(x) & \text { if } x \in \varphi^{-1}(y) \\
1 & \text { otherwise }\end{cases}
\end{aligned}
$$

(ii) The preimage $\left(\Delta_{2}, E\right)$ is denoted by $(\varphi, \rho)^{-1}\left(\Delta_{2}, E\right)$ and defined by

$$
(\varphi, \rho)^{-1}\left(\Delta_{2}, E\right)=\left(\varphi^{-1}\left(\Delta_{2}\right), \rho^{-1}(E)\right)=\left\{\left(a, \varphi^{-1}\left(\Delta_{2}\right)(a)\right) \mid a \in \rho^{-1}(E)\right\}
$$

where for all $a \in \rho^{-1}(E)$ and $x \in X_{1}$,

$$
\begin{aligned}
\mathcal{T}_{\varphi^{-1}\left(\Delta_{2}\right)(a)}(x) & =\mathcal{T}_{\Delta_{2}(\rho(a))}(\varphi(x)) \\
\mathcal{I}_{\varphi^{-1}\left(\Delta_{2}\right)(a)}(x) & =\mathcal{I}_{\Delta_{2}(\rho(a))}(\varphi(x)), \text { and } \\
\mathcal{F}_{\varphi^{-1}\left(\Delta_{2}\right)(a)}(x) & =\mathcal{F}_{\Delta_{2}(\rho(a))}(\varphi(x))
\end{aligned}
$$

Definition 21. Let the pair (φ, ρ) be a $S V N S$ function from X_{1} into X_{2}, then (φ, ρ) is called a SVNS homomorphism if φ is a hyper homomorphism from X_{1} to X_{2} and is said to be a SVNS isomorphism if φ is a hyper isomorphism from X_{1} to X_{2} and ρ is an injective map from E to E.

Example 9. Let $X_{1}=\left\{0_{1}, r, s\right\}$ with hyperoperation given by

\circ	0_{1}	r	s
0_{1}	$\left\{0_{1}\right\}$	$\{r\}$	$\{s\}$
r	$\left\{0_{1}\right\}$	$\left\{0_{1}\right\}$	$\{s\}$
s	$\left\{0_{1}\right\}$	$\{r\}$	$\left\{0_{1}\right\}$

Then X_{1} is hyper $U P$-algebra by thorough inspection. Considering $X_{2}=\left\{0_{2}, u, v\right\}$ as the second hyper $U P$-algebra of Example 2 and $E=\mathbb{N}$ as the set of parameters, we define mappings $\varphi: X_{1} \longrightarrow X_{2}$ by

$$
\begin{aligned}
\varphi\left(0_{1}\right) & =0_{2} \\
\varphi(r) & =v \\
\varphi(s) & =u ;
\end{aligned}
$$

and $\rho: E \longrightarrow E$ by $\rho(a)=2 a$. Let $\left(\Delta_{1}, E\right)$ be a $S V N S$ set over X_{1} given by

$$
\begin{aligned}
& \mathcal{T}_{\Delta_{1}(a)}(x)= \begin{cases}\frac{1}{2 a} & \text { if } x \in\left\{0_{1}, s\right\}, \\
0 & \text { otherwise }\end{cases} \\
& \mathcal{I}_{\Delta_{1}(a)}(x)= \begin{cases}0 & \text { if } x \in\left\{0_{1}, s\right\}, \\
1-\frac{1}{a} & \text { otherwise }\end{cases} \\
& \mathcal{F}_{\Delta_{1}(a)}(x)= \begin{cases}0 & \text { if } x \in\left\{0_{1}, s\right\} \\
\frac{1}{2 a+1} & \text { otherwise }\end{cases}
\end{aligned}
$$

for $a \in E$. By inspection, $\left(\Delta_{1}, E\right)$ is a $S V N S$ hyper $U P$-subalgebra of X_{1}. Thus, the image of $\left(\Delta_{1}, E\right)$ under (φ, ρ) is

