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Abstract. Let G be an undirected graph with vertex and edge sets V(G) and E(G), respectively.
A subset S of vertices of G is a geodetic hop dominating set if it is both a geodetic and a hop
dominating set. The geodetic hop domination number of G, v44(G), is the minimum cardinality
among all geodetic hop dominating sets in G. Geodetic hop dominating sets in a graph resulting
from some binary operations have been characterized. These characterizations have been used
to determine some tight bounds for the geodetic hop domination number of each of the graphs
considered.
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1. Introduction

Frank Harary et al. in [10] introduced a graph theoretical parameter called geodetic
number of a graph. Geodetic sets and geodetic numbers are studied further in Chartrand
[7]. In 2011, H. Escuadro et al. (see [8]) introduced the concept of geodetic domination
in graphs. After their introduction, more studies have been done on the concepts. Some
of the studies dealing with geodetic sets, geodetic number, and geodetic dominating sets
can be found in [4], [5], [6], [7], [8], [9], [10], [14], and [24].

The concept of hop domination in graphs was introduced and initially investigated by
Natarajan and S. K. Ayyaswamy [19]. The study was then followed by numerous studies
on the topic. In particular, a lot of variations of the concept have been introduced and
studied (see [2], [3], [11], [12], [13], [15], [16], [18], [20], [21], [17], [22], and [23]). Recently,
Anusha and Robin [1] introduced the concept of geodetic hop domination and studied it
for join and corona of graphs. In this present paper, we revisit the concept of geodetic
hop domination and give further results of the new parameter.
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2. Terminology and Notation

For any two vertices v and v in an undirected connected graph G, the distance dg(u,v)
is the length of a shortest path joining u and v. Any u-v path of length dg(u,v) is called
a u-v geodesic. The interval I [u, v] consists u,v and all vertices lying on a u-v geodesic.
The interval Ig(u,v) = Ig [u,v] \ {u,v}. The open neighborhood of a vertex u is the set
N¢g(u) consisting of all vertices v which are adjacent to u. The closed neighborhood of
u is Nglu] = Ng(u) U {u}. For any A C V(G) U N¢g(v) is called the open

veEA
neighborhood of A and Ng[A] = Ng(A)UA is called the closed neighborhood of A. The open

hop neighborhood of a vertex u is the set N&(u) = {v € V(G) : da(v, u) = 2} The closed

hop neighborhood of u is NZ[u] = N&(u) U {u}. For any A C V(G) U N (v
vEA

is called the open hop neighborhood of A and NZ[A] = NZ(A) U A is called the closed hop

neighborhood of A.

A set S C V(G) is a dominating set in G if Ng[S] = V(G). The smallest cardinality
of a dominating set in G, denoted by v(G) is called the domination number of G. The
geodetic closure of a set S C V(G), denoted by I [S], is the union of the intervals I[u, v],
where u,v € S. Set S is geodetic set in G if I¢[S] = V(G). The smallest cardinality among
all geodetic sets in G, denoted by g(G), is called the geodetic number of G. A geodetic set
of cardinality ¢g(G) is called a g-set of G. A set S C V(G) is a geodetic dominating set in
G if it is both a dominating and a geodetic set.

A set S C V(G) is a hop dominating set if N4[S] = V(G). The minimum cardinality of
a hop dominating set of a graph G, denoted by v (G), is called the hop domination number
of G. A subset S of V(G) is a total hop dominating set of G if for every v € V(G), there
exists u € S such that dg(u,v) = 2. The smallest cardinality of a total hop dominating
set of G, denoted by v, (G) is called the total hop domination number of G. Any total
hop dominating set of G with cardinality v, (G) is called a ~yp-set.

A subset S of vertices of G is a geodetic hop dominating set if it is both a geodetic and
a hop dominating set. The geodetic hop domination number v,4(G) of G is the minimum
cardinality among all geodetic hop dominating sets in G. Any geodetic hop dominating
set of G' with cardinality v,4(G) is called a ypg-set.

A set S C V(G) of a graph G is called a 2-path closure absorbing if for each x € V/(G)\ S
there exist u,v € S such that dg(u,v) = 2 and = € Ig(u,v). The minimum cardinality
of a 2-path closure absorbing set in G is denoted by p2(G). Any 2-path closure absorbing
set of G with cardinality p2(G) is called a ps-set.

