EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 16, No. 1, 2023, 319-335
ISSN 1307-5543 - ejpam.com
Published by New York Business Global

Convex Hop Domination in Graphs

Javier A. Hassan ${ }^{1, *}$, Sergio R. Canoy, Jr. ${ }^{2}$, Chrisley Jade Saromines ${ }^{2}$
${ }^{1}$ Mathematics and Sciences Department, College of Arts and Sciences, MSU Tawi-Tawi College of Technology and Oceanography, Bongao, Tawi-Tawi, Philippines
${ }^{2}$ Department of Mathematics and Statistics, College of Science and Mathematics, Center for Graph Theory, Algebra, and Analysis- PRISM, MSU-Iligan Institute of Technology, 9200 Iligan City, Philippines

Abstract

Let G be an undirected connected graph with vertex and edge sets $V(G)$ and $E(G)$, respectively. A set $C \subseteq V(G)$ is called convex hop dominating if for every two vertices $x, y \in C$, the vertex set of every $x-y$ geodesic is contained in C and for every $v \in V(G) \backslash C$, there exists $w \in C$ such that $d_{G}(v, w)=2$. The minimum cardinality of convex hop dominating set of G, denoted by $\gamma_{\text {conh }}(G)$, is called the convex hop domination number of G. In this paper, we show that every two positive integers a and b, where $2 \leq a \leq b$, are realizable as the connected hop domination number and convex hop domination number, respectively, of a connected graph. We also characterize the convex hop dominating sets in some graphs and determine their convex hop domination numbers.

2020 Mathematics Subject Classifications: 05C69
Key Words and Phrases: Hop domination, hop domination number, convex set, convex hop dominating set, convex hop domination number

1. Introduction

Hop domination, a concept introduced and initially studied by Natarajan et al. in [18], has become one of the topics of investigation recently. So far, there is a significant number of variants of hop domination that have been defined and investigated. Some studies on hop domination, its variants, and related concepts can be found in [1], [2], [5], [8], [7], [9], [13], [14], [15], [19], [20], and [21].

Another interesting topic that had caught the attention of several researchers is convexity. Convexity is a concept that appears in many areas of mathematics (e.g. real analysis, topology, geometry, functional analysis). In Graph Theory, the concept can easily find a graph-theoretic formulation. Convexity in graphs is discussed in the book by

[^0]Buckley and Harary [3]. The concept and other types of convexity are studied in [4], [6], and [11]. The concept is also combined with many other parameters. One well-known formed combination is convex domination. This variation of domination is studied in [4], [10], [16], and [17]. In this paper, we introduce and study convex hop domination. This study is motivated by the introduction of hop domination and convex domination. Just like convex domination, we believe that this new parameter will yield significant results in the topic of domination and can lead to other interesting research directions in the future.

2. Terminology and Notation

Let $G=V(G), E(G))$ be an undirected graph. For any two vertices u and v of G, the distance $d_{G}(u, v)$ is the length of a shortest path joining u and v. Any $u-v$ path of length $d_{G}(u, v)$ is called a $u-v$ geodesic. The interval $I_{G}[u, v]$ consists of u, v, and all vertices lying on a $u-v$ geodesic. The interval $I_{G}(u, v)=I_{G}[u, v] \backslash\{u, v\}$. Vertices u and v are adjacent (or neighbors) if $u v \in E(G)$. The set of neighbors of a vertex u in G, denoted by $N_{G}(u)$, is called the open neighborhood of u. The closed neighborhood of u is the set $N_{G}[u]=N_{G}(u) \cup\{u\}$. If $X \subseteq V(G)$, the open neighborhood of X is the set $N_{G}(X)=\bigcup_{u \in X} N_{G}(u)$. The closed neighborhood of X is the set $N_{G}[X]=N_{G}(X) \cup X$.

A set $D \subseteq V(G)$ is a dominating set (resp. total dominating set) of G if for every $v \in V(G) \backslash D$ (resp. $v \in V(G)$), there exists $u \in D$ such that $u v \in E(G)$, that is, $N_{G}[D]=V(G)\left(\right.$ resp. $\left.N_{G}(D)=V(G)\right)$. The domination number (resp. total domination number) of G, denoted by $\gamma(G)$ (resp. $\gamma_{t}(G)$), is the minimum cardinality of a dominating (resp. total dominating) set in G. Any dominating (resp. total dominating) set in G with cardinality $\gamma(G)\left(\right.$ resp. $\left.\gamma_{t}(G)\right)$, is called a γ-set (resp. γ_{t}-set) in G. If $\gamma(G)=1$ and $\{v\}$ is a dominating set in G, then we call v a dominating vertex in G.

