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1. Introduction

All graphs considered in this study are finite, simple, and undirected connected graphs,
that is, without loops and multiple edges. For some basic concepts in Graph Theory, we
refer readers to [5].

Let G =
(
V (G), E(G)

)
be a connected graph. The open neighborhood of v ∈ V (G)

is NG(v) = {u ∈ V (G) : uv ∈ E(G)}. Any element u of NG(v) is called a neighbor of
v. The closed neighborhood of v ∈ V (G) is NG[v] = NG(v) ∪ {v}. Thus, the degree of

v ∈ V (G) is given by degG(v) = |NG(v)|. Customarily, for S ⊆ V (G), NG(S) =
⋃
v∈S

NG(v)

and NG[S] =
⋃
v∈S

NG[v].

A nonempty set S ⊆ V (G) is a dominating set in graph G if NG[S] = V (G). Otherwise,
we say S is a non-dominating set of G. The domination number of a graph G, denoted by
γ(G), is given by γ(G) = min|S| : S is a dominating set of G. If S is a dominating set of
G and if |S| = γ(G), then S is called a minimum dominating set or a γ-set of G.
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The distance dG(u, v) in G of two vertices u, v is the length of a shortest u-v path in
G.

A vertex x of a connected graph G is said to resolve two vertices u and v of G if
dG(x, u) ̸= dG(x, v). For an ordered set W = {x1, . . . , xk} ⊆ V (G) and a vertex v in G,
the k-vector rG(v/W ) =

(
dG(v, x1), dG(v, x2), . . . , dG(v, xk)

)
is called the representation

of v with respect to W . The set W is a resolving set for G if and only if no two distinct
bvertices of G have the same representation with respect to W . The metric dimension
of G, denoted by, dim(G), is the minimum cardinality over all resolving sets of G. A
resolving set of cardinality dim(G) is called a basis.

Slater [10] brought in the notion of locating sets and its minimum cardinality as locating
number. The same concept was also introduced by Harary and Melter [5] but using the
terms resolving sets and metric dimension to refer to locating sets and locating number,
respectively. Some variations of locating sets and resolving sets are studied in [2, 6–
9, 11, 12].

Let G be a connected graph. A set S ⊆ V (G) is a locating set of G if for every two
distinct vertices u and v of V (G) \ S, NG(u)∩ S ̸= NG(v)∩ S. The locating number of G,
denoted by ln(G), is the smallest cardinality of a locating set of G. A locating set of G of
cardinality ln(G) is referred to as an ln-set of G.

Let G be a connected graph. A set S ⊆ V (G) is a strictly locating set of G if it is a
locating set of G and NG(u)∩S ̸= S, for all u ∈ V (G)\S. The strictly locating number of
G, denoted by sln(G), is the smallest cardinality of a strictly locating set of G. A strictly
locating set of G of cardinality sln(G) is referred to as sln-set of G.

A connected graph G of order n ≥ 3 is point distinguishing if for any two distinct
vertices u and v of G, NG(u) ̸= NG(v) [3]. It is totally point determining if for any two
distinct vertices u and v of G, NG(u) ̸= NG(v) and NG[u] ̸= NG[v] [13].

Brigham et al. [1] defined a resolving dominating set as a set S of vertices of a connected
graph G that is both resolving and dominating. The cardinality of a minimum resolving
dominating set is called the resolving domination number of G and is denoted by γR(G).
A resolving dominating set of cardinality γR(G) is called a γR-set of G.

Canoy and Malacas [11] defined a locating-dominating (resp. strictly locating-dominating)
as a locating (resp. strictly locating) subset S of V (G) which is also dominating set in
a connected graph G. The minimum cardinality of a locating-dominating (resp. strictly
locating-dominating) set in G, denoted by γL(G) (resp. (γSL)), is called the L-domination
(resp. SL-domination) number of G. Any L-dominating (resp. SL-dominating) set of
cardinality γL(G) (resp. γSL(G)) is then referred to as a γL-set (γSL-set) of G.