$$
\begin{aligned}
& \mathcal{T}_{\varphi\left(\Delta_{1}\right)(b)}(y)= \begin{cases}0 & \text { if } y \in\{v\}, \\
\frac{1}{b} & \text { otherwise } .\end{cases} \\
& \mathcal{I}_{\varphi\left(\Delta_{1}\right)(b)}(y)= \begin{cases}1-\frac{2}{b} & \text { if } y \in\{v\} \\
0 & \text { otherwise }\end{cases} \\
& \mathcal{F}_{\varphi\left(\Delta_{1}\right)(b)}(y)= \begin{cases}\frac{1}{b+1} & \text { if } y \in\{v\} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

for $b \in 2 \mathbb{N}$ and $y \in X_{2}$.

Example 10. Consider the two hyper $U P$-algebras X_{1} and X_{2} of Example 9. Define $E=\left\{e_{1}, e_{2}\right\}$ as set of parameters and mappings $\varphi: X_{1} \longrightarrow X_{2}$ by

$$
\begin{aligned}
\varphi\left(0_{1}\right) & =0_{2} \\
\varphi(r) & =v \\
\varphi(s) & =u ;
\end{aligned}
$$

and $\rho: E \longrightarrow E$ by

$$
\begin{aligned}
\rho\left(e_{1}\right) & =e_{2} \\
\rho\left(e_{2}\right) & =e_{1} .
\end{aligned}
$$

Also, consider the $S V N S$ hyper $U P$-subalgebra (Δ, E) of X_{2} from Example 7 which is given by

$$
\begin{aligned}
& \Delta\left(e_{1}\right)=\left\{\left\langle 0_{2},(0.9,0.2,0.45)\right\rangle,\langle u,(0.74,0.57,0.7)\rangle,\langle v,(0.8,0.42,0.52)\rangle\right\} \text { and } \\
& \Delta\left(e_{2}\right)=\left\{\left\langle 0_{2},(0.8,0.2,0.4)\right\rangle,\langle u,(0.4,0.45,0.5)\rangle,\langle v,(0.67,0.3,0.5)\rangle\right\} .
\end{aligned}
$$

