Cliques and Supercliques in Graphs
DOI:
https://doi.org/10.29020/nybg.ejpam.v16i1.4651Keywords:
clique, clique number, superclique, superclique numberAbstract
A set S ⊆ V (G) of an undirected graph G is a clique if every two distinct vertices in S are adjacent. A clique is a superclique if for every pair of distinct vertices v, w ∈ S, there exists u ∈ V (G) \ S such that u ∈ NG(v) \ NG(w) or u ∈ NG(w) \ NG(v). The maximum cardinality of a clique (resp. superclique) in G is called the clique (resp. superclique) number of G. In this paper, we determine the clique and superclique numbers of some graphs.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 European Journal of Pure and Applied Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.