Let G be a connected graph. A set S ⊆ V (G) is strictly resolving dominating set
of G if it is a resolving dominating set of G and NG ∩ S ̸= S for u ∈ V (G) \ S. The
strictly resolving dominating number of G, denoted by γSR(G), is the smallest cardinality
of a strictly resolving dominating set of G. A strictly resolving dominating set of G of
cardinality γSR(G) is referred to as γSR-set of G.

This study aims to define and characterize the resolving dominating sets in the join,
corona and lexicographic product of graphs and determine their corresponding resolving
domination number.
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2. Preliminary Results

Remark 1. Every locating-dominating set of a connected graph G is a resolving dominat-
ing set and every resolving dominating set is a dominating set of G. Hence,

γ(G) ≤ γR(G) ≤ γL(G).

Example 1. Consider the graph G in Figure 1 and let S = {v1, v5}. Observe that
NG[S] = V (G), that is, S is a dominating set in G. Moreover, S is a resolving set since
the representation of each vertex in G, with respect to S is unique: rG(v1/S) = (0, 1),
rG(v2/S) = (1, 2), rG(v3/S) = (2, 1), rG(v4/S) = (1, 1) and rG(v5/S) = (1, 0). Hence,
γR(G) ≤ |S| = 2. Since any singleton is not a resolving set, γR(G) = 2. Also, S is a
locating-dominating set of a graph G since NG(v2) ∩ S = {v1}, NG(v3) ∩ S = {v5}, and
NG(v4) ∩ S = {v1, v5}. Thus, γL(G) = 2.

Figure 1: A graph G with γ(G) = γR(G) = γL(G) = 2

Example 2. Consider the graph G in Figure 2. Let S1 = {x, y, z}. Observe that
NG[S1] = V (G), that is, S1 is a dominating set in G. Hence, γ(G) = 3. Moreover,
let S2 = {w1, w2, w3, w4}. Then rG(x/S2) = (1, 1, 1, 2), rG(y/S2) = (1, 1, 1, 4), rG(z/S2) =
(2, 2, 2, 1), rG(w1/S2) = (0, 2, 2, 3), rG(w2/S2) = (2, 0, 2, 3), rG(w3/S2) = (2, 2, 0, 3), and
rG(w4/S2) = (3, 2, 2, 0). Thus, S2 is a resolving dominating set of a graph G. Hence,
γR(G) = 4. Furthermore, let S3 = {x,w1, w2, w3, w4}. Then S3 is a locating-dominating
set of a graph G since NG(y)∩S3 = {w1, w2, w3} and NG(z)∩S3 = {w4}. Thus, γL(G) = 5.

Figure 2: A graph G with γ(G) = 3, γR(G) = 4, and γL(G) = 5

Remark 2. Every resolving dominating set of a connected graph G is a resolving set of
G. Thus, dim(G) ≤ γR(G).
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Example 3. Consider the graph G in Figure 3. The set S = {v1, v2} is a resolving set.
Since no single vertex constitutes a resolving set for G, it follows that W is a minimum
resolving set. Hence, dim(G) = 2. Moreover, S is a resolving dominating set of a graph G
since NG[S] = V (G). Thus, γR(G) = 2.

Figure 3: A graph G with dim(G) = 2 = γR(G)

Example 4. Consider the graph G in Figure 4. Let S1 = {v, y} is a resolving set of
a graph G since the representation of each vertex in G, with respect to S1 is unique:
rG(x/S1) = (2, 2), rG(u1/S1) = (2, 1), rG(u2/S1) = (1, 2), rG(u3/S1) = (1, 3), rG(z/S1) =
(2, 3), rG(v/S1) = (0, 3), and rG(y/S1) = (3, 0). Hence, dim(G) = 2. Moreover, let
S2 = {u1, u2, u3}. Then S2 is a resolving dominating set of a graph G. Thus, γR(G) = 3.

Figure 4: A graph G with dim(G) = 2 and γR(G) = 3

Proposition 1. [1] Let G be a connected graph of order n ≥ 2, then

(i) γR(P3) = 2 and for n ≥ 4, γR(Pn) = ⌈n3 ⌉

(ii) For n ≥ 3, γR(Cn) = ⌈n3 ⌉ if n ̸= 6 and γR(C6) = 3.

