EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 16, No. 1, 2023, 479-490 ISSN 1307-5543 – ejpam.com Published by New York Business Global

Stable Locating-Dominating Sets in the Edge Corona and Lexicographic Product of Graphs

Gina A. Malacas^{1,*}, Sergio R. Canoy, Jr.¹, Emmy Chacon¹

¹ Department of Mathematics and Statistics, College of Science and Mathematics, Center for Graph Theory, Algebra and Analysis-PRISM, MSU-Iligan Institute of Technology, 9200 Iligan City, Philippines

Abstract. A set $S \subseteq V(G)$ of an undirected graph G is a locating-dominating set of G if for each $v \in V(G) \setminus S$, there exists $w \in S$ such tha $vw \in E(G)$ and $N_G(x) \cap S \neq N_G(y) \cap S$ for any two distinct vertices x and y in $V(G) \setminus S$. S is a stable locating-dominating set of G if it is a locating-dominating set of G and $S \setminus \{v\}$ is a locating-dominating set of G for each $v \in S$. The minimum cardinality of a stable locating-dominating set of G, denoted by $\gamma_{SLD}(G)$, is called the stable locating-domination number of G. In this paper, we investigate this concept and the corresponding parameter for edge corona and lexicographic product of graphs.

2020 Mathematics Subject Classifications: 05C69

Key Words and Phrases: Locating, stable, domination, edge corona, lexicographic product

1. Introduction

Let G = (V(G), E(G)) be an undirected graph. The distance between two vertices u and v of G, denoted by $d_G(u, v)$, is equal to the length of a shortest path connecting u and v. Any path connecting u and v of length $d_G(u, v)$ is called a u-v geodesic. The neighborhood of $v \in V(G)$ is the set $N_G(v) = \{x \in V(G) : xv \in E(G)\}$. The degree of $v \in V(G)$, denoted by $deg_G(v)$, is equal to the cardinality of $N_G(v)$ and the maximum degree of G is $\Delta(G) = \max \{deg_G(x) : x \in E(G)\}$. A vertex v of G is a leaf if $deg_G(v) = 1$. A vertex u of G is a support if $uv \in E(G)$ for some leaf v of G. A connected graph G of order $n \geq 3$ is point distinguishing if for any two distinct vertices u and v of G, $N_G[u] \neq N_G[v]$. It is totally point determining if for any two distinct vertices u and v of G, $N_G(u) \neq N_G(v)$ and $N_G[u] \neq N_G[v]$. These concepts are defined and studied in [7] and [21].

A subset S of V(G) is a *dominating* set of G if for every $v \in V(G) \setminus S$, there exists $u \in S$ such that $xv \in E(G)$. S is a *locating set* in G if $N_G(u) \cap S \neq N_G(v) \cap S$ for every

Email addresses: gina.malacas@g.msuiit.edu.ph (G. Malacas),

sergio.canoy@g.msuiit.edu.ph (S. Canoy, Jr.), emmy.chacon@g.msuiit.edu.ph (E. Chacon)

https://www.ejpam.com

© 2023 EJPAM All rights reserved.

^{*}Corresponding author.

DOI: https://doi.org/10.29020/nybg.ejpam.v16i1.4645

two distinct vertices $u, v \in V(G) \setminus S$. A locating set S is said to be a strictly locating set if $N_G(u) \cap S \neq S$ for all $u \in V(G) \setminus S$. A locating set (strictly locating set) S is a stable locating set (resp. stable strictly locating set) if $S \setminus \{v\}$ is a locating (resp. strictly locating) set for each $v \in S$. A locating (resp. strictly locating) set S of V(G) which is also a dominating set is called a *locating-dominating* (resp. strictly *locating-dominating*) set of G. A locating-dominating (strictly locating-dominating) set S is a stable locatingdominating (resp. stable strictly locating-dominating) set of G if $S \setminus \{v\}$ is a locatingdominating (resp. strictly locating-dominating) set of G for each $v \in S$. The minimum cardinality of a locating (strictly locating, stable locating, stable strictly locating) set of G is denoted by ln(G) (resp. sln(G), sbln(G), sbsln(G)). Any locating (strictly locating, stable locating, stable strictly locating) set of G with cardinality ln(G) (resp. sln(G), sbln(G), sbsln(G)) is called an *ln*-set (resp. *sln*-set, *sbln*-set, *sbsln*-set) of G. The minimum cardinality of a locating-dominating (resp. strictly locating-dominating, stable locating-dominating, stable strictly locating-dominating) set of G is denoted by $\gamma_L(G)$ (resp. $\gamma_{SL}(G), \gamma_{sL}(G), \gamma_{sSL}(G)$). Any locating-dominating (strictly locating-dominating, stable locating-dominating, stable strictly locating-dominating) set of G with cardinality $\gamma_L(G)$ (resp. $\gamma_{SL}(G), \gamma_{sL}(G), \gamma_{sSL}(G)$) is called an γ_L -set (resp. γ_{SL} -set, γ_{sL} -set, γ_{sSL} -set) of G.

