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Abstract. Let G be a connected graph. A function f : V(G) — {0,1,2,3} is a double Roman
dominating function of G if for each v € V(G) with f(v) = 0, v has two adjacent vertices u and
w for which f(u) = f(w) = 2 or v has an adjacent vertex u for which f(u) = 3, and for each
v € V(G) with f(v) = 1, v is adjacent to a vertex u for which either f(u) = 2 or f(u) = 3.
The minimum weight wg(f) = ZveV(G) f() of a double Roman dominating function f of G
is the double Roman domination number of G. In this paper, we continue the study of double
Roman domination introduced and studied by R.A. Beeler et al. in [2]. First, we characterize
some double Roman domination numbers with small values in terms of the domination numbers
and 2-domination numbers. Then we determine the double Roman domination numbers of the
join, corona, complementary prism and lexicographic product of graphs.
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1. Introduction

Throughout this paper, all graphs considered are finite, simple and undirected. Let
G = (V(G), E(G)) be a graph with V(G) and E(G) being the vertex set and edge set of
G, respectively. For S C V(G), the symbol | S| refers to the cardinality of S. In particular,
|[V(G)] is the order of G. For other basic concepts not presented but are used here are
adopted from ([4, 11]).

For a vertex v of a graph G, the open neighborhood of v refers to the set Ng(v) = {u €
V(G) : wv € E(G)} while its closed neighborhood is the set Ng[v] = {v} U Ng(v). Vertex
v is an isolated vertex if Ng(v) = @. For S C V(G), the open neighborhood and closed
neighborhood of S are the sets Ng(S) = Uyes N (v) and Ng[S] = Uyes Ng|u], respectively.
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A set S C V(G) is said to be a dominating set of G if Ng[S] = V(G). The minimum
cardinality of a dominating set is called the domination number of GG, and is denoted by
~v(G). Any dominating set of cardinality v(G) is referred to as a 7y-set of G. We refer
to [1, 3, 5, 7, 8, 12, 14] for the introduction, fundamental concepts and some studies on
domination in graphs.

A set S C V(G) is called a 2-dominating set if each v € V(G)\ S, |[SNNg(v)| > 2. The
2-domination number of G, denoted y2(G), is the minimum cardinality of a 2-dominating
set of G. References [7, 10] provide a good study on 2-domination.

A Roman dominating function on G is a function f : V(G) — {0,1,2} satisfying the
condition that for each u € V(G) for which f(u) = 0, there exists v € V(G) such that
f(v) = 2 and wv € E(G). The weight of f is the value wg(f) = >_,cy(q) f(v). The
Roman domination number of G, denoted by yr(G), is the minimum weight of a Roman
dominating function of G. The history, introduction and some of the recent studies in
Roman domination have been provided in [6, 13, 15-17].

A function f : V(G) — {0,1, 2,3} is a double Roman dominating function of G, written
f € DRD(G), if each of the following holds:

(1) for each v € V(G) with f(v) = 0 at least one of the following holds:

(a) v has two adjacent vertices u and w for which f(u) = f(w) = 2; or

(b) v has an adjacent vertex u for which f(u) = 3, and

(2) for each v € V(G) with f(v) = 1, v is adjacent to a vertex u for which either f(u) = 2
or f(u) =3.

The double Roman domination number of G, denoted by v4r(G), is the minimum weight
wa(f) = 2 pev(q) f(v) of a double Roman dominating function f of G. Any f € DRD(G)
of weight equal to v4r(G) is referred to as vgr-function of G.

The concept of double domination in graphs was proposed by Beeler, Haynes and
Hedetniemi [2] in 2016. It is a stronger version of Roman domination. If in Roman domi-
nation only one legion is required to defend an attacked city, in double Roman domination
any attack can be defended by at least two legions. Double Roman domination is further
studied in [9, 18, 19].

In this paper, the double Roman domination in graphs is revisited. The main interest is
particularly on the double Roman dominating function of the join, corona, complementary
prism and lexicographic product of graphs.

The following results established in the referred articles are useful in this paper.

Proposition 1. [2] In a double Roman dominating function of weight v4r(G), no vertex
needs to be assigned the value 1.

Proposition 2. [9] For n > 1,

n, ifn=0 (mod 3),

P, =
1ar(Fn) {n—i—l, ifn=1,2 (mod 3).
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Proposition 3. [9] For n > 3,

n, ifn=0,2,3,4 (mod 6),

Cn) =
1ar(Cn) {n+1, ifn=1,5 (mod 6).

Proposition 4. [2] For any graph G, 2v(G) < v4r(G) < 3v(G).
2. Results

For a function f : V(G) — {0,1,2,3}, we write f = (Vp, V1, Va, V3), where V; = {v €
V(G) : f(v) =i} for all i € {0,1,2,3}. Hence, f € DRD(G) if and only if each of the
following holds:

(1) for each v € Vi, [VaN Ng(v)| > 2 or [V3N Ng(v)| > 1; and
(2) for each v € V1, either |Vo N Ng(v)| > 1 or [V3N Ng(v)| > 1.

In view of Proposition 1, we may always assume that a y4g-function of G is of the
form f = (Vp, @, Vo, V3). Thus, v4r(G) > 2 for all graphs G. More precisely, v4r(G) = 2
if and only if G = K.