Proposition 2. For any connected graph G of order n ≥ 2, 1 ≤ γR(G) ≤ n−1. Moreover,

(i) γR(G) = 1 if and only if G = P2 and

(ii) γR(G) = n− 1 if and only if G = Kn or K1,n−1.

Proof: Suppose that γR(G) = 1, say W = {v} is a minimum resolving dominating
set of G. Since G is connected and non-trivial, there exists x ∈ V (G) \ {v} such that
xv ∈ E(G). If |V (G)| = 2, then G = K2 = P2. Therefore, (i) holds.
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Suppose G ̸= Kn. Let V (G) \ {v} = W is γR-set. Let w ∈ NG(v). Consider that
|NG(v)| = 1.
Claim: G = ⟨w⟩+Kn−1

∼= K1,n−1.
Suppose there exists u ∈ V (G) \ {v, w} such that uv /∈ E(G). Let W = V (G) \ {u, v}.

Clearly, W is a dominating set of G. Since v ∈ NG(w) and u ∈ NG(w), r(u/W ) ̸= r(v/W ).
Hence, W is a resolving dominating set of G and γR(G) ≤ n − 2, a contradiction. Thus,
w ∈ NG(z) for all z ∈ V (G) \ {w}. Next, suppose there exist distinct vertices a, b ∈
V (G) \ {w, v} such that ab ∈ E(G). Let W1 = V (G) \ {a, v}. Then W1 is a dominating
set of G. Since w ∈ NG(v) and b /∈ NG(v), r(w/W1) ̸= r(b/W1). Hence, W1 is a resolving
dominating set of G. Thus, γR(G) ≤ |W1| = n−2, a contradiction. Therefore, ab /∈ E(G).
Accordingly, G = ⟨w⟩+Kn−1

∼= K1,n−1.
For the converse, suppose G = Kn or G = K1,n−1. Then γR(G) = n − 1. Hence, (ii)

holds.

3. Resolving Domination in the Join of Graphs

The join of two graphs G and H is the graph G + H with vertex set V (G + H) =

V (G)
•
∪ V (H) and edge set E(G+H) = E(G)

•
∪ E(H) ∪ {uv : u ∈ V (G), v ∈ V (H)}.

Theorem 1. [9] Let G and H be non-trivial connected graphs. A set W ⊆ V (G+H) is a
resolving set of G+H if and only if W = WG ∪WH where WG ⊆ V (G) and WH ⊆ V (H)
are locating sets of G and H, respectively, where WG or WH is a strictly locating set.

Theorem 2. [4] Let G and H be connected graphs. Then C ⊆ V (G+H) is a dominating
set in G+H if and only if at least one of the following is true:

(i) C ∩ V (G) is a dominating set in G.

(ii) C ∩ V (H) is a dominating set in H.

(iii) C ∩ V (G) ̸= ∅ and C ∩ V (H) ̸= ∅.

Theorem 3. Let G and H be non-trivial connected graphs. A set W ⊆ V (G + H) is a
resolving dominating set of G+H if and only if W is a locating-dominating set of G+H.

Proof: Suppose that W is a resolving dominating set of G+H. Then W is a resolving
set of G +H. By Theorem 1, W = WG ∪WH where WG ⊆ V (G) and WH ⊆ V (H) are
locating sets of G and H, respectively, where WG or WH is a strictly locating set. Since
W is a dominating set of G + H, WG and WH are also dominating sets of G and H,
respectively. By Theorem 1, W is a locating-dominating set of G+H.

The converse follows immediately from Theorem 1 and Theorem 2(iii).

Theorem 4. Let G and H be non-trivial connected graphs. A set W ⊆ V (G + H) is a
resolving dominating set of G+H if and only if W = WG ∪WH where WG = V (G) ∩W
and WH = V (H) ∩W are locating sets of G and H, respectively, where WG or WH is a
strictly locating set.
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Proof: Suppose that W is a resolving dominating set of G+H. Then W is a resolving
set of G + H. By Theorem 1, WG = W ∪ V (G) where WG ⊆ V (G) and WH ⊆ V (H)
are locating sets of G and H, respectively, where WG or WH is a strictly locating set.
Since W is a dominating set of G+H, WG and WH are also dominating sets of G and H,
respectively. By Theorem 3, W is a locating-dominating set of G+H.