Domination and some variations of the concept are found in the book by Haynes et al. (see [9]). Other variations of domination can be found in [2], [3], [4], [5], [11], [12], [16], and [18]. The concepts of locating, strictly locating, locating-dominating, and strictly locating-dominating, and the associated parameters are studied in [6], [8], [10], [13], [14], [15], [17], [19], [20]. The concept of stable locating-dominating and related concepts are studied in [1].

Let G and H be any two graphs. The *edge corona* $G \diamond H$ is the graph obtained by taking one copy of G and |E(G)| copies H and joining each end vertices u and v of every edge uv to every vertex of the copy H^{uv} of H (i.e. forming the join $\langle \{u, v\} \rangle + H^{uv}$ for each $uv \in E(G)$). The *lexicographic product* G[H] is the graph with vertex-set $V(G[H]) = V(G) \times V(H)$ and edge-set E(G[H]) satisfying the following conditions: $(x, u)(y, v) \in E(G[H])$ if and only if either $xy \in E(G)$ or x = y and $uv \in E(H)$. It is easily observed that for any non-empty subset C of $V(G[H]) = V(G) \times V(H)$, this set can be expressed as $C = \bigcup_{x \in S}(\{x\} \times T_x)$, where $S \subseteq V(G)$ and $T_x \subseteq V(H)$ for each $x \in S$. Set $S = C_G = \{x \in V(G) : (x, a) \in C$ for some $a \in V(H)\}$ is called the G-projection of C. Moreover, for each $x \in S$, $T_x = \{a \in V(H) : (x, a) \in C\}$.

2. Results

Throughout, we denote by $\mathcal{L}(G)$ the set containing all leaves of a graph G. The first result is found in [1].

Theorem 1. Let G be graph without isolated vertices. Then G has a stable strictly locating set if and only if $\gamma(G) \neq 1$.

Theorem 2. Let G be a connected graph of order $m \ge 3$ and let H be any non-trivial connected graph. Then C is a locating-dominating set of $G \diamond H$ if and only if $C = A \cup [\bigcup_{uv \in E(G)} S_{uv}]$ and satisfies the following conditions:

(i)
$$A \subseteq V(G)$$
.

- (*ii*) For each $uv \in E(G)$,
 - (a) S_{uv} is a locating set of H^{uv} ;
 - (b) S_{uv} is a locating-dominating set of H^{uv} whenever $u, v \notin A$;
 - (c) S_{uv} is a strictly locating set of H^{uv} for each $v \in \mathcal{L}(G)$ with $v \notin A$; and
 - (d) S_{uv} is a strictly locating-dominating set of H^{uv} whenever $u, v \notin A$ and $\{u, v\} \cap L(G) \neq \emptyset$.
- (*iii*) For each $uv \in E(G)$ with $v \in A$ and $u \notin A$, if $x \in V(H^{uv}) \setminus S_{uv}$ and $N_{H^{uv}}(x) \cap S_{uv} = \emptyset$, then for each $w \in N_G(v) \setminus \{u\}$ and for each $y \in V(H^{wv}) \setminus S_{wv}$, it holds that $w \in A$ or $N_{H^{wv}}(y) \cap S_{wv} \neq \emptyset$.

Proof. Suppose C is a locating-dominating set of $G \diamond H$. Let $A = C \cap V(G)$ and $S_{uv} = C \cap V(H^{uv})$ for each $uv \in E(G)$. Then $C = A \cup [\cup_{uv \in E(G)} S_{uv}]$ and (i) holds. Let $uv \in E(G)$. Since C is a locating set of $G \diamond H$, $S_{uv} \neq \emptyset$. Let $x, y \in V(H^{uv}) \setminus S_{uv}$ with $x \neq y$ and let $S = A \cap \{u, v\}$. Since C is a locating set,

$$[N_{H^{uv}}(x) \cap S_{uv}] \cup S = N_{G \diamond H}(x) \cap C \neq N_{G \diamond H}(y) \cap C = [N_{H^{uv}}(y) \cap S_{uv}] \cup S.$$

This implies that $N_{H^{uv}}(x) \cap S_{uv} \neq N_{H^{uv}}(y) \cap S_{uv}$, showing that S_{uv} is a locating set of H^{uv} . Suppose $u, v \notin A$. Since C is a dominating set of $G \diamond H$, S_{uv} is a dominating set of $V(H^{uv})$. Hence, (a) and (b) hold. Next, suppose that $uv \in E(G)$ and $v \in L(G) \setminus A$. Let $S^* = A \cap \{u\}$ and let $z \in V(H^{uv}) \setminus S_{uv}$. Again, since C is a locating set,

$$[N_{H^{uv}}(z) \cap S_{uv}] \cup S^* = N_{G \diamond H}(z) \cap C \neq N_{G \diamond H}(v) \cap C = S_{uv} \cup S^*.$$

This implies that $[N_{H^{uv}}(z) \cap S_{uv}] \neq S_{uv}$, showing that S_{uv} is a strictly locating set of H^{uv} . If $S^* = \emptyset$ (that is, $u \notin A$), then S_{uv} is a dominating set of $V(H^{uv})$. Thus, (c) and (d) hold.