A set D C V(G) is a pointwise non-dominating set of G if for each v € V(G) \
S, there exists u € S such that v ¢ Ng(u). The smallest cardinality of a pointwise
non-dominating set of G, denoted by pnd(G), is called the pointwise non-domination
number of G. A pointwise non-dominating set S C V(G) of a graph G is called a 2-path
closure absorbing pointwise non-dominating set if it is a 2-path closure absorbing set. The
minimum cardinality of a 2-path closure absorbing pointwise non-dominating set in G is
denoted by popnd(G). Any 2-path closure absorbing pointwise non-dominating set of G
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with cardinality popnq(G) is called a pappg-set.

Let K, be the complete graph of order n > 3 and €2 a family of complete proper
subgraphs of K,,. We say that ) is an independent set if no two distinct subgraphs in
2 have common vertex. The graph G of order n obtained from K,, by deleting the edges
in Q is denoted K, \ E(Q2). Hence, xy € F(G) if and only if zy is not an edge in any
subgraph in €.

Let G and H be two graphs. The corona G o H is the graph obtained by taking one
copy of G and |V (G)| copies of H, and then joining the ith vertex of G to every vertex of
the ith copy of H. We denote by HY the copy of H in G o H corresponding to the vertex
v € V(G) and write v + HY for (v) + HY. The lexicographic product G[H] is the graph
with vertex set V(G[H]) = V(G) x V(H) and (v,a)(u,b) € E(G[H]) if and only if either
wv € E(G) or u =v and ab € E(H). Note that any non-empty set C C V(G) x V(H) can
be written as C' = U [{z} x T,], where S C V(G) and T,, C V(H) for each z € S.

€S

3. Results

Remark 1. Let G be a connected graph of order n. If S is a geodetic hop dominating set
then S is a hop dominating set. In particular, v4(G) < Yhge(G).

Theorem 1. Let G' be a connected graph of order n > 2. Then y,y(G) = n if and only if
one of the following holds:

(11) G # K, and there exist dominating vertices vi,va,...,vx such that Hy = G\ vy,
Hy = Hy\wva, . .., He_1 = Hp_o\ vg_1 are connected graphs and Hy, = Hy_1 \ vg
is the union of atleast 2 complete components.

Proof. Suppose v,4(G) = n and suppose that G # K,,. Then there exist z,y € V(G)
such that dg(x,y) = 2. Let v1 € Ng(x) N Ng(y). Suppose there exists z € V(G) \ {v1}
such that v1z ¢ F(G). We may pick z so that dg(vi,2z) = 2. Then V(G) \ {v1} is a
geodetic hop dominating set of G, contrary to our assumption that v,,(G) = n. Thus,
Ng [n1] = V(G).

Next, let Hy = G \ v1. Suppose that H; is disconnected and suppose that H; has a
component H; that is not complete. Then there exists s,t € V(H;) such that d Hi(s’ t) =
dm, (s, t) = dg(s,t) = 2. Let r € Ng(s) N Ng(t). Then V(G) \ {r} is a geodetic hop
dominating set of GG, a contradiction. Therefore, all components of H; are complete.

Suppose H; is connected. Suppose further that dg, (z,y) > 3, say [z1, 22, ..., 2], where
x1 = x and z}, = y, be an x-y geodesic in H. Then V(G)\{z2} is a geodetic hop dominating
set, a contradiction. Thus, dg(z,y) = 2. Let va € N, (x) N Ny, (y). Suppose there exists
p € V(H;) such that dg, (v2,p) = 2. Then V(G) \ {v2} is geodetic hop dominating set of
G, a contradiction. Thus, Ny, (v2) = V(H;) and Ng [v2] = V(G).
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Continuing in this manner, there exists a finite sequence of dominating vertices vy, va, ..
such that H; = G\ vy, Hp = Hy \ vy, . . . , Hy_1 = Hy_5 \ vp_1 are connected graphs
and Hj, = Hy_1 \ vy is the union of at least 2 complete components.