Conversely, let WG = V (G) ∩W and WH = V (H) ∩W be locating sets of G and H,
respectively, and WG or WH is a strictly locating set of G + H. By Theorem 2, W is a
dominating set of G +H. Let u, v ∈ V (G +H) \W with u ̸= v. Consider the following
cases:
Case 1. u, v ∈ V (G)

Since WG is a locating set of G, NG(u) ∩WG ̸= NG(v) ∩WG. Hence, rG+H(u/W ) ̸=
rG+H(v/W ).
Case 2. u, v ∈ V (H)

The proof is similar to case 1.
Case 3. u ∈ V (G) and v ∈ V (H)

rG+H(u/W ) =
(
dG+H(u,w1), . . . , dG+H(u,wn), 1, 1, . . . , 1

)
and

rG+H(v/W ) =
(
1, 1, . . . , 1, dG+H(v, u1), . . . , dG+H(v, un)

)
Suppose there exists j ∈ {1, 2, . . . , n} such that dG+H(u,wj) ̸= 1 or there exists k ∈

{1, 2, . . . ,m} such that dG+H(v, uk) ̸= 1. Hence, rG+H(u/W ) ̸= rG+H(v/W ).
Therefore, W is a resolving set of G +H. Accordingly, W is a resolving dominating

set of G+H.

Corollary 1. Let G and H be non-trivial connected graphs. Then

γR(G+H) = min {sln(H) + ln(G), sln(G) + ln(H)} .

Proof: Let W be a minimum resolving dominating set in G+H. Let WG = V (G)∩W
and WH = V (H) ∩ W . By Theorem 4, WG and WH are locating sets in G and H,
respectively, where WG or WH is a strictly locating set. If WG is strictly locating, then

sln(G) + ln(H) ≤ |WG|+ |WH |
= |W |
= γR(G+H).

If WH is strictly locating, then

sln(G) + ln(H) ≤ |WH |+ |WG|
= |W |
= γR(G+H).

Thus, γR(G+H) = min {sln(H) + ln(G), sln(G) + ln(H)} . Next, suppose that sln(G)+
ln(H) ≤ sln(H) + ln(G).
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Let WG be a minimum strictly locating set of G and WH be a minimum locating set
of H. Then W = WG ∪WH is a resolving dominating set of G+H by Theorem 4. Hence,
γR(G+H) ≤ |W | = |WG|+ |WH | = sln(G) + ln(H). Therefore,

γR(G+H) = min {sln(H) + ln(G), sln(G) + ln(H)} .

Theorem 5. [11] Let G be a connected graph of order n ≥ 2.

(i) If ln(G) < sln(G), then 1 + ln(G) = sln(G).

(ii) If ln(G) < γL(G), then 1 + ln(G) = γL(G).

(iii) If sln(G) < γSL(G), then 1 + sln(G) = γSL(G).

Corollary 2. Let G be a non-trivial connected graph and let Kn be a complete graph of
order n ≥ 2. Then γR(G+Kn) = sln(G) + n− 1.

Proof: Note that γR(Kn) = n− 1 and sln(Kn) = n. From Corollary 1, γR(G+Kn) =
min {sln(H) + ln(G), sln(G) + ln(H)} . By Theorem 5, sln(G)− 1 ≤ ln(G). Therefore,

γR(G+Kn) = min {sln(G) + n− 1, ln(G) + n} = sln(G) + n− 1.

Theorem 6. [11] Let H be a non-trivial connected graph and let K1 = ⟨v⟩. Then W ⊆
V (H) is a locating-dominating set of H + K1 if and only if either v /∈ W and W is a
strictly locating dominating set of H or W = {v} ∪WH , where WH is a locating set of H.

Theorem 7. [9] Let H be a non-trivial connected graph and let K1 = ⟨v⟩. Then W ⊆
V (H) is a resolving set of H +K1 if and only if either v /∈ W and W is a strictly locating
set of H or W = {v} ∪WH , where WH is a locating set of H.