Finally, let $uv \in E(G)$ with $v \in A$ and $u \notin A$. Suppose $x \in V(H^{uv}) \setminus S_{uv}$ and $N_{H^{uv}}(x) \cap S_{uv} = \emptyset$. Then $N_{G \diamond H}(x) \cap C = \{v\}$. Let $w \in N_G(v) \setminus \{u\}$ and let $y \in V(H^{wv}) \setminus S_{wv}$. Suppose $w \notin A$. Then $N_{G \diamond H}(y) \cap C = [N_{H^{wv}}(y) \cap S_{wv}] \cup \{v\}$. Since C is a locating set of $G \diamond H$, $N_{G \diamond H}(x) \cap C \neq N_{G \diamond H}(y) \cap C$. This implies that $N_{H^{wv}}(y) \cap S_{wv} \neq \emptyset$, showing that *(iii)* holds.

For the converse, suppose that C has the form described and satisfies (i), (ii), and (iii). Let $z \in V(G \diamond H) \setminus C$ and let $uv \in E(G)$ such that $z \in \langle \{u, v\} \rangle + H^{uv}$. If z = uor z = v, then there exists $t \in S_{uv} \subset C$ such that $z \in N_{G \diamond H}(t)$ by (ii)(a). Suppose $z \in V(H^{uv}) \setminus S_{uv}$. If $u \in A$ or $v \in A$, then $uz \in E(G \diamond H)$ or $vz \in E(G \diamond H)$. If $u, v \notin A$, then there exists $s \in S_{uv} \cap N_{G \diamond H}(z)$ by (ii)(b). Hence, C is a dominating set of $G \diamond H$. G. Malacas, S. Canoy, Jr., E. Chacon / Eur. J. Pure Appl. Math, 16 (1) (2023), 479-490

Next, let $p, q \in V(G \diamond H) \setminus C$ with $p \neq q$ and let $uv, xy \in E(G)$ such that $p \in \langle \{u, v\} \rangle + H^{uv}$ and $q \in \langle \{x, y\} \rangle + H^{xy}$. Consider the following cases:

Case 1. The edges uv and xy are non-adjacent (i.e., they do not share a common vertex).

Suppose that $p \in \{u, v\}$ or $q \in \{x, y\}$. Since $S_{uv} \subseteq N_{G \diamond H}(p)$ and $S_{xy} \subseteq N_{G \diamond H}(q)$, $N_{G\diamond H}(p) \cap C \neq N_{G\diamond H}(q) \cap C$. Suppose that $p \notin \{u, v\}$ and $q \notin \{x, y\}$. Then $p \in \{u, v\}$ $V(H^{uv}) \setminus S_{uv}$ and $q \in V(H^{xy}) \setminus S_{xy}$. Since $N_{G \diamond H}(p) \cap C \subseteq V(\langle \{u, v\} \rangle + H^{uv})$ and $N_{G\diamond H}(q) \cap C \subseteq V(\langle \{x, y\} \rangle + H^{xy})$, it follows that $N_{G\diamond H}(p) \cap C \neq N_{G\diamond H}(q) \cap C$.

Case 2. The edges uv and xy are distinct and adjacent.

We may assume that x = u. If $p \in \{u, v\}$ or $q \in \{x, y\}$, then $N_{G \diamond H}(p) \cap C \neq N_{G \diamond H}(q) \cap C$ (as in Case 1). So suppose that $p \notin \{u, v\}$ and $q \notin \{x, y\}$. If $N_{H^{uv}}(p) \cap S_{uv} \neq \emptyset$ or $N_{H^{xy}}(y) \cap S_{xy} \neq \emptyset$, then $N_{G \diamond H}(p) \cap C \neq N_{G \diamond H}(q) \cap C$. Suppose that $N_{H^{uv}}(p) \cap S_{uv} = \emptyset$ or $N_{H^{xy}}(y) \cap S_{xy} = \emptyset$. If $u \in A$, then $y \in A$ or $v \in A$ by (*iii*). Suppose that $u \notin A$. Then by $(ii)(b), y, v \in A$. Since $v \in N_{G \diamond H}(p) \cap C, y \in N_{G \diamond H}(y) \cap C$, and $y \neq v$, it follows that $N_{G\diamond H}(p) \cap C \neq N_{G\diamond H}(q) \cap C.$

Case 3. The edges uv and xy are the same.

We may assume that x = u and y = v. Suppose first that p = u and q = v. Since G is connected and $G \neq K_2$, we may assume that there exists $w \in V(G) \setminus \{u, v\}$ such that $vw \in E(G)$. Because $\emptyset \neq S_{vw} \subseteq (N_{G \diamond H}(q) \cap C \setminus (N_{G \diamond H}(p) \cap C))$, we have $N_{G \diamond H}(p) \cap C \neq C$ $N_{G\diamond H}(q)\cap C$. Suppose that $p,q \in V(H^{uv}) \setminus S_{uv}$. By $(ii)(a), N_{G\diamond H}(p)\cap C \neq N_{G\diamond H}(q)\cap C$. Finally, suppose that $p \in V(H^{uv}) \setminus S_{uv}$ (or $q \in V(H^{uv}) \setminus S_{uv}$) and $q \in \{u, v\}$ (resp. $p \in \{u, v\}$). We may assume without loss of generality that q = u. Consider the following subcases:

Subcase 1. $u, v \notin \mathcal{L}(G)$.