Proposition 5. Let G be a nontrivial connected graph. Then
(1) var(G) = 3 if and only if v(G) = 1; and
(i4) var(G) =4 if and only if v(G) = 2 = 72(G).

Proof. If v4r(G) = 3 and f = (W, a, Vo, V3) is a ygp-function of G, then V5 = &,
|[Va| =1 and Vp = V(G) \ V5. If V3 = {v}, then Ng[v] = Vo U{v} = V(G). This means
that v(G) = 1.

Conversely, if 7(G) = 1 and {v} is a dominating set of G, then f = (V(G)\{v}, 2,9, {v}) €
DRD(G) so that v4r(G) < wg(f) = 3. Since G is nontrivial, y4r(G) = 3. This proves
(4)-

Assume that v4r(G) = 4, and let f = (Vp, d, Vs, V3) be a q4p-function of G. Then
[Va| = 2 (say Vo = {u,v}), V3 = & and Vj = V(G) \ {u,v}. Thus, V5 is a 7a-set so
that v2(G) = 2. Moreover, being a 2-dominating set, V5 is a dominating set of G so that
+(G) < 2. By (i), 7(G) =2

Conversely, let S = {u,v} be a ya-set of G. Since f = (V(G)\ 5,9, 5,9) € DRD(G),
var(G) < wa(f) = 4. Because G is nontrivial and v(G) # 1, vq4r(G) > 4 by (i). Hence,
vir(G) = 4. This proves (ii). O

Proposition 6. For a nontrivial connected graph G, vqr(G) =5 if and only if v2(G) > 3
and there exist u,v € V(G) for which the following holds:

(1) w ¢ E(G);
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(i) V(G)\ Ng[v] = {u} and V(G) \ Nglu] # {v}.

Proof. Assume that v4r(G) = 5. In view of Proposition 5, v2(G) > 3. Let f =
(Vb, @, Va, V3) be a vygp-function of G. Then |Va| = |V3| = 1. Let Vo = {u} and V53 = {v}.
Since f is a yggr-function of G, Ng(v) = Vh. Because v(G) > 2, wv ¢ E(G). Hence,
V(G) \ Ng[v] = {u}. Moreover, since 2(G) > 3, uw ¢ E(G) for some w € V(G) \ {u,v}.
Therefore, V(G) \ Ng[u] # {v}.

Conversely, suppose that v(G) > 3, and let u,v € V(G) such that wv ¢ E(G),
V(G) \ Ng[v] = {u} and V(G) \ Ng[u] # {v}. In view of Proposition 5, {u,v} is a y-set
of G. Since f = (V(G) \ {u,v},d,{u},{v}) € DRD(G), v4r(G) < wg(f) = 5. Since
v(G) = 2 and ¥2(G) # 2, v4r(G) = 5 by Proposition 5. O

Corollary 1. For a nontrivial connected graph G, vqr(G) = 5 if and only if v(G) = 2,
v2(G) > 3 and v(G — v) =1 for some v € V(G), where G — v is the resulting graph after
removing the vertex v.

Proof. Assume that v4r(G) = 5. By Proposition 6, 72(G) > 3 and there exist vertices
u,v € V(G) for which wv ¢ E(G), V(G) \ Nglu] = {v} and V(G) \ Ng[v] # {u}. This
means that {u,v} and {u} are y-sets of G and G — v, respectively. Thus, v(G) = 2 and
(G —v) =1.

Conversely, suppose that 7(G) = 2, v2(G) > 3 and let u,v € V(G) such that Ng_,[u] =
V(G — v). Since y2(G) # 2, there exists w € V(G) \ {u,v} such that vw ¢ E(G). Thus,
w € V(G) \ Nglu] so that V(G) \ Ng[v] # {u}. Moreover, since v(G) = 2, uv ¢ E(G) so
that V(G) \ Ng[u] = {v}. By Proposition 6, y4r(G) = 5. O

Proposition 7. For nontrivial connected graph G, v4r(G) = 6 if and only if one of the
following holds:

(1) Y(G) =2, v2(G) >3 and v(G —v) > 2 for allv € V(G).
(17) v(G) > 2 and v2(G) =3 and v(G —v) > 2 for allv € V(G).

Proof. Let v4r(G) = 6. Then v(G) > 2 by Proposition 5. Let f = (Vp, @, Va2, V3) be a
~var-function of G. Consider the following cases:

Case 1. Suppose that V5 = @ and |V3| = 2. Then V5 is a dominating set of G and so
v(G) = 2. Since v4r(G) # 4, 72(G) > 3 by Proposition 5. Moreover, by Proposition 1,
v(G —wv) > 2 for all v € V(G). This proves (7).

Case 2. Suppose that |Va| = 3 and V3 = @. Then V3 is a 2-dominating set of G so that
v2(G) < 3. Since v4r(G) # 4, v2(G) = 3 by Proposition 5. Hence, (ii) holds.

Conversely, by Proposition 5, Proposition 6 and Corollary 1, y4r(G) > 6. If u,v €
V(QG) such that {u,v} dominates V(G), then f = (V(G)\ {u,v}, 2, @, {u,v}) € DRD(G)
so that Y4r(G) < wg(f) = 6. On the other hand, if {u,v,w} is a ye-set of G, then
f=WV(GE)\{u,v,w},d,{u,v,w}, &) € DRD(G) so that v4r(G) < wg(f) = 6. Therefore,
each of (i) and (i7) implies that v4r(G) = 6. O
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Proposition 8. For a nontrivial connected graph G, if vir(G) = 7, then v(G) = 3 and
72(G) = 4.