A vertex v in G is a hop neighbor of vertex u in G if $d_{G}(u, v)=2$. The set $N_{G}^{2}(u)=$ $\left\{v \in V(G): d_{G}(v, u)=2\right\}$ is called the open hop neighborhood of u. The closed hop neighborhood of u is given by $N_{G}^{2}[u]=N_{G}^{2}(u) \cup\{u\}$. The open hop neighborhood of $X \subseteq V(G)$ is the set $N_{G}^{2}(X)=\bigcup_{u \in X} N_{G}^{2}(u)$. The closed hop neighborhood of X is the set $N_{G}^{2}[X]=N_{G}^{2}(X) \cup X$.

A set $S \subseteq V(G)$ is a hop dominating set in G if $N_{G}^{2}[S]=V(G)$, that is, for every $v \in V(G) \backslash S$, there exists $u \in S$ such that $d_{G}(u, v)=2$. The minimum cardinality among all hop dominating sets in G, denoted by $\gamma_{h}(G)$, is called the hop domination number of G. Any hop dominating set with cardinality equal to $\gamma_{h}(G)$ is called a γ_{h}-set. A hop dominating set S is connected hop dominating if $\langle S\rangle$ is connected. The minimum cardinality among all connected hop dominating sets of G, denoted by $\gamma_{c h}(G)$, is called the connected hop domination number of G. Any connected hop dominating set with cardinality equal to $\gamma_{c h}(G)$ is called a $\gamma_{c h}$-set.

A set $C \subseteq V(G)$ is convex set if for every two vertices $x, y \in C$, the vertex set of every $x-y$ geodesic is contained in C, that is, $I_{G}[x, y] \subseteq C$. The largest cardinality of a proper convex set in G, denoted by $\operatorname{con}(G)$, is called the convexity number of G. A set $C \subseteq V(G)$
is called a convex dominating set (resp. convex hop dominating set) if C is both convex and dominating (resp. convex and hop dominating). The minimum cardinality among all convex dominating (resp. convex hop dominating) sets in G, denoted by $\gamma_{c o n}(G)$ (resp. $\gamma_{\text {conh }}(G)$), is called the convex domination number (resp. convex hop domination number) of G. Any convex dominating (resp. convex hop dominating set) with cardinality equal to $\gamma_{c o n}(G)\left(\right.$ resp. $\left.\gamma_{c o n h}(G)\right)$ is called a $\gamma_{c o n}$-set (resp. $\gamma_{c o n h}$-set).

A nonempty set $S \subseteq V(G)$ is non-connecting if for each pair of vertices $v, w \in V(G) \backslash S$ with $d_{G}(v, w)=2$, it holds that $N_{G}(v) \cap N_{G}(w) \cap S=\varnothing$.

A set $S \subseteq V(G)$ is a clique if the subgraph $\langle S\rangle$ induced by S is a complete graph. The maximum cardinality of a clique in G, denoted by $\omega(G)$, is called the clique number of G. A clique S which is also hop dominating in G is called clique hop dominating. Whenever G admits a clique hop dominating set, we call the smallest cardinality of a clique hop dominating set in G, denoted by $\gamma_{\text {clh }}(G)$, the clique hop domination number of G.

A set $C \subseteq V(G)$ is a pointwise non-dominating set if for every $v \in V(G) \backslash C$, there exists $u \in C$ such that $v \notin N_{G}(u)$. The minimum cardinality of a pointwise non-dominating set in G, denoted by $p n d(G)$, is called a pointwise non-domination number of G.

A set $S \subseteq V(G)$ is a clique pointwise non-dominating set if S is both a clique and a pointwise non-dominating set in G. The smallest cardinality of a clique pointwise nondominating set in G, denoted by $\operatorname{cpnd}(G)$, is called the clique pointwise non-domination number of G. Any clique pointwise non-dominating set in G with cardinality $\operatorname{cpnd}(G)$ is called a $c p n d$-set in G.

The shadow graph $S(G)$ of graph G is constructed by taking two copies of G, say G_{1} and G_{2}, and then joining each vertex $u \in V\left(G_{1}\right)$ to the neighbors of its corresponding vertex $u^{\prime} \in V\left(G_{2}\right)$.

For a graph G, the complementary prism, denoted by $G \bar{G}$, is formed from the disjoint union of G and its complement \bar{G} by adding a perfect matching between corresponding vertices of G and \bar{G}. For each $v \in V(G)$, let \bar{v} denote the vertex in \bar{G} corresponding to v. In simple terms, the graph $G \bar{G}$ is form from $G \cup \bar{G}$ by adding the edge $v \bar{v}$ for every vertex $v \in V(G)$.