The next result follows immediately from Theorem 6 and Theorem 7.

Theorem 8. Let H be a non-trivial connected graph and let K1 = ⟨v⟩. Then W ⊆ V (H)
is a resolving dominating set of H +K1 if and only if either v /∈ W and W is a strictly
resolving dominating set of H or W = {v} ∪WH , where WH is a locating set of H.

Corollary 3. Let H be a non-trivial connected graph. Then

γR(H +K1) = min {γSR(H), ln(H) + 1} .

4. Resolving Domination in the Corona of Graphs

The corona of two graphs G and H, denoted by G◦H, is the graph obtained by taking
one copy of G of order n and n copies of H, and then joining every vertex of the ith copy
of H to the ith vertex of G. For v ∈ V (G), denoted by Hv the copy of H whose vertices
are attached one by one to the vertex v. Subsequently, denote by v+Hv the subgraph of
the corona G ◦H corresponding to the join ⟨{v}⟩+Hv, v ∈ V (G).
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Theorem 9. [9] Let G and H be non-trivial connected graphs. Then W ⊆ V (G ◦H) is a
resolving set of G ◦H if and only if W ∩ V (Hv) ̸= ∅ for all v ∈ V (G) and W = A ∪ B,
where A ⊆ V (G) and

B = ∪{Bv : v ∈ V (G) and Bv is a locating set of Hv} .

Theorem 10. Let G and H be non-trivial connected graphs. Then W ⊆ V (G ◦H) is a
resolving dominating set of G ◦H if and only if W ∩ V (Hv) ̸= ∅ for every v ∈ V (G) and
W = A ∪B ∪D, where A ⊆ V (G),

B = ∪{Bv : v ∈ A and Bv is a locating set of Hv} and

D = ∪{Du : u /∈ A and Du is a locating-dominating set of Hv} .

Proof: LetW be a resolving dominating set ofG◦H. Then by Theorem 9,W∩V (Hv) ̸=
∅ for any v ∈ V (G). Since W is a resolving set, G = A ∪B∗, where A ⊆ V (G) and B∗ =
∪{Bv : v ∈ V (G) and Bv is a locating set of Hv} by Theorem 9. Let B = ∪{Bv : v ∈ A}
and D = ∪{Bu : u ∈ V (G) \A}. Since W is a dominating set, it follows that Bu is a
dominating set for each u ∈ V (G) \A.

For the converse, suppose W = A ∪ B ∪D, where A,B and D are the sets possesing
the properties described. Then by Theorem 9, W is a resolving set of G ◦H. Since Du

is a dominating set of Hu for each u /∈ W , W is a resolving dominating set of G ◦H.

Remark 3. [11] For any connected graph G, ln(G) ≤ γL(G) ≤ γSL(G).

Corollary 4. Let G and H be non-trivial connected graphs with |V (G)| = n. Then
γR(G ◦H) = n · γL(H).

Proof: Let W be a minimum resolving dominating set in G◦H. Then W = A∪B ∪D
where A,B and D are the sets described in Theorem 10. By Remark 3 and Theorem 5(ii),
it follows that

γR(G ◦H) = |W | = |A|+ |B|+ |D|
≥ |A|+ |A| · ln(H) +

(
n− |A|

)
· γL(H)

= |A|
(
1 + ln(H)

)
+
(
n− |A|

)
· γL(H)

= |A| · γL(H) +
(
n− |A|

)
· γL(H)

= n · γL(H).

Now, let F be a minimum locating dominating set of H. For each v ∈ V (G), pick
Fv ⊆ V (Hv) with ⟨Fv⟩ ∼= ⟨F ⟩. Then W =

⋃
v∈V (G)

Fv is a resolving dominating set of G ◦H

by Theorem 10. Hence,
γR(G ◦H) ≤ |W | = n · γL(H).