Proof. Let v4r(G) = 7. By Proposition 5, Corollary 1, and Proposition 7, v(G) > 3
and y(G) > 4. Let f = (Vo,9, Vs, V3) be a y4p-function of G. Then |Vo| = 2 and
|Va| = 1. Write Vo = {u,v} and V3 = {w}. Then {u,v,w} is a dominating set of G, and
so, 7(G) < 3. Hence, v(G) = 3. O

The converse of Proposition 8 need not be true. Consider for example, the graph G
in Figure 1 obtained from Py = [z1,%2,3,...,2Z9] by adding the edges z3z5 and z7xs.
Observe that v(G) = 3, v2(G) > 4 but y4r(G) =9 > 7.

T4 Te

Figure 1: A graph G with v4r(G) > 7

Proposition 9. Let G be a disconnected graph with components Cy, Cs, ..., Cy. Then

vir(G) = Z§:1 var(Cj). In particular, if G = K,,, then v4r(G) = 2n.
Proof. If fi, fa,..., fr are ygp-functions of Cy, Cs, ..., Cj, respectively, then the

function f: V(G) — {0,1,2,3} given by f(x) = fi(z) for all z € V(C}) is a y4g-function
of G. Thus, v4r(G) < 3°5_; var(C))-

Conversely, if f be a y4r-function of G, then the restriction f|c; of f to Cj, for any
J=1,2,...,k, is a ygg-function of C;. Thus, v4r(Cj) < we,(flc,) for all j =1,2,... k.

Hence, Z?:l vdr(C;) < var(G). =

Proposition 10. (i) For any path P, of order n,

27 n - )
Yir(Prn) = 44, n=2;
9, n

(ii) For any cycle C,, of order n >3, vqr(C,) = 6.

Proof. For (i): The cases where n = 1,2,3,4 are clear. Suppose that n > 5. Eet
V(Py) = [v1,v2,...,vn]. Then the sets {v1,v2} and {v1,v2,v3} are y-set and yo-set of Py,
respectively. Moreover, v(P, — v2) = 1. By Proposition 6, yqr(P,) = 5.
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For (ii): The case where n = 3,4 is clear. Suppose that n > 5. Let u,w,v € V(C,,) such
that u,w € N¢, (v). Then {u,v} and {u,v,w} are v-set and ~yo-set of C,, respectively.

Moreover, v(C,, —v) = 2 for all v € V(C,). By Proposition 7, v4r(Cy) = 6. O

The (n, m)-tadpole graph T, ,, is obtained by joining a cycle graph C,, and a path P,
with a bridge. The graph in Figure 2 is the tadpole 7§ 3.

Figure 2: The tadpole 753

Proposition 11. For T,,1 with n > 3, n < vgr(Tn,1) < n+ 1. More precisely,

n, n=0,3 (mod 6);

T =

Proof. Let v € V(C,) be the vertex that connects Cp, to P = {u} and let f =
(Vb, @, Va, V3) be a ygr-function of C,,. We may assume that v ¢ Vp. If v € V3, then
g=VoU{u},@,Va,V3) € DRD(T,1). If v € Vo, then g = (Vo, {u}, V2, V3) € DRD(T;,1).
In any case,

Yar(Tn) < wr, 1 (9) <1+ 74r(Ch).

Now, let f = (Vb,9,V2,V3) be a v4p-function of 75, ;. If v ¢ Vj, then v € V3 and
u € Vy so that ¢ = (Vp \ {u},9,V2,V3) € DRD(C,,). If v € Vj and u € Vs, then
g= Vo \{v},2,(VanV(Cy,))U{v},V3) € DRD(C,). And, if v € Vj and u € V3, then
g= W \{v},2, Vo, (V3N V(Cy,))U{v}) € DRD(C,). In any case,

Y¥ar(Cn) < we, (9) = Yar(Tn1)-

Hence, the desired inequalities hold.

Suppose that n = 0,3 (mod 6). Then v45(C),) = n (by Proposition 2.2.3) and C,, has
a ygr-function f = (Vp, d, Vo, V3) with V3 # &. By symmetry, we assume that v € V3.
Thus, g = (Vo U {u}, @, V2, V3) € DRD(T;,1). Together with the inequality,

n < Y4r(Th) < wr, 1 (9) = Yar(Cn) = n.

Therefore, Yqr(Th,1) = n.

Suppose that n = 2,4 (mod 6). Then y4r(Cy) = n and V3 = & for all y4r-functions
f=W,2,Vo,V3) of Cp,. With v € Va, g = (W, {u}, V2, V3) is a yqr-function of T}, ;.
Thus, Yar(Th1) =n + 1.
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Finally, suppose that n = 1,5 (mod 3). Then v4r(C,) = n+ 1 and C, has a y4gr-
function f = (Vo,d, V2, V3) with V3 # &. With v € V5, g = (Vo U {u},a, V5, V3) €
DRD(T,1). Thus, n+1 = y4r(Cr) < var(Tn,1) < wr,,(9) = we, (f) =n+ 1. O
Proposition 12. Let n > 3 and m > 2.