Thus, the preimage of (Δ, E) under (φ, ρ) is given by

$$
\begin{aligned}
\mathcal{T}_{\varphi^{-1}(\Delta)\left(e_{1}\right)}\left(0_{1}\right) & =\mathcal{T}_{\Delta\left(\rho\left(e_{1}\right)\right)}\left(\varphi\left(0_{1}\right)\right)=\mathcal{T}_{\Delta\left(e_{2}\right)}\left(0_{2}\right)=0.8 \\
\mathcal{I}_{\varphi^{-1}(\Delta)\left(e_{1}\right)}\left(0_{1}\right) & =\mathcal{I}_{\Delta\left(\rho\left(e_{1}\right)\right)}\left(\varphi\left(0_{1}\right)\right)=\mathcal{I}_{\Delta\left(e_{2}\right)}\left(0_{2}\right)=0.2 \\
\mathcal{F}_{\varphi^{-1}(\Delta)\left(e_{1}\right)}\left(0_{1}\right) & =\mathcal{F}_{\Delta\left(\rho\left(e_{1}\right)\right)}\left(\varphi\left(0_{1}\right)\right)=\mathcal{F}_{\Delta\left(e_{2}\right)}\left(0_{2}\right)=0.4 \\
\mathcal{T}_{\varphi^{-1}(\Delta)\left(e_{1}\right)}(r) & =\mathcal{T}_{\Delta\left(\rho\left(e_{1}\right)\right)}(\varphi(r))=\mathcal{T}_{\Delta\left(e_{2}\right)}(v)=0.67 \\
\mathcal{I}_{\varphi^{-1}(\Delta)\left(e_{1}\right)}(r) & =\mathcal{I}_{\Delta\left(\rho\left(e_{1}\right)\right)}(\varphi(r))=\mathcal{I}_{\Delta\left(e_{2}\right)}(v)=0.3 \\
\mathcal{F}_{\varphi^{-1}(\Delta)\left(e_{1}\right)}(r) & =\mathcal{F}_{\left.\Delta\left(\rho\left(e_{1}\right)\right)\right)}(\varphi(r))=\mathcal{F}_{\Delta\left(e_{2}\right)}(v)=0.5 \\
\mathcal{T}_{\varphi^{-1}(\Delta)\left(e_{1}\right)}(s) & =\mathcal{T}_{\Delta\left(\rho\left(e_{1}\right)\right)}(\varphi(s))=\mathcal{T}_{\Delta\left(e_{2}\right)}(u)=0.4 \\
\mathcal{I}_{\varphi^{-1}(\Delta)\left(e_{1}\right)}(s) & =\mathcal{I}_{\Delta\left(\rho\left(e_{1}\right)\right)}(\varphi(s))=\mathcal{I}_{\Delta\left(e_{2}\right)}(u)=0.45 \\
\mathcal{F}_{\varphi^{-1}(\Delta)\left(e_{1}\right)}(s) & =\mathcal{F}_{\Delta\left(\rho\left(e_{1}\right)\right)}(\varphi(s))=\mathcal{F}_{\Delta\left(e_{2}\right)}(u)=0.5 \\
\mathcal{T}_{\varphi^{-1}(\Delta)\left(e_{2}\right)}\left(0_{1}\right) & =\mathcal{T}_{\left.\Delta\left(\rho\left(e_{2}\right)\right)\right)}\left(\varphi\left(0_{1}\right)\right)=\mathcal{T}_{\Delta\left(e_{1}\right)}\left(0_{2}\right)=0.9 \\
\mathcal{I}_{\varphi^{-1}(\Delta)\left(e_{2}\right)}\left(0_{1}\right) & =\mathcal{I}_{\Delta\left(\rho\left(e_{2}\right)\right)}\left(\varphi\left(0_{1}\right)\right)=\mathcal{I}_{\Delta\left(e_{1}\right)}\left(0_{2}\right)=0.2 \\
\mathcal{F}_{\varphi^{-1}(\Delta)\left(e_{2}\right)}\left(0_{1}\right) & =\mathcal{F}_{\left.\Delta\left(\rho\left(e_{2}\right)\right)\right)}\left(\varphi\left(0_{1}\right)\right)=\mathcal{F}_{\Delta\left(e_{1}\right)}\left(0_{2}\right)=0.45 \\
\mathcal{T}_{\varphi^{-1}(\Delta)\left(e_{2}\right)}(r) & =\mathcal{T}_{\Delta\left(\rho\left(e_{2}\right)\right)}(\varphi(r))=\mathcal{T}_{\Delta\left(e_{1}\right)}(v)=0.8 \\
\mathcal{I}_{\varphi^{-1}(\Delta)\left(e_{2}\right)}(r) & =\mathcal{I}_{\left.\Delta\left(\rho\left(e_{2}\right)\right)\right)}(\varphi(r))=\mathcal{I}_{\Delta\left(e_{1}\right)}(v)=0.42 \\
\mathcal{F}_{\varphi^{-1}(\Delta)\left(e_{2}\right)}(r) & =\mathcal{F}_{\left.\Delta\left(\rho\left(e_{2}\right)\right)\right)}(\varphi(r))=\mathcal{F}_{\Delta\left(e_{1}\right)}(v)=0.52 \\
\mathcal{T}_{\varphi^{-1}(\Delta)\left(e_{2}\right)}(s) & =\mathcal{T}_{\left.\Delta\left(\rho\left(e_{2}\right)\right)\right)}(\varphi(s))=\mathcal{T}_{\Delta\left(e_{1}\right)}(u)=0.74 . \\
\mathcal{I}_{\varphi^{-1}(\Delta)\left(e_{2}\right)}(s) & =\mathcal{I}_{\left.\Delta\left(\rho\left(e_{2}\right)\right)\right)}(\varphi(s))=\mathcal{I}_{\Delta\left(e_{1}\right)}(u)=0.57 . \\
\mathcal{F}_{\varphi^{-1}(\Delta)\left(e_{2}\right)}(s) & =\mathcal{F}_{\left.\Delta\left(\rho\left(e_{2}\right)\right)\right)}(\varphi(s))=\mathcal{F}_{\Delta\left(e_{1}\right)}(u)=0.7 .
\end{aligned}
$$