Therefore, γR(G ◦H) = n · γL(H).
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5. Resolving Domination in the Lexicographic Product of Graphs

The lexicographic product of graphs G and H, denoted by G[H], is the graph with
vertex set V (G[H]) = V (G)× V (H) such that (v, a)(u, b) ∈ E(G[H]) if and only if either
uv ∈ E(G) or u = v and ab ∈ E(H).

Theorem 11. [9] Let G and H be non-trivial connected graphs with ∆(H) ≤ |V (H)| − 2.
Then W =

⋃
x∈S

[
{x}×Tx

]
, where S ⊆ V (G) and Tx ⊆ V (H) for each x ∈ S, is a resolving

set of G[H] if and only if W is a locating set of G[H].

Theorem 12. [4] Let G and H be non-trivial be connected graphs. Then C ⊆ V (G [H])
is a dominating set in G[H] if and only if W =

⋃
x∈S

[
{x} × Tx

]
and either

(i) S is a total dominating set in G or

(ii) S is a dominating set in G and Tx is a dominating set in H for every x ∈ S \NG(s).

Theorem 13. Let G and H be non-trivial connected graphs with ∆(H) ≤ |V (H)| − 2.
Then W =

⋃
x∈S

[
{x}×Tx

]
, where S ⊆ V (G) and Tx ⊆ V (H) for each x ∈ S, is a resolving

dominating set of G[H] if and only if W is a locating-dominating set of G[H].

Proof: Suppose W is a resolving dominating set of G[H]. Then by Theorem 11, W is
a locating-dominating set of G[H].

The converse follows from Theorem 11 and Theorem 12.

Theorem 14. [11] Let G and H be non-trivial connected graphs with ∆(H) ≤ |V (H)|−2.
Then W =

⋃
x∈S

[
{x} × Tx

]
, where S ⊆ V (G) and Tx ⊆ V (H) for each x ∈ S, is a

locating-dominating set of G[H] if and only if

(i) S = V (G);

(ii) Tx is a locating set of H for every x ∈ V (G);

(iii) Tx or Ty is strictly locating of H whenever x and y are adjacent vertices of G with
NG[x] = NG[y]; and

(iv) Tx or Ty is (locating) dominating of H whenever x and y are nonadjacent vertices
of G with NG(x) = NG(y).

The next result follows immediately from Theorem 13 and Theorem 14.

Theorem 15. Let G and H be non-trivial connected graphs with ∆(H) ≤ |V (H)| − 2.
Then W =

⋃
x∈S

[
{x}×Tx

]
, where S ⊆ V (G) and Tx ⊆ V (H) for each x ∈ S, is a resolving

dominating set of G[H] if and only if

(i) S = V (G);
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(ii) Tx is a locating set of H for every x ∈ V (G);

(iii) Tx or Ty is strictly locating of H whenever x and y are adjacent vertices of G with
NG[x] = NG[y]; and

(iv) Tx or Ty is (locating) dominating of H whenever x and y are nonadjacent vertices
of G with NG(x) = NG(y).

The following is a direct consquence of Theorem 15.

Corollary 5. Let G be a connected totally point determining graph and let H be a non-
trivial connected graph. Then W =

⋃
x∈S

[
{x} × Tx

]
is a minimum resolving dominating

set of G[H] if and only if S = V (G) and Tx is a minimum locating set of H for every
x ∈ V (G).

Corollary 6. Let G be a connected totally point determining graph and let H be a non-
trivial connected graph. Then γR

(
G[H]

)
= |V (G)| · ln(H).

Proof: Let W =
⋃

x∈S ({x} x Tx) be a minimum resolving dominating set of G[H].
Then S = V (G) and Tx is a minimum locating set in H for every x ∈ V (G), by Corollary
5. Therefore, γR(G[H]) = |V (G)| · ln(H).

6. Conclusion

This study did introduce the concept of resolving domination under some binary oper-
ations. Let G and H be non-trivial connected graphs. It is shown that the resolving dom-
ination number in the corona of two graphs is n ·γL(H), the resolving domination number
in the join of two graphs is the min {sln(H) + ln(G), sln(G) + ln(H)}, and the resolving
domination number of the lexicographic product of graphs G and H is |V (G)| · ln(H). The
parameter can be investigated further for graphs under other binary operations.
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