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Graphs and the prime spectrum of unitary
commutative rings
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Abstract. In This paper, we study the relationships between graphs and the prime spectrum of
unitary commutative rings. It is shown that a graph G equipped with the G-right topology satisfies
some spectral properties. In particular we give a necessarily and sufficient condition to obtain a
spectral graph.
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1. Introduction

In [4], Hochster proved that an ordered set (Y,≤) is order-isomorphic to the prime
spectrum of a commutative ring with unit equipped with the inclusion if and only if the
set Y is equipped with a topology compatible with the order and satisfying the following
properties:

i) X is a quasi-compact space.

ii) X is a T0-space.

iii) Each irreducible closed subset has a generic point.

iv) X has a basis of quasi-compact open subsets.

v) The intersection of two quasi-compact open subsets is quasi-compact.

The above five properties are called spectral properties. Note that a topology compat-
ible with the order is always T0 [2].

A topology defined on the set Y satisfying the properties i), iii), iv) and v) is called
a quasi-spectral topology.
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• The space X is said to be quasi-compact if it satisfies the property of Borel-Lebesgue
but it is not necessarily a Hausdorff space.

• A topological spaceX is a T0-space (or Kolmogorov space) if for every pair of distinct
points x and y, there exists a neighborhood containing one of them but not the other;
which is equivalent to the following implication ({x} = {y} ⇒ x = y).

• A closed subset C is irreducible if it is not the union of two proper closed subsets or
if the intersection of two nonempty open subsets is nonempty. An element x of C is
called a generic point if the closure of the singleton {x} is equal to C: {x} = C.

We have the following properties:

1. The quasi-compactness is invariant under continuous map.

2. Each closed subset of a quasi-compact space is quasi-compact.

3. The union of finitely many quasi-compact subsets is quasi-compact.

The intersection of tow quasi-compact open subsets is not necessarily quasi-compact.
[1, Example 2.1] confirm this result.

By [5], a spectral set satisfies the following conditions:
(K1) Each totally ordered family of elements in (Y,≤) has a supremum and an infi-

mum.
(K2) For every elements a < b in Y , there exist two consecutive elements a1 < b1 with

a ≤ a1 < b1 ≤ b.
Lewis and Ohm showed in [6] that these two conditions are not sufficient to charac-

terize ordered spectral sets. They even added a third independent of (K1) and (K2) (still
necessary not sufficient):

(H) Let F be a subset of L = {] ←, x] : x ∈ X} or R = {[x,→ [: x ∈ X}. If⋂
f∈F f = ∅, then F contains a finitely many elements with empty intersection. Where

]←, x] = {y ∈ X|y ≤ x} and [x,←, x[= {y ∈ X|x ≤ y}.
Note that the problem of characterization of spectral set is still open.
In this paper we define and characterise spectral graph.

2. Quasi-homeomorphism and spectral properties

According to [3], a continuous mapping f : X → Y between two topological spaces is
a quasi-homeomorphism if the map which associates to each open subset V ⊂ Y the open
subset U = f−1(V ) ⊂ X is a bijective mapping. Equivalently, the map which assigns to
each closed subset G ⊂ Y the closed subset F = f−1(G) ⊂ X is also a bijective mapping.
We have the following properties:

Let f : X → Y be a quasi-homeomorphism.

1. The composition of two quasi-homeomorphisms is a quasi-homeomorphism.
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2. f is open, closed.

3. For every locally closed subset A ⊂ X, we have A = f−1(f(A)). We say that every
locally closed subset of X is f -saturated.

4. For every x, y ∈ X, we have the following implication:

f(x) = f(y) ⇒ {x} = {y}

5. If moreover X is a T0-space, then f is an embedding (f : X → f(X) is a homeomor-
phism).

Theorem 2.1. If f : (X,T ) → (Y, T ′) is a onto quasi-homeomorphism, then T is quasi-
spectral if and only if T ′ is quasi-spectral.

Proof. We start by showing the following: Let f : X → Y be a quasi-homeomorphism
and S be a subset of Y .

1. If S is an open set, then S is quasi-compact in Y if and only if, f−1(S) is quasi-
compact in X.

2. If S is a closed set, then S is irreducible in Y if and only if, f−1(S) is irreducible in
X.

1. Suppose that S is a quasi-compact open subset in Y . Let (Ui, i ∈ I) be an open
covering of f−1(S). The fact that f is a quasi-homeomorphism implies that, for
each i ∈ I, there exist an open subset Vi of Y such that Ui = f−1(Vi). Therefore
f−1(S) = f−1(

⋃
i∈I Vi) and so S =

⋃
i∈I Vi. It follows from the fact that S is quasi-

compact in Y , that there exists a finite subset J of I such that S =
⋃

i∈J Vi, which
gives f−1(S) =

⋃
i∈J Ui and so f−1(S) is quasi-compact in X.

Conversely, Suppose that f−1(S) is a quasi-compact open subset inX. Let (Vi, i ∈ I)
be an open covering of S. Then f−1(S) =

⋃
i∈I f

−1(Vi) and so there exists a finite
subset J of I such that

f−1(S) =
⋃
i∈J

f−1(Vi) = f−1(
⋃
i∈J

Vi)

Using the fact that f is a quasi-homeomorphism we obtain S =
⋃

i∈J Vi and so S is
quasi-compact in Y .