Theorem 8. Let (φ, ρ) be a SVNS homomorphism from $\left(X_{1}, \circ_{1},<_{1}, 0_{1}\right.$) to ($X_{2}, \circ_{2},<_{2}$, $\left.0_{2}\right)$. If $\left(\Delta_{1}, E\right)$ is a SVNS hyper UP-subalgebra of X_{1}, then $(\varphi, \rho)\left(\Delta_{1}, E\right)$ is a SVNS hyper UP-subalgebra of X_{2}.

Proof. Let (φ, ρ) be a $S V N S$ homomorphism from X_{1} to $X_{2},\left(\Delta_{1}, E\right)$ is a $S V N S$ hyper $U P$-subalgebra of $X_{1}, b \in \rho(E)$, and $x, y \in X_{2}$.
(i) For $\varphi^{-1}(x)=\varnothing$ or $\varphi^{-1}(y)=\varnothing$, the proof is straightforward.
(ii) Assume that there exist $x_{0}, y_{0} \in X_{1}$ such that $\varphi\left(x_{0}\right)=x$ and $\varphi\left(y_{0}\right)=y$. Then $x \circ_{2} y=\varphi\left(x_{0}\right) \circ_{2} \varphi\left(y_{0}\right)=\varphi\left(x_{0} \circ_{1} y_{0}\right)$. Now,

$$
\begin{aligned}
{ }^{*} \mathcal{T}_{\varphi\left(\Delta_{1}\right)(b)}\left(x \circ_{2} y\right) & =\inf _{z \in x 0_{2} y} \mathcal{T}_{\varphi\left(\Delta_{1}\right)(b)}(z) \\
& =\inf _{z_{0} \in x_{0} \circ_{1} y_{0}}\left[\max _{\left\langle\varphi\left(z_{0}\right)=z z(a)=b\right.} \max _{\rho\left(\Delta_{1}(a)\right.}\left(z_{0}\right)\right] \\
& \geq \inf _{z_{0} \in x_{0} \circ_{1} y_{0}}\left[\max _{\rho(a)=b} \mathcal{T}_{\Delta_{1}(a)}\left(z_{0}\right)\right] \\
& =\max _{\rho(a)=b}\left[\inf _{z_{0} \in x_{0} 0_{1} y_{0}} \mathcal{T}_{\Delta_{1}(a)}\left(z_{0}\right)\right] \\
& =\max _{\rho(a)=b}\left[* \mathcal{T}_{\Delta_{1}(a)}\left(x_{0} \circ_{1} y_{0}\right)\right] \\
& \geq \max _{\rho(a)=b}\left[\min \left\{\mathcal{T}_{\Delta_{1}(a)}\left(x_{0}\right), \mathcal{T}_{\Delta_{1}(a)}\left(y_{0}\right)\right\}\right] \\
& =\min \left\{\max _{\rho(a)=b} \mathcal{T}_{\Delta_{1}(a)}\left(x_{0}\right), \max _{\rho(a)=b} \mathcal{T}_{\Delta_{1}(a)}\left(y_{0}\right)\right\}
\end{aligned}
$$

Since the inequality is satisfied for all $x_{0}, y_{0} \in X_{1}$ satisfying $\varphi\left(x_{0}\right)=x$ and $\varphi\left(y_{0}\right)=y$, it follows that

$$
\begin{aligned}
* \mathcal{T}_{\varphi\left(\Delta_{1}\right)(b)}\left(x \circ_{2} y\right) & \geq \min \left\{\max _{\varphi\left(x_{0}\right)=x \rho(a)=b} \max _{\Delta_{1}(a)}\left(x_{0}\right), \max _{\varphi\left(y_{0}\right)=y \rho(a)=b} \max _{\Delta_{1}(a)}\left(y_{0}\right)\right\} \\
& =\min \left\{\mathcal{T}_{\varphi\left(\Delta_{1}\right)(b)}(x), \mathcal{T}_{\varphi\left(\Delta_{1}\right)(b)}(y)\right\} .
\end{aligned}
$$