For the converse, suppose that G = K,,. Then, clearly, y4,(G) = n. Let vy, v, ..., v
be dominating vertices such that Hy = G \ vy,..., Hy_1 = Hp_o \ vx_1 are connected and
Hj, = Hjp_1 \ vy is the union of at least two complete graphs. Let S be a vyp4-set of G.
Then vy, vs,...,vx € S. Let v € V(G) \ {v1,v2,...,ux}. Suppose v € S. Since S is a hop
dominating set, there exists w € SN Né(v). Also, since S is a geodetic set, there exists
p,q € S such that [p,v,q| is a p-q geodesic. Since p,v and ¢ are not dominating vertices,
p,v,q € V(Hg \ vg). It follows that the component of Hy \ v containing p,v and ¢ is
not complete, contrary to our assumption. Therefore, v € S. Accordingly, S = V(G) and
Thg(G) = n. O

Proposition 1. Let n be a positive integer.

n, ifn=12.

2E8 - if n = 0(mod3),
%"Q, if n = 1(mod3),
ot ifn = 2(mod3),

(i) For a path P, on n vertices , Ypq(Pp) =

Ve

3. ifn=345
g : g if n = 0(mod3)
1) For a cycle C,, on n vertices, Cy) =143 ’
(i) Y " g (Cn) ”T”, if n = 1(mod3),
\HTH’ if n = 2(mod3),

Proof.

1) Let P, = [v1,ve,...,v,] and S be yp4-set of P,. Since S is a geodetic set, vy, v, € S.
g
Consider the following cases:

Case 1. n = 0(mod3)

Let n = 3r, for some positive integer r. Then S = {v1, v4, ..., V32, V3,1, V3, } and

Sy = {3, v3,_3, ...,v3,v2,v1 } are the only vyp4-sets of P,. Hence, vyp4(Py) = |S1] =
n+6
2.

Case 2. n = 1(mod3)

Let n = 3t + 1, for some non-negative integer t. Then S35 = {v1,v4, ..., V3441 } is the
unique ypg-set of P,. Hence, v,4(P,) = |S3| = nTH

Case 3. n = 2(mod3)

Let n = 3s + 2, for some non-negative integer s. Then Sy = {v1,v4, ..., V3541, V3s42}

and S5 = {v3s542,V35—1,...,02,01} are the only ypg-sets of P,. Hence, y,4(P,) =
|S4] = "TH.

- Vg
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(i1) Let Cp = [v1,v2, ..., Un,v1] and let D be yp4-set of C,. By circularity property of Cy,,
we may assume that v; € D. Consider the following cases:

Case 1. n = 0(mod3)

Let n = 3r for some positive integer r. Then D = {vi,v4,...,v3,—2}. Hence,
Tng(Pn) = |D| =
Case 2. n = 1(m0d3)

Let n = 3t 4 1 for some non-negative integer ¢t. Then D = {v1, vy, ..., v3:41}. Hence,
Thg(Cn) = [D| = 252,
Case 3. n = 2(mod3)

Let n = 3s + 1 for some non-negative integer s. Then D = {v1,v4, ..., V3541, U3s42}-
Hence, v,4(Cy) = |D| = ”+4

Remark 2. If P, = [v1,v2,...,v,] and S is a geodetic set of P, then {vi,v,} C S.

Theorem 2. Let K, be the complete graph of order n > 3 and ) an independent family
of complete proper subgraph of Ky, each of order at least 2. If G = K,, \ E(Q), then

n, if |9 =1

Thg(G) = 1Q] —2+n— > q+min{dp+1}, if|Q>2
KqeQ

where p=min{q : K, € Q}.

Proof. Suppose that S is a ypg-set of G and let Q = {K,}. If K, = K,,, then we are
done. If K}, # K, then there exist dominating vertices vy, va, ..., vy such that H; = G\ vy,
Hy=Hy\ve,...,Hyr 1= Hjy o\ vk are connected graphs and Hy = Hy_1 \ vy is the
union of at least 2 complete components. By Theorem 2, v,4(G) = n.

Suppose [ = 2. Let D1 = V(G) \ Ug, cq V(Ky) and let Dy be a smallest subset of
S such that V(G) \ S C Ig(D2). Since G is non-complete, there exist u,v € S such that
dg(u,v) = 2. Since 2 is an independent set, u,v € V(K,) for a unique K, € Q. We may
assume that u,v € Dy. Consider the following cases:

Case 1. p < 4.