Then there exist $a, b \in V(G)$ such that $au, bv \in E(G)$. Since $S_{au} \subseteq N_{G \diamond H}(q) \cap C$ and $S_{au} \cap N_{G \diamond H}(p) = \emptyset, \ N_{G \diamond H}(p) \cap C \neq N_{G \diamond H}(q) \cap C.$

Subcase 2. $u \in \mathcal{L}(G)$ or $v \in \mathcal{L}(G)$.

By (ii)(c) and (ii)(d), S_{uv} is a strictly locating set of $V(H^{uv})$. It follows that $N_{H^{uv}}(p) \cap$ $S_{uv} \neq S_{uv}$. Since $S_{uv} \subseteq N_{G \diamond H}(q) \cap C$, $N_{G \diamond H}(p) \cap C \neq N_{G \diamond H}(q) \cap C$. \square

Accordingly, C is locating-dominating set of $G \diamond H$.

A set $S \subseteq V(G)$ is a vertex cover of G if for every $uv \in E(G), u \in S$ or $v \in S$. A vertex cover S is a *perfect vertex cover* of G if for each $v \in S$ and for each pair of distinct edges uv and wv of G, $u \in S$ or $w \in S$. The smallest size of a perfect vertex cover of

482

G, denoted by $\beta_p(G)$, is called the *perfect vertex covering number* of G. Any perfect vertex cover of G of size $\beta_p(G)$ is called a β_p -set or a minimum perfect vertex cover of G.

Example 1. $\beta_p(K_n) = n - 1$ for each $n \ge 2$.

Corollary 1. Let G be a connected graph of order $m \ge 3$ and let H be any non-trivial connected graph.

(i) If $L(G) = \emptyset$, then

$$\gamma_L(G \diamond H) \le \min\{\beta_p(G) + |E(G)| ln(H), |E(G)| \gamma_L(H)\}.$$

(*ii*) If $L(G) \neq \emptyset$, then

 $\gamma_L(G \diamond H) \le \min\{\beta_p(G) + |E(G)| sln(H), |E(G)| \gamma_{SL}(H)\}.$

Proof. (i) Suppose that $L(G) = \emptyset$. Let S_1 be a β_p -set of G and let S_{uv} be a minimum locating set of H^{uv} for each $uv \in E(G)$. Then $C_1 = S \cup [\cup_{uv \in E(G)} S_{uv}]$ is a locating dominating set of $G \diamond H$ by Theorem 2. Hence, $\gamma_L(G \diamond H) \leq |C_1| = \beta_p(G) + |E(G)| ln(H)$. Now, let L_{uv} be a γ_L -set of H^{uv} for each $uv \in E(G)$. Then $C_2 = \bigcup_{uv \in E(G)} L_{uv}$ is a locating dominating set of $G \diamond H$ by Theorem 2. This implies that $\gamma_L(G \diamond H) \leq |C_2| = |E(G)| \gamma_L(H)$. Therefore, (i) holds.

(*ii*) Suppose that $L(G) \neq \emptyset$. Let S be a β_p -set of G and let S'_{uv} be a minimum strictly locating set of H^{uv} for each $uv \in E(G)$. Then $C_3 = S \cup [\cup_{uv \in E(G)} S'_{uv}$ is a locating dominating set of $G \diamond H$ by Theorem 2. Hence, $\gamma_L(G \diamond H) \leq |C_3| = \beta_p(G) + |E(G)|sln(H)$. Let R_{uv} be a γ_{SL} -set of H^{uv} for each $uv \in E(G)$. Then $C_4 = \bigcup_{uv \in E(G)} R_{uv}$ is a locating dominating set of $G \diamond H$ by Theorem 2. This implies that $\gamma_L(G \diamond H) \leq |C_4| = |E(G)|\gamma_{SL}(H)$, showing that (*ii*) holds.

Remark 1. The bounds in Corollary 2 are sharp.

Indeed, it can be verified that

$$\begin{split} \gamma_L(K_3 \diamond P_5) &= |E(K_3)| \gamma_L(P_5) = 6 < 8 = \beta_p(K_3) + |E(K_3)| ln(P_5), \\ \gamma_L(K_3 \diamond P_3) &= \beta_p(K_3) + |E(K_3)| ln(P_3) = 5 < 6 = |E(K_3)| \gamma_L(P_3), \\ \gamma_L(P_3 \diamond P_3) &= |E(P_3)| \gamma_{SL}(P_3) = 4 < 6 = \beta_p(P_3) + |E(P_3)| sln(P_3), \text{ and} \\ \gamma_L(P_4 \diamond P_5) &= \beta_p(P_4) + |E(P_4)| sln(P_5) = 8 < 9 = |E(P_4)| \gamma_{SL}(P_5). \end{split}$$

Theorem 3. Let G be a connected graph of order $m \ge 3$ and let H be any non-trivial connected graph. Then C is a stable locating-dominating set of $G \diamond H$ if and only if $C = A \cup [\bigcup_{uv \in E(G)} S_{uv}]$ and satisfies the following conditions:

(i) $A \subseteq V(G)$.