Also,

$$
\begin{aligned}
{ }^{*} \mathcal{I}_{\varphi\left(\Delta_{1}\right)(b)}\left(x \circ_{2} y\right) & =\sup _{z \in x o_{2 y} y} \mathcal{I}_{\varphi\left(\Delta_{1}\right)(b)}(z) \\
& =\sup _{z_{0} \in x_{0} \circ_{1 y y}}\left[\min _{\varphi\left(z_{0}\right)=z} \min _{\rho(a)=b} \mathcal{I}_{\Delta_{1}(a)}\left(z_{0}\right)\right] \\
& \leq \sup _{z_{0} \in x_{0} \circ_{1 y_{0}}}\left[\min _{\rho(a)=b} \mathcal{I}_{\Delta_{1}(a)}\left(z_{0}\right)\right] \\
& =\min _{\rho(a)=b}\left[\sup _{z_{0} \in x_{0} 0_{1 y_{0}}} \mathcal{I}_{\Delta_{1}(a)}\left(z_{0}\right)\right] \\
& =\min _{\rho(a)=b}\left[* \mathcal{I}_{\Delta_{1}(a)}\left(x_{0} \circ_{1} y_{0}\right)\right] \\
& \leq \min _{\rho(a)=b}\left[\max \left\{\mathcal{I}_{\Delta_{1}(a)}\left(x_{0}\right), \mathcal{I}_{\Delta_{1}(a)}\left(y_{0}\right)\right\}\right] \\
& =\max \left\{\min _{\rho(a)=b} \mathcal{I}_{\Delta_{1}(a)}\left(x_{0}\right), \min _{\rho(a)=b} \mathcal{I}_{\Delta_{1}(a)}\left(y_{0}\right)\right\}
\end{aligned}
$$

Since the inequality is satisfied for all $x_{0}, y_{0} \in X_{1}$ satisfying $\varphi\left(x_{0}\right)=x$ and $\varphi\left(y_{0}\right)=y$, it follows that

$$
\begin{aligned}
{ }^{*} \mathcal{I}_{\varphi\left(\Delta_{1}\right)(b)}\left(x \circ_{2} y\right) & \leq \max \left\{\min _{\varphi\left(x_{0}\right)=x} \min _{\rho(a)=b} \mathcal{I}_{\Delta_{1}(a)}\left(x_{0}\right), \max _{\varphi\left(y_{0}\right)=y} \max _{\rho(a)=b} \mathcal{I}_{\Delta_{1}(a)}\left(y_{0}\right)\right\} \\
& =\max \left\{\mathcal{I}_{\varphi\left(\Delta_{1}\right)(b)}(x), \mathcal{I}_{\varphi\left(\Delta_{1}\right)(b)}(y)\right\} .
\end{aligned}
$$

Similarly,

$$
{ }^{*} \mathcal{F}_{\varphi\left(\Delta_{1}\right)(b)}\left(x \circ_{2} y\right) \leq \max \left\{\mathcal{F}_{\varphi\left(\Delta_{1}\right)(b)}(x), \mathcal{F}_{\varphi\left(\Delta_{1}\right)(b)}(y)\right\} .
$$

Hence, $(\varphi, \rho)\left(\Delta_{1}, E\right)$ is a $S V N S$ hyper $U P$-subalgebra of X_{2}.

Theorem 9. Let (φ, ρ) be a SVNS homomorphism from ($X_{1}, \circ_{1},<_{1}, 0_{1}$) to ($X_{2}, \circ_{2},<_{2}$, $\left.0_{2}\right)$. If $\left(\Delta_{2}, E\right)$ is a SVNS hyper UP-subalgebra of X_{2}, then $(\varphi, \rho)^{-1}\left(\Delta_{2}, E\right)$ is a SVNS hyper UP-subalgebra of X_{1}.