Then V(G)\ S C Ig(V(K)p)). If there exists w € V(K,) \ S, then there exist z,y € S
such that [z, w, y] is an z-y geodesic. It follows that z,y € V(K,) for some K, € Q\ {K,}.
Since u,v,x,y € Dy, |Da| > 4 > p, a contradiction. Thus, V(K,) C S and Dy = V(K,).

Next, let K, € Q\ {K,}. Since S is a hop dominating set of G, SNV (K,) # @.
Moreover, |SﬂV(Kq)\ = 1 since S is a ypg-set of G. Let SNV(K,y) = {z,} for each
K, € Q\ {K,}. Note that if D # &, then D; contains all the dominating vertices of G.
Hence D; C S. Therefore,

S=DiUDyU U{xq}
q#p
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and
Mmg(G) = 1Sl=n— > q+p+[Q| -1
Kq€Q
= (n=> aq|+p+1+1Q -2
K,€9
Case 2. p > 4.

Suppose Dy = V(Kp). Then [S| =n =k coa+p+ Q] — 1. Let Ky € Q\ {K,}.
Pick a,b € V(K;) with a # b. Let D" = {u,v,a,b}. Then V(G)\ S C I(D'). For each
Ky € O\ {Kp, K1}, pick yg € V(K,). Let 8" = DyUD U (Uyspe {0a}). Then ' is a
geodetic hop dominating set of G and

= |n— > q|+4+1Q -2
Kq,eQ

< [n=>q]+p+i10 -1
K,€Q

This is a contradiction to the above assumption. Thus, D # V(K)).
Using the preceding arguments, we have

Mmg(G)=1S=|n= Y q|+4+1Q -2
KqeQ

This proves the assertion. O

Corollary 1. Let K, be the complete graph of order n > 4 and Q2 an independent family of
complete proper subgraphs of K, each of order at least 2. If Ko € Q and G = K, \ E(Q2),

then
Yhg(G) = .
g {|Q|+1+n—qu€Q, if Q] > 2.

Corollary 2. Let K, be the complete graph of order n > 4. If G is a graph of order n
obtained from K, by deleting an edge, then ype(G) =n

The next result is a restatement of the one obtained in [15].
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Theorem 3. Let G and H be any two graphs. A set C C V(G o H) is a hop dominating
set of G o H if and only if
C=AU (UUEV(G)S’U) R

where A C V(G) and S, C V(H") for each v € V(G), and satisfies the following condi-

tions:

(i) For each w € V(G) \ A, there ezists x € A with dg(w,x) = 2 or there exists
y € V(G) N Ng(w) with S, # @.

(1) Sy, C V(H") is a pointwise non-dominating set of H' for each v € V(G) \ Ng(A).

Theorem 4. Let G and H be any two graphs. A set C C V(G o H) is a geodetic hop
dominating set of G o H if and only if

C=AU (Uvev(g)sv) ,

where A C V(G) and S, C V(H") for each v € V(G), and satisfies the following condi-
tions:

(i) Sy, CV(HY) is a pointwise non-dominating set of HY for each v € V(G) \ Ng(A).
(13) For each w € V(G) \ A, one of the following condition holds:

(1) 3 a,be Sy, with dg,,(a,b) # 1.
(2) 32,y € V(G) withw € Ig(z,y).
(3) 3se Sy, andt e A.

(1i1) Sy is a 2-path closure absorbing set in HY Yv € V(QG).

Proof. Suppose C' is a geodetic hop dominating set of Go H. Let A = C NV(G) and
Sy =CNV(H") for each v € V(G). Since C is a geodetic set, S, # @ for each v € V(G).
By Theorem 3, (i) holds. Let w € V(G) \ A. Since C is a geodetic set of G o H, at least
one of the three statements in (i7) holds. Let v € V(G). Let p € V(H") \ S,. Since C is
a geodetic set, there exist s,t € C such that p € Igom(s,t). It follows that s,t € S, and
dpo(s,t) = 2 and [s, p,t] is an s-t geodesic in HY. Thus, S, is a 2-path closure absorbing
set in H", showing that (i77) holds.