2. Suppose that S is an irreducible closed subset of Y . Let F and K be two closed
subset of X such that f−1(S) = F ∪ K. Since f is a quasi-homeomorphism there
exists two closed subsets F ′ and K ′ of Y such that f−1(F ′) = F and f−1(K ′) = K.
Hence f−1(S) = f−1(F ′ ∪ K ′), which gives S = F ′ ∪ K ′. From the fact that S
is an irreducible closed subset of Y , it follows that S = F ′ or F = K ′, this yields
f−1(S) = F or f−1(S) = K. Therefore f−1(S) is an irreducible closed subset of X.
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Conversely, let F ′ and K ′ be two closed subset of Y such that S = F ′ ∪K ′. Then
f−1(S) = f−1(F ′) ∪ f−1(K ′) and from the fact that f−1(S) is an irreducible closed
subset of X it follows that f−1(S) = f−1(F ′) or f−1(S) = f−1(K ′). Since f is a
quasi-homeomorphism, S = F ′ or S = K ′ which implies that S is an irreducible
closed subset of Y .

IfX is quasi-compact, then since f is onto and continuous, f(X) = Y is quasi-compact.
By the above item (1), if Y is quasi-compact, then f−1(Y ) = X is quasi-compact.

By the above item (1), (X,T ) has a base of quasi-compact open subsets if and only if
(Y, T ′) has a base of quasi-compact open subsets.

By the above item (1) and the fact that f is onto and continuous, the family of quasi-
compact open subsets of (X,T ) is stable by finite intersection if and only if the family of
quasi-compact open subsets of (Y, T ′) is stable by finite intersection.

By the above item (2) and the fact that f is onto and continuous, every irreducible
closed subset of (X,T ) has a generic point if and only if every irreducible closed subset of
(Y, T ′) has a generic point.

This ends the proof of the theorem.

3. Spectral graph

Let G = (V,E) be a graph (finite or infinite) and let u, v ∈ V . A path from u to v in
G is a sequence of edges e1, . . . , en of E for which there exists a sequence x0 = u, x1, .
. . , xn−1, xn = v of vertices such that ei has, for i = 1, ..., n, the endpoints xi−1 and xi.
We denote by

R(u) = {u} ∪ {v : if there exists a path from u to v}

L(u) = {u} ∪ {v : if there exists a path from v to u}.

The family {R(u) : u ∈ G} (respectively {L(u) : u ∈ G}) forms a base of a topology
on G called the G-right τ(GR) (respectively G-left τ(GL)) topology.

Two vertices a and b in a graph G are called adjacent in G if a and b are endpoints
of an edge e of G. The graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there
exists a one-to-one and onto function f from V1 to V2 with the property that a and b are
adjacent in G1 if and only if f(a) and f(b) are adjacent in G2, for all a and b in V1. Such
a function f is called an isomorphism.

Definition 3.1. [1] The graphs G1 = (V1, E1) and G2 = (V2, E2) are homeomorphic if
(G1, τ(G

R
1 )) and (G2, τ(G

R
2 )) are homeomorphic.

Note that, according to [1], if G1 = (V1, E1) and G2 = (V2, E2) are isomorphic, then
they are homeomorphic. If moreover every vertex of G1 and G2 has a loop, then isomorphic
and homeomorphic properties are equivalent.
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Let G = (V,E) be a graph equipped with a topology T . We say that T is compatible
with the graph structure G, if for all u ∈ V , {u} = R(u). We remark that the G-left
τ(GL) topology is the finer topology compatible with the graph structure G.

We define on G the following relation u ⪯ v if u ∈ R(v). It is easy to see that ⪯
is reflexive and transitive. Then ⪯ is a preorder. We define an equivalence relation on
G by uRv if and only if R(u) = R(v). The quotient set (the set of equivalence classes)
is denoted by G/R. (G/R,⪯) is a pre-ordered set. Let G/R̃ be the universal T0-space
associated to the space G/R as in Bourbaki [2, Exercise 27 p: 1-104].

Definition 3.2. G is a spectral graph if there exists a quasi-spectral topology T compatible
with the graph structure G.

Theorem 3.3. G is a spectral graph if and only if (G/R̃,⪯) is order-isomorphic to the
prime spectrum of a unitary commutative ring equipped with the inclusion.

Proof. Let projection q : (G,T ) → G/R be the canonical. Let T be the quotient
topology on G/R. Let φ : T → T be the defined by φ(U) = q−1(U), for all U ∈ T . First,
we show that φ is onto. It suffices to show that q−1(q(U)) = U . It is easy to see that
U ⊂ q−1(q(U)). Let x ∈ q−1(q(U)). Then q(x) ∈ q(U) which implies that there exits
y ∈ U such that q(x) = q(y). Therefore R(x) = R(y). Since T is compatible with G,
R(x) ⊂ U which implies that x ∈ U . Thus q−1(q(U)) = U . Second, since q is onto, we get
q(q−1(V )) = V for all V ∈ T . Then φ is injective. Consequently, φ is bijective and so q is
an onto quasi-homeomorphism.

By a same method as above we get ψ : G/R → G/R̃ which associates to each R(u) its
class R̃(u) = {v ∈ G : {R(u)} = {R(v)}} is a quasi-homeomorphism.

Therefore ψ ◦ q : (G,T )→ G/R̃ is a quasi-homeomorphism.
Hence, By Theorem 2.1 we get (G,T ) to be quasi-spectral if and only if G/R̃ is quasi-

spectral. Since G/R̃ is a T0-space we obtain Theorem 3.3.

Note that a finite graph is spectral.
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Verlag, New York, 1971.

[4] M. Hochster. Prime ideal structure in commutative rings. Trans. Amer. Math. Soc.,
142:43–60, 1969.

[5] L. Kaplansky. Graphs and Alexandroff spaces (Revised edition). The Universty of
Chicago, Press, 1974.

[6] W.J.Lewis and J.Ohm. The ordring of spec. R.Can.J.Math Vol, 28:820–835, 1973.