Proof. Let (φ, ρ) be a $S V N S$ homomorphism from X_{1} to $X_{2},\left(\Delta_{2}, E\right)$ be a $S V N S$ hyper $U P$-subalgebra of $X_{2}, a \in \rho^{-1}(E), x, y \in X_{1}$. Now,

$$
\begin{aligned}
{ }^{*} \mathcal{T}_{\varphi^{-1}\left(\Delta_{2}\right)(a)}\left(x \circ_{1} y\right) & ={ }^{*} \mathcal{T}_{\Delta_{2}(\rho(a))}\left(\varphi\left(x \circ_{1} y\right)\right) \\
& ={ }^{*} \mathcal{T}_{\Delta_{2}(\rho(a))}\left(\varphi(x) \circ_{2} \varphi(y)\right) \\
& \geq \min \left\{\mathcal{T}_{\Delta_{2}(\rho(a))}(\varphi(x)), \mathcal{T}_{\Delta_{2}(\rho(a))}(\varphi(y))\right\} \\
& =\min \left\{\mathcal{T}_{\varphi^{-1}\left(\Delta_{2}\right)(a)}(x), \mathcal{T}_{\varphi^{-1}\left(\Delta_{2}\right)(a)}(y)\right\}, \\
{ }^{*} \mathcal{I}_{\varphi^{-1}\left(\Delta_{2}\right)(a)}\left(x \circ_{1} y\right) & ={ }^{*} \mathcal{I}_{\Delta_{\Delta_{2}(\rho(a))}\left(\varphi\left(x \circ_{1} y\right)\right)} \\
& ={ }^{*} \mathcal{I}_{\Delta_{2}(\rho(a))}\left(\varphi(x) \circ_{2} \varphi(y)\right) \\
& \leq \max \left\{\mathcal{I}_{\Delta_{2}(\rho(a))}(\varphi(x)), \mathcal{I}_{\Delta_{2}(\rho(a))}(\varphi(y))\right\} \\
& =\max \left\{\mathcal{I}_{\varphi^{-1}\left(\Delta_{2}\right)(a)}(x), \mathcal{I}_{\varphi^{-1}\left(\Delta_{2}\right)(a)}(y)\right\},
\end{aligned}
$$

and similarly,

$$
{ }^{*} \mathcal{F}_{\varphi^{-1}\left(\Delta_{2}\right)(a)}\left(x \circ_{1} y\right)=\max \left\{\mathcal{F}_{\varphi^{-1}\left(\Delta_{2}\right)(a)}(x), \mathcal{F}_{\varphi^{-1}\left(\Delta_{2}\right)(a)}(y)\right\} .
$$

Thus, $(\varphi, \rho)^{-1}\left(\Delta_{2}, S_{2}\right)$ is a $S V N S$ hyper $U P$-subalgebra of X_{1}.

4. Conclusions

In this paper, we have introduced the $S V N$ and $S V N S$ hyper $U P$-subalgebra together with their properties. Aside from that, the concept of Cartesian product of SVNS hyper $U P$-subalgebra and the homomorphic image and preimage of $S V N S$ hyper $U P$-subalgebra have been investigated. This study contributes to the development of the notion of hyper $U P$-algebra under neutrosophic soft environment. It also opens a door for further study by establishing $S V N S$ hyper $U P$-filter, $S V N S$ hyper $U P$-ideals and some of their variations.

Acknowledgements

The authors would like to thank the Philippines Department of Science and TechnologyAccelerated Science and Technology Human Resource Development Program (DOSTASTHRDP) and Mindanao State University - Iligan Institute of Technology for the research funds and all the reviewers for their comments and suggestions to improve this paper.