(1) If n=0,3 (mod 6), then

n+ 2, if m=2
'YdR(Tn,m) = .
n+ 'YdR(mel), if m > 3.
(7i) If n=2,4 (mod 6), then
n+2, if m=2
Yar(Tnm) = S 0+ Yar(Pm), if m>3; m=0 (mod 3),

n+5r(Pp) —1, ifm>3; m=1,2 (mod 3).
(791) If n =1,5 (mod 6), then

n 4+ 3, ifm=2

Thm) =
Var(Tnm) {n+1+’YdR(Pm—1)7 if m > 3.

Proof. Write P, = [v1,v2,...,Un]. Let v € V(C),) be the vertex that connects C, to
P,, through the edge vv;. We consider the following cases:

Case 1: Suppose that n = 0,3 (mod 6). Let f = (Vp,a, Va, V3) be a v4g-function of C),
with V3 # &. Assume v € V3. If m = 2, then g = (Vh U {v1}, 9, Vo U{ve}, V3) is a y4r-
function of T, 2. Thus, yqr(Th2) = Yir(Cn)+2 = n+2. Assume m > 3, and let m = 3k+r,
where 0 <7 < 2. Put V5" = {vsg;:j € {1,2,...,k}}. O <r <1, put Vi =V(P,)\ V5
and V¥ = @. On the other hand, if r = 2, put V5 = V(P,) \ (V5 U{vsgs2}) and
Vo' = {vsk42}. Since (V5 \ {v1}, @, V5, V5) is a ygr-function of P, — v = Py—1, g =
(Vou Vg, @, VaU Vs, VaUVS) is a ygp-function of Ty, . Thus, Yar(Th.m) = n+Yar(Pm-1)-

Case 2: Suppose that n = 2,4 (mod 6). Let f = (Vp, V1, Vo, V3) be a v4r-function
of C,. Accordingly, V3 = & and we may assume that v € Vo. If m = 2, then g =
(Vou{wvi}, @, Vo U {ve}, @) is a ygg-function of T}, 2. Thus, var(Th2) =n + 2.

Suppose that m > 3, and let m = 3k + r, where 0 < r < 2. Whenever r = 0, put
Vs =A{vzj_1:5€{1,2,....k}}, Vi =V(Py) \ V5 and V5" = @. Then (Vy, @, V5, V) is
a ygp-function of P,,. Thus g = (Vo UV, @, Vo U V5, V3 U V) is a ygg-function of T), p,.
Consequently, Yar(Tnm) = 1 + Yir(Pm)-

Suppose that » = 1. Let j be the largest positive integer for which 2j < 3k. If 25 = 3k,
put V5" = {vg s i € {1,2,...,5 — 1}}, Vi = VI(Pn) \ (V3" U{vs}) and V5" = {vgr}. On
the other hand, if 25 < 3k, put V5 = {ve; i € {1,2,..., 5} U{vskq1}, Vi = V(Pn) \ V5
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and V5" = @. In either case, g = (Vo U V', @, Vo U VS, V5F U VS is a ygr-function of T), p,.
Thus, 'YdR(Tn,m) =n-+ ’ydR(Pm) —1.

Suppose that » = 2. Let j be the largest positive integer for which 25 < 3k. If
2j = 3k, put Vof = {vg; 11 € {1,2,...,5+1}}, Vi = V(Py) \ V5 and V5" = @. On the
other hand, if 25 < 3k, put V5 = {vg; : i € {1,2,...,5}}, Vi = V(Pn) \ (V5" U{v3k41})
and V5" = {vsg41}. In either case, g = (Vo U V', @, Vo U V5, V5 U VS is a ygr-function of
Tn,m- Thus, ’YdR(Tn,m) =n-+ 'ydR(Pm) — 1.

Case 3: Suppose that n = 1,5 (mod 6). Let f = (Vp, d, Va, V3) be a vyyg-function of C),
with V3 # @ and v € V3. If m = 2, then g = (Vo U {v1}, D, Va U {v2}, V3) is a ygp-function
of T}, 2. Thus,

'ydR(ng) = 'YdR(Cn) +2=n+1+42.

Suppose that m > 3, and let m = 3k + 7, where 0 <r < 2. If r =0, put V5" = {v3; : j €
(1,2, k}}, Vi = V(o) \ Vs and Vi = @. It r = 1, put V5 = {vg; : j € {1,2,...,k}},
Vo =V (Pn) \ V5 and Vi = @. And if r = 2, put V5 = {vs; : j € {1,2,...,k}}, Vj =
V(Pr) \ (V5 U {vskyo}) and V' = {vsg4a}. Since (Vi \{v1}, @, V5, V5*) is a y4r-function of

P, — vy = Pn-1,
g = WUVy, o, VaUVy, VaU V) is a yggp-function of T}, ,. Thus, var(Tnm) = n +
1+ var(Prn-1). ]

Let G and H be graphs with disjoint vertex sets. The join of G and H is the graph
G+ H with V(G+ H) = V(G)UV(H) and E(G+ H) = E(G)UEH)U{uww : u €
V(G),ve V(H)}.

Proposition 13. (join of graphs) Let G and H be nontrivial graphs. Then
3 <7r(G+H)<6. (1)

More precisely,

(i) var(G + H) = 3 if and only if van(G) = 3 or van(H) = 3.
(1) var(G + H) = 4 if and only if min{yar(G),var(H)} = 4.
(ii1) ~an(G + H) = 5 if and only if min{yar(G), var(H)} = 5.
(i) 7ar(G + H) = 6 if and only if ar(G) > 6 and var(H) > 6.