- G. Malacas, S. Canoy, Jr., E. Chacon / Eur. J. Pure Appl. Math, 16 (1) (2023), 479-490
- (*ii*) For each $uv \in E(G)$,
 - (a) S_{uv} is a stable locating set of H^{uv} ;
 - (b) S_{uv} is a stable locating-dominating set of H^{uv} whenever $u, v \notin A$;
 - (c) S_{uv} is a stable strictly locating set of H^{uv} for each $v \in L(G)$ with $v \notin A$; and
 - (d) S_{uv} is a stable strictly locating-dominating set of H^{uv} whenever $u, v \notin A$ and $\{u, v\} \cap L(G) \neq \emptyset$.
- (*iii*) For each $w \in A$ and for each $z \in N_G(w)$, we have:
 - (a) S_{zw} is a strictly locating set of H^{zw} whenever $w \in L(G)$ and
 - (b) S_{zw} is a strictly locating-dominating set of H^{zw} whenever $z \notin A$ and $\{z, w\} \cap L(G) \neq \emptyset$.
- (iv) For each $zw \in E(G)$ with $z \in A$ and $w \notin A$, if $x \in V(H^{zw}) \setminus [S_{zw} \setminus \{p\}]$ for $p \in S_{zw}$ and $N_{H^{zw}}(x) \cap (S_{zw} \setminus \{p\}) = \emptyset$, then for each $y \in N_G(z) \setminus \{w\}$ and for each $q \in V(H^{yz}) \setminus S_{yz}$, it holds that $y \in A$ or $N_{H^{yz}}(q) \cap S_{yz} \neq \emptyset$.

Proof. Suppose C is a stable locating-dominating set of $G \diamond H$. Let $A = C \cap V(G)$ and $S_{uv} = C \cap V(H^{uv})$ for each $uv \in E(G)$. Then $C = A \cup [\bigcup_{uv \in E(G)} S_{uv}]$ and (i) holds. Let $xy \in E(G)$. By Theorem 2(ii)(a), S_{xy} is a locating set of H^{xy} . Let $p \in S_{xy}$. Then by assumption, $C \setminus \{p\} = A \cup [\bigcup_{uv \in [E(G) \setminus \{xy\}]} S_{uv}] \cup (S_{xy} \setminus \{p\})$ is a locating-dominating set of $G \diamond H$. It follows from Theorem 2(ii)(a) that $S_{xy} \setminus \{p\}$ is a locating set of H^{xy} . If $x, y \notin A$, then $S_{xy} \setminus \{p\}$ is a locating-dominating set of H^{xy} by Theorem 2(ii)(b). If one of x and y, say $x \in L(G) \setminus A$, then $S_{xy} \setminus \{p\}$ is a strictly locating set of H^{xy} by Theorem 2(ii)(c). Morover, if $x, y \notin A$ and $x \in L(G)$ or $y \in L(G)$, then S_{xy} is a strictly locating-dominating set of H^{xy} by Theorem 2(ii)(d). Therefore, (a), (b), (c), and (d) hold.

Next, let $w \in A$ and let $z \in N_G(w)$. Since C is a stable locating-dominating set of $G \diamond H$,

$$C \setminus \{w\} = (A \setminus \{w\}) \cup [\cup_{uv \in E(G)} S_{uv}]$$

is a locating-dominating set of $G \diamond H$. It follows from (c) and (d) of Theorem 2 that S_{zw} is a strictly locating set of H^{zw} whenever $w \in L(G)$ and S_{zw} is a strictly locating-dominating set of H^{zw} whenever $z \notin A$ (hence, $z \notin A \setminus \{w\}$) and $\{z, w\} \cap L(G) \neq \emptyset$. This shows that (*iii*) holds.

Finally, let $zw \in E(G)$ with $z \in A$ and $w \notin A$. Let $p \in S_{zw}$. Then, again,

$$C \setminus \{p\} = A \cup [\bigcup_{uv \in [E(G) \setminus \{zw\}]} S_{uv}] \cup (S_{zw} \setminus \{p\})$$

is a locating-dominating set of $G \diamond H$. Hence, by Theorem 2(*iii*), statement (*iv*) holds.