References

[1] M. Abu Qamar A. Ghafur Ahmad and N. Hassan. On q-neutrosophic soft fields. Neutrosophic Sets and Systems, 32:80-93, 2020.
[2] R.M. Amairanto and R.T. Isla. Hyper homomorphism and hyper product of hyper up-algebras. European Journal of Pure and Applied Mathematics, 13:483-497, 2020.
[3] K.T. Atanassov. Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1):87-96, 1986.
[4] T. Bera and N. K. Mahapatra. On neutrosophic soft linear spaces. Fuzzy Information and Engineering, 9:299-324, 2017.
[5] T. Bera and N. K. Mahapatra. On neutrosophic soft topological space. Neutrosophic Sets and Systems, 19:1-15, 2018.
[6] I. Deli and S. Broumi. Neutrosophic soft sets and neutrosophic soft matrices based on decision making. Journal of Intelligent and Fuzzy Systems, 28:2233-2241, 2014.
[7] M. Akram H. Gulzar and K. P. Shum. Certain notions of single-valued neutrosophic k-algebras. Italian Journal of Pure and Applied Mathematics, pages 271-289, 2019.
[8] M. Hamidi and F. Smarandache. Single-valued neutro hyper bck-subalgebras. Hindawi Journal of Mathematics, pages 1-11, 2021.
[9] K.Atanassov and G.Gargov. Interval valued intuitionistic fuzzy sets. Fuzzy Sets and Systems, 31(3):343-349, 1989.
[10] L.Zadeh. Fuzzy sets. Information and Control, 8(3):338-353, 1965.
[11] F. Smarandache M. Akram, H. Gulzar. Neutrosophic soft topological k-algebras. Neutrosophic Sets and Systems, 25:104-124, 2019.
[12] P.K. Maji. Neutrosophic soft set. Annals of Fuzzy Mathematics and Informatics, 5(1):157-168, 2013.
[13] F. Marty. Sur une generalisation de la notion de groupe. In 8th Congress des Mathematician Scandinaves, pages 45-49, Stockholm 1934.
[14] D. Molodtsov. Soft set theory first result. Computers and Mathematics with Applications, 37:19-31, 1999.
[15] D.A. Romano. Hyper up-algebras. Journal of Hyperstructures, 8(2):112-122, 2019.
[16] D. Preethi S. Rajareega J. Vimala G. Selvachandran and F. Smarandache. Singlevalued neutrosophic hyperrings and single-valued neutrosophic hyperideals. Neutrosophic Sets and Systems, Vol. 29, 2019, 29:121-128, 2019.
[17] S. Rajareega D. Preethi J. Vimala G. Selvachandran and F. Smarandache. Some results on single valued neutrosophic hypergroup. Neutrosophic Sets and Systems, 31:80-85, 2020.
[18] F. Smarandache. Neutrosophic set is a generalization of intuitionistic fuzzy set, inconsistent intuitionistic fuzzy set (picture fuzzy set, ternary fuzzy set), pythagorean fuzzy set (atanassov's intuitionistic fuzzy set of second type), q-rung orthopair fuzzy set, spherical fuzzy set, and n-hyperspherical fuzzy set, while neutrosophication is a generalization of regret theory, grey system theory, and three-ways decision (revisited). Journal of New Theory, 29:01-35, 2019.
[19] M. Songsaeng and A. Iampan. Neutrosophic set theory applied to up-algebras. European Journal of Pure and Applied Mathematics, 12(4):1382-1409, 2019.
[20] M. Songsaeng and A. Iampan. A novel approach to neutrosophic sets in up-algebras. Journal of Mathematics and Computer Science, 21:78-98, 2020.
[21] Y. B. Jun M. M. Zahedi X. L. Xin and R. A. Borzooei. On hyper bck-algebras. Italian Journal of Pure and Applied Mathematics, 10:127-136, 2020.
[22] H. Wang F. Smarandache Y. Zhang and R. Sunderraman. Single valued neutrosophic sets. Multi-spaceMultistructure, 4:410-413, 2010.

[^0]: *Corresponding author.
 DOI: https://doi.org/10.29020/nybg.ejpam.v16i1.4637