Proof. Since G + H is nontrivial, y74r(G + H) > 3. Now, let u € V(G) and v € V(G).
Then f = (V(G + H) \ {u,v},2,2,{u,v}) € DRD(G + H). Thus, vr(G + H) <
wara(f) = 6.

To prove (i), we have from Proposition 5,

vr(G+H)=3 << ~(G+H)=1
< 7(G)=1lorvy(H)=1
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<= Yr(G) =3or yr(H) = 3.

For (ii)-(éi1), put @ = min{y4r(G),var(H)}. Suppose that v4r(G + H) = 4. By
Proposition 5, v(G + H) = v2(G + H) = 2. Let S = {u,v} be a ya-set of G + H. If
u € V(G) and v € V(H), then v(G) =1 and v(H) = 1, a contradiction. Thus, S C V(G)
or S C V(H). Consequently, v(G) = v2(G) =2 or v(H) = v2(H) = 2. By Proposition 5,
var(G) = 4 or ygr(H) = 4. By (i), a = 4. Conversely, suppose that o = 4, and let f be a
Yar-function of G. Then g = (Vo UV (H),V1,V2,V3) € DRD(G + H) with wgyn(g) = 4.
Hence, v4r(G + H) < wa+n(9) = wa(f) =4. By (i), 7ar(G + H) = 4.

Suppose that the y4r(G+ H) = 5. By (i) and (ii), o > 5. It follows from Proposition 6
that 7(G+H) = 2, 72(G+H) > 3 and there exists v € V(G+H) for which v((G+H)—v) =
1. WLOG, assume that v € V(G). Then v(G — v) = 1 and, consequently, v(G) = 2. If
v2(G) = 2, then v4r(G) = 4 by Proposition 5, a contradiction by (ii). Thus, v2(G) > 3
so that 74r(G) = 5. Thus, a < 5. Conversely, assume o = Y4r(G) = 5, and let f =
(Vo, Vi, Va, V3) be a vgr-function of G. Then g = (Vo UV (H), V1, Vs, V3) € DRD(G + H).
Hence, vir(G + H) < we+u(9) = wa(f) =5 = a. But by (i) and (i7), v4r(G + H) > 5.
Therefore, v4r(G + H) = 5.

Finally, (iv) follows immediately from Equation 1 and statements (i), (ii) and (¢i7). O

The complementary prism is the graph GG formed from G and its complement G
by adding a perfect matching between corresponding vertices of G and G. If for each
v € V(G), 7 is the vertex in G corresponding to v, then GG is formed by adding the edge
vt for every v € V(G).

Remark 1. (i) For any path P, of order n >3,

— 3+ n, ifn=0 (mod 3),
3+(n+1), ifn=1,2 (mod 3).
(13) For any cycle Cy, of order n > 3,
— 44n, ifn=1,2,3,5 (mod 6);
Yar(CnCr) = e ( )
5+n, ifn=0,4 (mod6).

The following lemma is obvious.
Lemma 1. For any graph G, v(GG) = 1 if and only if G = K;.
Proposition 14. Let G be a nontrivial graph. Then
(1) var(G) # 4;
(i1) v4r(GG) = 3 if and only if G = K1; and
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(ii1) var(GG) =5 if and only if G = {K2, K3 }.

Proof. To prove (i), we claim that v2(GG) # 2. Suppose, in the contrary, that
there exist u,v € V(GG) such that S = {u,v} is a yg-set of GG. If u,v € V(G), then
uv ¢ E(GG), a contradiction. Similar contradiction is attained if u,v € V(G). Assume
v € V(G) and u € V(G). If u = v, then for each w € V(G) \ {v} either wv ¢ E(GG) or
ww ¢ E(GG), a contradiction. Suppose that u # v. A contradiction is already attained
if wv ¢ E(G). However, if wv € E(G), then wv ¢ E(G), a contradiction. Therefore,

72(GG) # 2. By Proposition 5, y4r(GG) # 4.

Clearly, if G = K3, then v4r(GG) = 3. Suppose that y4r(GG) = 3. Then v(GG) = 1,
by Proposition 5. Thus, by Lemma 1, G = K. This proves (ii).

Now, we prove (iii). If G € {Ks, K2}, then GG = Py so that y4r(GG) = 5. Conversely,
assume vyr(GG) = 5. By (ii), G # K;. Suppose that G ¢ {Ks, K2}. Let u, v and w be
distinct vertices of G. Then u,w € V(GG) \ N,g[v]. This means that |V (GG)\ Ngg[v]| >
2 for all v € V(G). Similarly, |V(GG) \ Ngglv]l| > 2 for all v € V(G). Therefore,
|[V(GG) \ Ngglv]l > 2 for all v € V(GG). This is a contradiction to Proposition 6.
Therefore, G € {K>y, K»}. O

Theorem 1. (complementary prism) Let G be a graph of order n > 3. Assume

var(G) < Y4r(G). Then

14+ 74r(G) < v4r(GG) < p,

where
p = min{we(f) + 2 (n — [V3|) = [Va| : f = (Vo, V1, V2, V3) € DRD(G) U DRD(G)}.

Moreover, these bounds are sharp.

Proof. Let f = (Vo,V1,V2,V3) € DRD(G). Extend f to a function on V(GG) by
defining
0, ifve Vs
f@) =41, ifveVyy
2, ifveVyUVL.