Conversely, suppose C satisfies the given conditions. Let v € V(G) \ A and choose any
y € Ng(v). By assumption, S, # @. Hence, by Theorem 3, C' is hop dominating set of
GoH. Let z€ V(Go H)\ C and let w € V(G) such that z € V(w + H"). Consider the
following cases:

Case 1. z = w.

Then w € V(G) \ A. Suppose condition (1) of (i7) holds. Then a,b € C and z €
Igon(a,b). Suppose (2) holds. Let p € S, and ¢ € S,. Then p,q € C and z € Igon(p,q).
Next, suppose that (3) holds. Then s,t € C and z € Igon(s,t).

Case 2. z # w.
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Then z € V(HY) \ Sy. By (iii), Sy is a 2-path closure absorbing set in H"; hence,
there exists a,b € S,, such that [a, z,b] is an a-b geodesic in H"Y. Therefore, a,b € C' and
[a,z,b] is an a-b geodesic in G o H.

Accordingly, C' is a geodetic hop dominating set of G o H. O

Corollary 3. Let G be a connected non-trivial graph on n vertices and let H be any
noncomplete graph. Then

'th(G o H) = min {np2pnd(H)v V(H) + an(H)} .

Proof. For each v € V(G), let S, be a pappg-set of HY. Then C = U,cy () Sy is a
geodetic hop dominating set of Go H by Theorem 4. Next, let A be a v-set of G. For each
v e V(Q), let T, be a py set of H'. By Theorem 4, C' = AU (Upev(e)Tv) is a geodetic
hop dominating set of G o H. Thus,

g(G 0 H) < min {|C1,1C"| } = min {npapna(H), y(H) + npa(H)}

Let R, be a pappa-set of H". Let A; = V(G) \ Ng(Ap) and Ay = Ng(Ap). Then
Co= Ay U (Uvev(G)Rv) is a geodetic hop dominating set of G o H by Theorem 4. Thus

Col = 140 + 3 IRl + 3 IR

vEAL vEA2

> ‘A0| + |A1‘ p2pnd(H) + ’A2| pQ(H)

Suppose Y(GQ) + np2(H) < npopna(H). Then po(H) < popnd(H), that is, po(H) +1 <
p2pnd(H). It follows that

1Col > [Ao| +|A1] (p2(H) 4 1) + |As| p2(H)
= |Ao| + [A1] + [A1] + |A2| p2(H)
= |Ao| + [A1| + np2(H)
> Y(G) +np2(H)

since Ag U A; is a dominating set of G and |Ag + 41| < |Ag| + |41].
Suppose npapnd(H) < v(G) + np2(H). Then popna(H) = p2(H). Thus,

|Col > [Ao| + A1 p2pna(H) + | A2 p2(H)
= |Ao| + (|A1] + [Az2]) p2pna(H)
= [Ao| + np2pna(H)
> npopnda(H).

Therefore,
th(G © H) = ‘00’ Z min {nPQpnd(H)7 V(G) + np2pnd(H)}
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Accordingly,

Yrg(G o H) = min {npapni(H),v(G) + npapna(H)} .

Canoy et al. in [15] obtained the next result.

Theorem 5. Let G and H be connected non-trivial graphs. A subset C' = |J,cglz x T;]
of V(G[H]), where S CV(G) and T, C V(H) for each x € S, is a hop dominating set of
G[H] if and only if the following conditions hold:

(i) S is a hop dominating set of G;
(i4) Ty is a pointwise non-dominating set of H for each x € S\ NZ(S).

Theorem 6. Let G and H be connected non-trivial graphs. A subset C' = |J,cg[x x T3] of
V(G[H]), where S C V(G) and T, C V(H) for each x € S, is a geodetic hop dominating
set of G[H] if and only if the following conditions hold:

(i) S is a geodetic hop dominating set of G,
(i4) Ty is a pointwise non-dominating set of H for each x € S\ NZ(S).
(1i1) Ty is a 2-path closure absorbing set of H for each x € S\ Ig(95).