For the converse, suppose that C has the given form and satisfies (i), (ii), (iii) and (iv). By (i) and (ii), it follows that (i) and (ii) of Theorem 2 are satisfied by C. Let $zw \in E(G)$ with $z \in A$ and $w \notin A$. Let $x \in V(H^{zw}) \setminus S_{zw}$. Then $x \in V(H^{zw}) \setminus [S_{zw} \setminus \{p\}]$ for $p \in S_{zw}$. Suppose $N_{H^{zw}}(x) \cap S_{zw} = \emptyset$. Then $N_{H^{zw}}(x) \cap (S_{zw} \setminus \{p\}) = \emptyset$. Hence, by (iv), for each $y \in N_G(z) \setminus \{w\}$ and for each $q \in V(H^{yz}) \setminus S_{yz}$, it holds that $y \in A$ or

 $N_{H^{yz}}(q) \cap S_{yz} \neq \emptyset$. Thus, (*iii*) of Theorem 2 also holds for C. Therefore, C is a locating dominating set of $G \diamond H$. Let $q \in C$ and let $uv \in E(G)$ such that $q \in V(\langle \{u, v\} \rangle + H^{uv})$. Suppose first that $p \in \{u, v\}$. Then

$$C^* = C \setminus \{p\} = (A \setminus \{p\}) \cup [\bigcup_{uv \in E(G)} S_{uv}].$$

Accordingly, C is a stable locating-dominating set of $G \diamond H$.

The next two results follow from Theorem 3.

Corollary 2. Let G be a connected graph of order $m \ge 3$ with $L(G) = \emptyset$ and let H be any non-trivial connected graph. If $C = \bigcup_{uv \in E(G)} S_{uv}$ and S_{uv} is a stable locating-dominating set of H^{uv} for each $uv \in E(G)$, then C is a stable locating-dominating set of $G \diamond H$. In particular,

$$\gamma_{sL}(G \diamond H) \le |E(G)|\gamma_{sL}(H).$$

Proof. Since $L(G) = \emptyset$ and S_{uv} is a stable locating-dominating set of H^{uv} for each $uv \in E(G), C = \bigcup_{uv \in E(G)} S_{uv}$ satisfies the conditions in Theorem 3. Thus, C is a stable locating-dominating set of $G \diamond H$ and $\gamma_{sL}(G \diamond H) \leq |C| = |E(G)|\gamma_{sL}(H)$.

Corollary 3. Let G be a connected graph of order $m \geq 3$ with $L(G) \neq \emptyset$ and let H be any non-trivial connected graph with $\gamma(H) \neq 1$. If $C = \bigcup_{uv \in E(G)} S_{uv}$ and S_{uv} is a stable strictly locating-dominating set of H^{uv} for each $uv \in E(G)$, then C is a stable locating-dominating set of $G \diamond H$. Moreover,

$$\gamma_{sL}(G \diamond H) \le |C| = |E(G)|\gamma_{sSL}(H).$$

Proof. By Theorem 1 and the assumption that $\gamma(H) \neq 1$, H admits a stable strictly locating-dominating set. Since S_{uv} is a stable strictly locating-dominating set of H^{uv} for each $uv \in E(G)$ and $L(G) \neq \emptyset$, $C = \bigcup_{uv \in E(G)} S_{uv}$ satisfies the conditions in Theorem 3. Hence, C is a stable locating-dominating set of $G \diamond H$ and $\gamma_{sL}(G \diamond H) \leq |C| =$ $|E(G)|\gamma_{sSL}(H)$.

The next result is found in [15].

Theorem 4. Let G and H be non-trivial connected graphs such that $\Delta(H) \leq |V(H)| - 2$. Then $C = \bigcup_{x \in S} (\{x\} \times T_x)$, where $S \subseteq V(G)$ and $T_x \subseteq V(H)$ for each $x \in S$, is a locating-dominating set of G[H] if and only if the following hold.

- (i) S = V(G).
- (*ii*) T_x is a locating set in H for every $x \in V(G)$.
- (*iii*) T_x or T_y is strictly locating in H whenever x and y are adjacent vertices of G with $N_G[x] = N_G[y]$.

G. Malacas, S. Canoy, Jr., E. Chacon / Eur. J. Pure Appl. Math, 16 (1) (2023), 479-490

(iv) T_x or T_y is a dominating set in H whenever x and y are distinct non-adjacent vertices of G with $N_G(x) = N_G(y)$.

Theorem 5. Let G and H be non-trivial connected graphs with $\Delta(H) \leq |V(H)| - 2$. Then $C = \bigcup_{x \in S} (\{x\} \times T_x)$, where $S \subseteq V(G)$ and $T_x \subseteq V(H)$ for each $x \in S$, is a stable

locating-dominating set of G[H] if and only if each of the following conditions hold.

(i)
$$S = V(G)$$
.

- (ii) T_x is a stable locating set in H for every $x \in V(G)$.
- (*iii*) If x and y are adjacent vertices of G with $N_G[x] = N_G[y]$ and one, say T_x is not strictly locating, then T_y is a stable strictly locating set of H.
- (iv) If x and y are distinct non-adjacent vertices of G with $N_G(x) = N_G(y)$ and one, say T_x is not a dominating set, then T_y is a stable dominating set of H.