Then f € DRD(GG) so that yqr(GG) < wg(f) +2(n — |V3|) — [Va|. Thus, 74r(GG) < p.

Now, we show the left-hand inequality. Let f = (Vo,a,Va,V3) be a
yap-function of GG. If V(G) C Vo, then V3 = V(G) so that y4r(GG) = 3|V3| =
3n > 1+ v4r(G). Suppose that V(G) N (VaUVs) # @. Let A = {v € VyNV(G) :
Vs N Neg(v) = {v}}, B = {v e VunV(G) : v € Vo and |Vo N Ngg(v)| = 2} and
C={veVinV(G): (VaUV3)NNyz(v) = {v}. Define g = (Vi, Vi, V5, V) on V(G) by

f(z), fzeV(G)\(AUBUCQC);
g(x) =1 2, itee AUC;
1, ifz € B.
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It follows that ¢ € DRD(G) with Vi = (VonV(G))\ (AU B), Vj* = BU[(VinV(G)) \ C],
Ve =[VanV(G)|JUAUC and V5 = V3N V(G). Moreover,
1ar(GG) =wa(g) + Y f(x) —2/A] = |B| = 0] = wa(9) + 1 = ar(G) + L.
zeV(G)

To show sharpness of the lower bound, note that by Proposition 14,
'ydR(KLE) =3 =1+ v4r(K1). For the upper bound, pick G = K,,, n > 3. Observe that
Yar(GG) =3 +2(n—1) =p. O

Corollary 2. Let G be a nontrivial graph with isolated vertex v. Then
1ar(GG) = 3+ v4r(G —v).

Proof. Let f be a ygr-function of G —v. Extend f to a function on V(GG) by defining
f(® = 3 and f(z) = 0 for all x € V(G) U {v}. Since f € DRD(GG), v4r(GG) <
3+ 7ar(G —v).

On the other hand, by Proposition 9, 7ar(G) = 2+7ar(G —v). Thus, 3+7v4r(G —v) =
1+ 74r(G) < v4r(GG) by Theorem 1. O

Let G and H be graphs with disjoint vertex sets. The corona of G and H is the graph
G o H obtained by taking one copy of G and |V (G)| copies of H, and then joining the 7

vertex of G to every vertex of the it" copy of H. For convenience, we write H? to denote

the copy of H joined to v and write H" +v = H”+ ({v}). If H = {u}, then V(H") = {u"}.

Given a function f = (Vp,Vi,V2,V3) on V(G o H), we write for each
veV(Q), V' =V,NnV(H") for all i = 0,1,2,3. Observe also that

waor(f) = D wavio(flmoto):

veV(Q)

Proposition 15. Let G be a nontrivial connected graph and H any graph, and let f =
(Vo, Vi, Va, V3) be a function on V(G o H). Then f € DRD(G o H) if and only if each of
the following holds for f:

(i) Foreachv € (Vo UWVI)NV(G), flgr € DRD(H"). Moreover, for eachv € VNV (G),
if V3| =1 and |V§’| =0, then | (Vo2 U V3) N Ng(v)| > 1.

(i7) For each v € Vo NV(G), Vi UVY dominates V.

Proof. Assume that f € DRD(G o H) and let v € (VobUV;) NV (G). To show
that f|lgv € DRD(H"), first let v € V{’. Note that Ngom(u) = {v} U Ngv(u). If
[Va N Ngom(u)| > 2, then |Vy N Nyv(u)| > 2. On the other hand, if [V3 N Ngop(u)| > 1,
then |V3" N Ngv(u)| > 1. Next, let u € V. Then there exists w € V5 U V3 such that
w € Ngop(u). Necessarily, w € V5’ UVY and w € Nyv(u). Therefore, f|gv € DRD(H").
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Now, let v € Vo N V(G) and, suppose that |[Vy’| =1 and V5’ = @. If u € V3N Ngom (v),
then u € V3N Ng(v). Suppose that |Va N Ngom(v)| > 2. Since |Vy’| =1, |[VaN Ng(v)| > 1.
This completely proves (i).

To prove (ii), let v € Vo N V(G) and u € V. Suppose there exists {w,z} C Vo N
Negom(u). If w = v, then z € V3 and zu € E(H"). Suppose there exists w € VaNNgom (u).
Then as w # v, w € V5’ and wu € E(H"). This means that V3’ UV dominates V.

Conversely, assume that (i) and (i7) all hold for f. Let u € Vj, and let v € V(QG)
for which v € V(H" + v). First, suppose that u = v. If V5’ # @ and w € V5, then
w € V3N Ngom(u). Suppose that Vi’ = @. Since f|, € DRD(H"), Vi # @. If |Vy’| > 2,
then |[VaNNgom (u)| > 2. Suppose that [Vy’'| = 1. By Condition (i), | (V2 U V3)NNg(v)| > 1.
This means that |Vo N Ngom(uw)| > 2 or V3N Ngom(u)| > 1.

Next, suppose that v € V. If v € V3, then [V3 N Ngom(u)] > 1. If v € Vy U V7,
then by Condition (i), |Vy’ N Ngv(u)| > 2 or |V5 N Nyv(uw)] > 1. This means that
[VaN Ngor (w)| > 2 or [V3N Ngom(u)| > 1. Now, suppose that v € Va. By Condition (i7),
there exists w € Vi U VY for which w € Nyv(u). If w € V¥, then |V3 N Ngom(v)] > 1. If
w e VY, then {w,v} C Vo N Ngon (u).