Proof. Suppose C' is a geodetic hop dominating set of G [H]|. By Theorem 5, S is a
hop dominating set of G and (i) holds. Suppose v € V(G) \ S. Let a € V(H). Since C
is a geodetic set, there exist (x,p), (y,q) € C such that (v,a) € Igg((z,p), (y,9)). Then
xz,y € S and v € Ig(x,y). This shows that S is a geodetic set of G, showing that ()
holds. Next, let z € S\ Ig(S). If T, = V(H), then it is a 2-path closure absorbing set of
H. Suppose T, # V(H) and let b € V(H) \ T;.. Since (z,b) ¢ C and C is a geodetic set,
there exist (u, k), (w,t) € C such that (v,b) € Igm((u, k), (w,t)). Since z € S\ Ig(S),
u=w =z and dgm)((u, k)(w,t)) = 2. Because (z,b) € Igm((u,k), (w,t)), this would
imply that dg(k,t) = 2 and = € Iy (k,t). This shows that T} is a 2-path closure absorbing
set of H, that is, (4i7) holds.

Conversely, suppose C satisfies (7), (i¢) and (i7i). By Theorem 5, S is a hop dominating
set of G. Let (v,p) € V(G[H]) \ C. Consider the following cases:

Casel. v ¢ S.

Since S is a geodetic set of G, there exist u,w € S such that v € Ig(u,w). Let
[v1,v2, ..., U], where v1 = v and vy = w, a u-w geodesic in G. Let v = v; where 1 < j < k.
Let s € T, and t € T,,. Then [(v1,5), (v2,D), ..., (Vj,D); .., (Vk—1,D), (Vg, )] is (u, s)-(w,t)
geodesic in G[H] containing (v, p).

Case 2. v € S.

Then p ¢ T,. If v € I5(S), then following the arguments of Case 1, there exist
(z,a),(y,b) € C such that (v,p) € Ig((x,a),(y,b)). Suppose v ¢ Ig(S). By (iii),
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T, is a 2-path closure absorbing set of H. This implies that there exists ¢,d € T, such
that dp(c,d) = 2 and p € Ig(c,d). Hence, (v,c),(v,d) € C and [(v,c¢), (v,p), (v,d)] is a
(v,¢)-(v,d) geodesic in G[H].

Therefore, C' is a geodetic hop dominating set of G[H]. O

Corollary 4. Let G and H be connected non-trivial graphs. Then

Thg(GIH]) < mg(G) papna(H)

Proof. Let S be a ypg-set of G and let D be a pappq-set of H. For each x € §, let
T, =D. Then
C=J{a}xT)=5xD
€S

is a geodetic hop dominating set by Theorem 6. Therefore,

’th(G [HD < ’C‘ = ‘S‘ ’D‘ = ’th(G)prnd(H)'

Remark 3. Strict inequality in Corollary 4 can be attained.

Example 1. Consider the graph Ps[Ps]. It can be verified that

Yng(P3 [Ps3]) = T < 9 = g (P3) papna(P3)

G O

Figure 1: The lexicographic product P3[Ps]

Corollary 5. Let n > 2 be a positive integer and let H be any connected non-trivial graph.
Then

Yhg (Kn [H]) = anpnd(H)

Proof. Let C = (J,cq ({x} x T%) be a ypg-set of K, [H]. Then S = V(K,) by Theorem
6(7). Also, by (i7) and (i7i) of Theorem 6, T, is a pointwise non-dominating and 2-path
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closure absorbing set of H for every x € S. Thus,

g (Ka[H]) = |C] = Y |T]

zeS
Z ‘S‘ p2pnd(H)
np2pnd(H)

By Corollary 4, vy (Ky [H]) = npapna(H). O

Example 2. Consider the graph Ks[Py]. It can be verified that

Yrg (K3 [Ps]) = 9 = Yng(K3) p2pna( Pa)

0
D

o,

Figure 2: The lexicographic product K3[P]

4. Conclusion

This paper investigated the concept of geodetic hop  domination,
a variant of hop domination, which was definedand studied previously by some authors.
Some bounds of the parameter are determined and graphs attaining these bounds are
also characterized. Characterizations of geodetic hop dominating sets in the corona and
lexicographic product of two graphs are given. These characterizations were used to ob-
tain exact or tight bounds for the geodetic hop domination number of the corresponding
graphs. It is recommended that some other bounds for the geodetic hop domination be
determined and that the parameter be studied for other interesting graphs.
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