Proof. Suppose C is a stable locating-dominating set of G[H]. By Theorem 4, S = V(G) and T_x is a locating set of H for each $x \in V(G)$. Let $z \in S$ and let $a \in T_z$. By assumption, $C \setminus \{(z, a)\} = [\bigcup_{\substack{x \in S \setminus \{z\}\\ x \in S \setminus \{z\}}} (\{x\} \times T_x)] \cup [\{z\} \times (T_z \setminus \{a\})]$ is a locating-dominating set of G[H]. By Theorem $A(i) = T \setminus \{a\}$ is a locating set of H. This implies that T is a

set of G[H]. By Theorem 4(ii), $T_z \setminus \{a\}$ is a locating set of H. This implies that T_z is a stable locating set of H. Thus, (ii) holds.

Suppose now that x and y are adjacent vertices of G with $N_G[x] = N_G[y]$. Suppose that one, say T_x is not a strictly locating set of H. By Theorem 4(*iii*), T_y is a strictly locating set of H. Let $p \in T_y$. Since

$$C \setminus \{(y,p)\} = \left[\bigcup_{z \in S \setminus \{y\}} (\{z\} \times T_z)\right] \cup \left[\{y\} \times (T_y \setminus \{p\})\right]$$

is a locating-dominating set of G[H] and T_x is not strictly locating, it follows from Theorem 4(iii) that $T_y \setminus \{p\}$ is strictly locating. Therefore, T_y is a stable strictly locating set of H, showing that (iii) holds.

Next, suppose that x and y are distinct non-adjacent vertices of G with $N_G(x) = N_G(y)$. Suppose that one, say T_x is not a dominating set of H. Then T_y is a dominating set of G by Theorem 4(iv). Let $q \in T_y$. Since

$$C \setminus \{(y,q)\} = \left[\bigcup_{z \in S \setminus \{y\}} (\{z\} \times T_z)\right] \cup \left[\{y\} \times (T_y \setminus \{q\})\right]$$

is a locating-dominating set of G[H] and T_x is not a dominating set of G, $T_y \setminus \{q\}$ is a dominating set of H by Theorem 4(iv). This shows that T_y is a stable dominating set of H. Thus, (iv) holds.

For the converse, suppose that C satisfies (i), (ii), (iii) and (iv). Then C satisfies the conditions (i), (ii), (iii) and (iv) of Theorem 4. Hence, C is a locating-dominating set of

G. Malacas, S. Canoy, Jr., E. Chacon / Eur. J. Pure Appl. Math, 16 (1) (2023), 479-490

G[H]. Let $(y, a) \in C$. Then

$$C^* = C \setminus \{(y, a)\} = [\bigcup_{x \in S \setminus \{y\}} (\{x\} \times T_x)] \cup [\{y\} \times (T_y \setminus \{a\})].$$

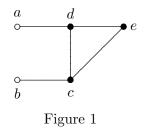
By (ii), $T_y \setminus \{a\}$ is a locating set and T_x are stable locating sets of H for each $x \in S \setminus \{y\}$. This would also imply that $C_G^* = S^* = S = V(G)$. Let x and z be adjacent vertices of G with $N_G[x] = N_G[z]$. If T_x is strictly locating, then we are done. So suppose that T_x is not strictly locating. Then by (iii), T_z is a stable strictly locating set. Hence, if $z \neq y$, then T_y is strictly locating and, if z = y, then $T_y \setminus \{a\}$ is strictly locating. Finally, let u and w be distinct non-adjacent vertices of G with $N_G(u) = N_G(w)$. If T_u is dominating is a dominating set, then we are done. Suppose T_u is not a dominating set in H. Then by (iv), T_w is a stable dominating set of H. This implies that T_w is a dominating set if $w \neq y$ and $T_y \setminus \{a\}$ is a dominating set if w = y. Therefore, C^* is a locating-dominating set of G[H]. \Box

Given a non-trivial connected graph H, we denote by $\gamma_L^s(H)$ the smallest size of a dominating stable locating set of H, i.e.,

 $\gamma_L^s(H) = \min\{|S|: S \text{ is a dominating stable locating set of } H\}.$

Any dominating stable locating set of H of size $\gamma_L^s(H)$ is called a γ_L^s -set of H. Note that since V(H) is a dominating stable locating set, it follows that H admits a dominating stable locating set.

Consider the graph H in Figure 1 below. Clearly, $S = \{c, d, e\}$ is a dominating stable locating set of H and $\gamma_L^s(H) = |S| = 3$.



Corollary 4. Let G and H be non-trivial connected graphs. If G is point determining, then

$$\gamma_{sL}(G[H]) \le |V(G)|\gamma_L^s(H).$$

Proof. Let D be a γ_L^s -set of H and let $T_x = D$ for each $x \in V(G)$. Then $C = \bigcup_{x \in V(G)} (\{x\} \times T_x)$ is a stable locating-dominating set of G[H] by Theorem 5. Thus, $\gamma_{sL}(G[H]) \leq |C| = |V(G)|\gamma_L^s(H)$.

REFERENCES

Note that the bound in Corollary 4 is tight. To see this, consider the graph H in Figure 1. It can easily be verified that $\gamma_{sL}(P_3[H]) = 9 = 3.3 = |V(P_3)|\gamma_L^s(H)$.