Finally, let u € V;. If u € V(G), then since f|g» € DRD(H") (by (i)), V5' U V5 # @,
say w € Vot U Vg, Then w € (Vi UVa) N Ngom(u). Suppose that u € V(H") for some
v e V(G). Ifve VoaUlVs, then v € (ViUVL) N Ngom(u). If v € Vo U Vi, then as
flv € DRD(H") (by (i)), there exists w € V3’ U VY’ such that w € Ngv(u). This means
that w € Vo U V3 and w € Ngom(u). Therefore, f € DRD(G o H). O

Corollary 3. Let G be a nontrivial connected graph of order n. Then
(Z) "YdR<G o Kl) =3n— max{ﬂ/b\ : f = (‘/0, Vl,VQ.Vg) € DRD(G)}
(13) v4r(G o H) = 3n for all nontrivial graphs H.

Proof. For (i): Let a = 3n — max{|Vp| : f = (Vb,V1,V2.V3) € DRD(G)} and put
V(K1) = {u}. Let f = (W, V1,V2,V3) € DRD(G) for which |Vp| is maximum. Define
Vo =Vou{u’ :ve W VF=Vu{u :ve W, Vi =Whu{u : :velhuVi}and
V5 = V3. By Proposition 15, g = (V" Vi*, V5, V5) € DRD(G o K1). Thus, v4r(Go K1) <
3(n — Vo) +2[Vo| = 3n — [Vo| = a.

To get the other inequality, let f = (Vo, &, Vo, V3) be a y4r-function of Go K. First, we
claim that VoNV(G) = @. Suppose not, and let w € VoNV(G). Since f is a y4r-function,
u® € Vi, a contradiction to the choice of f. Next, we claim that f|g € DRD(G). Let
veVNV(G). If u’ € Vs, then g = (Vo \ {v}, {v,u"}, Vo, V3 \{u"}) € DRD(G o K1) with
waok, (9) = waok, (f) — 1, a contradiction. Thus, u¥ € Va. Since Vo NV(G) = @, there
exists w € VaNV(G) for which vw € E(G). Since ViNV(G) = @, fla = (V§, V', V5", V') €
DRD(G) with Vi = Vo NV(G), V' = V5 = @ and V5" = V3. Observe also that for each
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v € V(Q), either u¥ € Vj or u¥ € V,. More precisely, u” € Vj if and only if v € V3 and
u¥ € V5 if and only if v € V5. Thus

Yir(G o K1) = wgor, (f) = 3[V3|+2[Vo NV(G)
= 33| +3[VoNV(G)| = [Vo NV (G)]
= 3n— |V
> Q.

For (i): By Proposition 15, f = (Uyev )V (H"), 2,9,V (G)) € DRD(G o H). Thus,
Yar(G o H) < 3|V(G)| = 3n.

On the other hand, if f = (Vo,V1,V2,V3) € DRD(G o H), then wgvy(f|Hvyy) > 3 for
each v € V(G). Thus,

’YdR(G © H) = UJGoH(f) = Z WHU+U(f|H”+U) > 3n.
veV(Q)

O

The succeeding corollary, which are found in [19], are immediate consequences of Corol-
lary 3(7).

Corollary 4. [19]

= if n = 3k,
(i) Yar(Pno K1) = § 2 if n =3k +1,
%, if n =3k +2.
Loy if n = 3k,

(i) Yar(Cpo K1) = § ™2, if n =3k +1,
L%, if n = 3k + 2.

(i46) yap(Kno K1) = 2n + 1.

, 2+ +1, fp=T1lorg=1,
(iv) Yar(Kpqo K1) = ( ) .
2(p+q+1), otherwise.
The lexicographic product of graphs G and H is the graph G[H| with V(G[H])=
V(G) x V(H) and (u1,us2)(vi,v2) € E(G[H]) if and only if either ujv; € E(G) or uy
= v; and ugvy € E(H).
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For S C V(G[H]), we write
S ={z€V(G): (z,y) € Sfor somey € V(H)}.
Sg is referred to as the G-projection of S in G[H]. For a graph G, we define
Co={f = (5,2, Vs) € DRD(G) : Vo \ No(12 U V3) = &}
Since f = (2,9,V(G),9) € Cq, Ca # 2.

Proposition 16. Let G be a connected noncomplete graph and H any nontrivial graph
with v(H) = 1. Then

var(GH]) < minfwg(f) : f = (Vo, D, V2, V3) € Ca}.

Moreover, this upper bound is sharp.

Proof. Put a = min{wg(f) : f = (Vo,d,V2,V3) € Cg}, and let v € V(H) for which
Nylv] = V(H). Let f = (Vo, @, Va, V3) € C. Put Vi = @, Vi = Vo x {v}, Vit = V5 x {v}
and Vi = V(G[H])\ (V5" U V5"). Let (z,y) € V. Ifz € V3, then (x,v) € V3'NNg g ((z,y)).

Suppose that = € Vs Then y # w. Since f € C(Cg, there exists
w € Vo N Ng(z) or there exists z € V3N Ng(z). The former implies that (z,v), (w,v) €
V3N Ngik,]((z,y)). The latter, on the other hand, implies that (z,v) € V3'NNgk, (%, )

Finally, suppose that x € Vj. Since f € DRD(G), there exists u € V3N Ng(z) or there
exist distinct w, 2 € Vo N Ng(z). This means that (u,v) € V3" N Nk, ((z,y)) or we have
distinet (w,v), (2,v) € Ngm((z,9)).