The next result follows from Theorem 5.

Corollary 5. Let G be a connected totally point determining graph and let H be any non-trivial connected graph. Then $C = \bigcup_{x \in S} (\{x\} \times T_x)$, where $S \subseteq V(G)$ and $T_x \subseteq V(H)$ for each $x \in S$, is a γ_{sL} -set of G[H] if and only if S = V(G) and T_x is an *sbln*-set of H for every $x \in V(G)$. In particular,

$$\gamma_{sL}(G[H]) = |V(G)|sbln(H).$$

Proof. By Theorem 5, $C = \bigcup_{x \in S} (\{x\} \times T_x)$, where is a γ_{sL} -set of G[H] if and only if S = V(G) and T_x is an *sbln*-set of H for every $x \in V(G)$. Now, let D be an *sbln*-set of H and let $T_x = D$ for each $x \in V(G)$. Then $C_0 = \bigcup_{x \in V(G)} (\{x\} \times T_x)$ is a γ_{sL} -set of G[H]. Therefore, $\gamma_{sL}(G[H]) = |C| = |V(G)| sbln(H)$.

3. Conclusion

The locating dominating sets in the edge corona of graphs were characterized and bounds for its locating-domination number were obtained. The stable locating-dominating sets in the edge corona and lexicographic products of graphs were also characterized. Tight bounds for their stable locating-domination numbers were determined. A further study of stable locating-domination in other graphs is highly recommended. It is not yet known if the stable locating dominating set problem is NP-complete.

Acknowledgements

The authors would like to thank the Department of Science and Technology - Accelerated Science and Technology Human Resource Development Program (DOST-ASTHRDP)-Philippines, and MSU-Iligan Institute of Technology for funding this research.

References

- E. Ahmad, G. Malacas, and S. Canoy Jr. Stable locating-dominating sets in graphs. European Journal of Pure and Applied Mathematics, 14(3):638–649, 2021.
- [2] M.H. Akhbari, R. Hasni, O. Favaron, H. Karami, and S.M. Sheikholeslami. On the outer-conected domination numbers of graphs. *Journal of Combinatorial Optimiza*tion, 26(1):10–18, 2013.

- [3] B. Arriola and S. Canoy Jr. Secure doubly connected domination in graphs. *Inter*national Journal of Mathematical Analysis., 8:1571–1580, 2014.
- [4] J. Cyman. The outer-conected domination numbers of graphs. Australasian Journal of Combinatorics, 38(1):35–46, 2007.
- [5] S. Daniel and S. Canoy Jr. Clique domination in graphs. Applied Mathematical Sciences, 9(116):5749–5755, 2015.
- [6] A. Finbow and B.L. Hartnell. On locating-dominating sets and well-covered graphs. Congr. Numer., 65:191–200, 1988.
- [7] D. Geoffrey. Nuclei for totally point determining graphs. Discrete Mathematics, 21:145–162, 1978.
- [8] J. Gimbel, B. van Gorden, M. Nicolescu, C. Umstead, and N. Vaiana. Location with dominating sets. *Congr. Numer.*, 151:129–144, 2001.
- [9] T. W. Haynes, S.T. Hedetnieme, and P.J. Slater. Fundamentals of domination in graphs. Monographs and Textbooks in Pure and Applied Mathematics, 28, 1998.
- [10] T.W. Haynes, M.A. Henning, and J. Howard. Locating and total dominating sets in trees. Discrete Applied Mathematics, 154(8):1293–1300, 2006.
- [11] R. Hinampas and S. Canoy Jr. 1-movable domination in graphs. Applied Mathematical Sciences, 8(172):8565–8571, 2014.
- [12] H. Jiang and E. Shan. Outer-conected domination numbers of graphs. American Mathematical Society, 81(1):265–274, 2010.
- [13] S. Canoy Jr. and G. Malacas. Determining the intruder's location in a given network: Locating-dominating sets in a graph. NRCP Research Journal., 13(1):1–8, 2013.
- [14] S. Canoy Jr. and G. Malacas. Differentiating-dominating sets in graphs under binary operations. *Tamkang Journal of Mathematics*, 46(1):51–60, 2015.
- [15] S. Canoy Jr., G. Malacas, and D. Tarepe. Locating-dominating sets in graphs. Applied Mathematical Sciences, 8(88):4381–4388, 2014.
- [16] M. Labendia and S. Canoy Jr. Convex domination in composition and cartesian product of graphs. *Czechoslovak Mathematical Journal*, 62(4):1003–1009, 2012.
- [17] S. Omega and S. Canoy Jr. Locating sets in a graph. Applied Mathematical Sciences, 60:2957–2964, 2015.
- [18] E. Sandueta and S. Canoy Jr. Weakly connected domination in graphs resulting from some graph operations. *International Mathematical Forum.*, 6(21):1031–1035, 2011.
- [19] P.J. Slater. Dominating and location in acyclic graphs. *Networks*, 17:55–64, 1987.

[21] D. Summer. Point determination in graphs. Discrete Mathematics, 5:179–187, 1973.