Accordingly, g = (V5, V", V5, V5') € DRD(G[H]). Moreover,
wain)(9) = 2\Vo | + 3|V5'| = 2|Va| + 3[V3| = wa(f).

Therefore, v4r(G[H]) < wa(f). Since f is arbitrary, yqr(G[H]) < a.

To show sharpness, consider the lexicographic product of G = Py = [v1, v2, v3, v4] and
H = P; as shown in Figure 3. We have for this case, 74r(G[H]) = 6 = w(f), where

f: ({’Ug,’l)g},@,@,{vl,v4}). OJ

The example presented in the proof of Proposition 16 also shows that min{weg(f) :
=Wy, 2,Va,V3) € Cq} need not be determined by a vy4g-function f of G.
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0 0 0 0
Q o

O
o
o
G

G[H]
Figure 3: Graph G[H| where G = P, and H = P3

Proposition 17. Let G be a connected noncomplete graph and p > 2. Then

var(G[Kp)) = min{wa(f) : f = Vo, D, V2, V3) € Cal.

Proof. Put a = min{wg(f) : f = (Vo,9,V2,V3) € Cq}, and let v € V(K,). By
Proposition 16, v4r(G[Kp]) < a.

To get the other inequality, let f = (Vp, Vi, V2, V3) be a ygr-function of G[K,]. We
assume that V7 = @. First, we claim the following:

(1) (V2)a N (Vs)a = &5
(13) For each x € (Va)g, {y : (z,y) € Va}| = 1; and
(7i1) For each z € (V3)a, {y: (z,y) € V3}| = 1.

For suppose that u € (V2)g N (V3)g, and let w € V(K,,) for which (u,w) € V5. Then
[* € DRD(G[K,]), where f* is defined on V(G[K,]) by f*((z,y)) = f((z,y)) for all
(z,y) € V(G[Kp)) \{(u,w)} and f*((u,w)) = 0. This is a contradiction since wgx,(f*) <
wak,)(f) and f is a y4p-function. This proves claim (). To prove (ii), suppose that for
some u € (Va)g, we have (u,w),(u,t) € Vo. Then f* € DRD(G[K,]), where f* is
defined on V(G[Kp]) by f*((u,w)) = 3, f*((u,t)) = 0 and f*((z,y)) = f((x,y)) for all
(z,y) € V(G[Kp]) \ {(u,w), (u,t)}. Since wgk,)(f*) < wgk,](f), this is a contradiction.
Claim (4i7) is clear.

Let A = (Wg B = (WB)g and C = V(G) \ (AUB), and define
Vo = V(GIK,)) \ (AUB) x {v}), Vi* = @, Vi = A x {v} and V5 = B x {v}. De-
fine the function g = (Vj, @, V5", V5) on V(G[K)]). More specifically,

3, ifx e Bandy=w,
g((z,y)) =42, ifxe Aand y =0,
0,

else
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Let (z,y) € V. We consider the following cases:

Case 1: Assume z € A and y # v. Since p > 2, Claim (i7) implies that there exists
w € V(Kp) for which (z,w) € Vp. Thus, there exists (a,b) € V3 N Ngg,)((z,w)) or
there exist distinct (c,d), (e, f) € Vo N Ngix,)((z,w)). If the former holds, then (a,v) €
V3N Ne(k,)((z,y)). Suppose the latter holds. By Claim (ii), ¢ # e so that we have distinct
points (c,v), (e,v) € V3" N Ngik,)((x,y)). We note here that it is possible to have z = c or
T =e.

Case 2: Assume z € B and y # v. Then (x,v) € V3" N Ng(x,)((7,y))-

Case 3: Assume z € (Vp)g \ (AU B). Then (z,w) € W for all w € V(K,,). Since f €
DRD(G[Ky)), there exists (a,b) € V3N Ng(k,)((x,y)) or there exist distinct (c, d), (e, f) €
Va N Ngix,)((z,y)). If the former holds, then (a,v) € V5 N Ngk, ((z,y)). Suppose the
latter holds. By Claim (i7), z, ¢ and e are distinct vertices of G and (c,v),(e,v) €
V3 N Neir,) (2, 9))-

All of the above imply that g € DRD(G[Kp]). Since f is a y4r-function, wgk,)(9) =
wair,) (f). Thus, wek, | (f) > wek,)(9) = 2|A| + 3| B|.

Now consider the function h = (C,@, A, B) on V(G). Let z € C. Then, in particular,
(z,v) € Vi'. Thus, there exists u € B such that (u,v) € Ngk,)((7,v)) or there exist
distinct w, z € A for which (w,v), (z,v) € Ng(k,)((z,v)). This means that there exists
u € BN Ng(z) or there exist distinct w,z € AN Ng( ). Therefore, h € DRD(G) with
wa(h) = 2|A|+3|B|. Let 2 € A\ Ng(AUB), and pick y € V (K, \{v} Then (x,y) € V.
In view of Claim(ii), there exists (w,z) € V5" N NG[KP]((x,y)). This means that either
w =z or w € Ng(x), a contradiction. Thus, A\ Ng(AU B) = @ and h € Cg. Finally,
therefore, var(G[Kp]) > wa(h) > a. O
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