Let G and H be any two graphs. The join $G+H$ is the graph with vertex set $V(G+H)=V(G) \cup V(H)$ and edge set $E(G+H)=E(G) \cup E(H) \cup\{u v: u \in V(G), v \in$ $V(H)\}$. The corona $G \circ H$ is the graph obtained by taking one copy of G and $|V(G)|$ copies of H, and then joining the i th vertex of G to every vertex of the i th copy of H. We denote by H^{v} the copy of H in $G \circ H$ corresponding to the vertex $v \in G$ and write $v+H^{v}$ for $\langle\{v\}\rangle+H^{v}$. The lexicographic product $G[H]$ is the graph with vertex set $V(G[H])=V(G) \times V(H)$ and $(v, a)(u, b) \in E(G[H])$ if and only if either $u v \in E(G)$ or $u=v$ and $a b \in E(H)$. Any non-empty set $C \subseteq V(G) \times V(H)$ can be expressed as $C=\bigcup_{x \in S}\left[\{x\} \times T_{x}\right]$, where $S \subseteq V(G)$ and $T_{x} \subseteq V(H)$ for each $x \in S$. Specifically, $T_{x}=\{a \in V(H):(x, a) \in C\}$ for each $x \in S$.

3. Results

Since every convex set in a connected graph induces a connected graph, every convex hop dominating set is connected hop dominating. We formally state a consequence of this fact here.

Remark 1. Let G be any connected graph on n vertices. Then $\gamma_{c h}(G) \leq \gamma_{\text {conh }}(G)$.
Remark 2. The bound given in Remark 1 is tight. Moreover, strict inequality can also be attained.

For tightness, consider $G=K_{1,5}$. Then $\gamma_{c h}(G)=\gamma_{\text {conh }}(G)=2$. Next, consider the graph G in Figure 1. Let $C=\{c, d, f\}$ and $C^{\prime}=\{c, d, e, f\}$. Then C and C^{\prime} are $\gamma_{c h}$-set and $\gamma_{c o n h}$-set in G, respectively. Hence, $\gamma_{c h}(G)=3<4=\gamma_{\text {conh }}(G)$.

Figure 1: A graph G with $\gamma_{c h}(G)<\gamma_{c o n h}(G)$.

Theorem 1. Let G be any connected graph on $n \geq 2$ vertices. Then $2 \leq \gamma_{\text {conh }}(G) \leq n$. Moreover, $\gamma_{\text {conh }}(G)=2$ if and only if $\gamma_{c h}(G)=2$.

Proof. Clearly, $2 \leq \gamma_{\text {conh }}(G) \leq n$.
Suppose $\gamma_{c o n h}(G)=2$. By Remark 1, $\gamma_{c h}(G) \leq \gamma_{c o n h}(G)=2$. Since $\gamma_{c h}(G) \geq 2$ for any connected graph of order $n \geq 2$, it follows that $\gamma_{c h}(G)=2$.

Conversely, suppose $\gamma_{c h}(G)=2$, say, $S=\{x, y\}$ is a $\gamma_{c h}$-set of G. Since the graph induced by S is K_{2}, S is convex. Thus, S is a convex hop dominating set in G and $\gamma_{\text {conh }}(G) \leq 2$. By Remark 1, $\gamma_{\text {conh }}(G)=2$.

Theorem 2. Let a and b be positive integers such that $3 \leq a \leq b$. Then there exists a connected graph G such that $\gamma_{c h}(G)=a$ and $\gamma_{\text {conh }}(G)=b$.

Proof. For $a=b$, consider $G=K_{a}$. Then $\gamma_{c h}(G)=a=\gamma_{c o n h}(G)$. Suppose $a<b$. Consider the following two cases:

Case 1: $a=3$.
Let $m=b-a$ and consider the graph G in Figure 2. Let $C=\left\{x_{1}, x_{2}, x_{3}\right\}$ and $C^{\prime}=$ $\left\{x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, \ldots, y_{m}\right\}$. Then C and C^{\prime} are $\gamma_{c h}$-set and $\gamma_{c o n h}$-set in G, respectively. Thus, $\gamma_{c h}(G)=a$ and $\gamma_{\text {conh }}(G)=a+m=b$.

Figure 2: A graph G with $\gamma_{c h}(G)<\gamma_{c o n h}(G)$.
Case 2: $a \geq 4$.
Let $m=b-a$ and consider the graph G^{\prime} in Figure 3. Let $D=\left\{x_{1}, x_{2}, \ldots, x_{a}\right\}$ and $D^{\prime}=\left\{x_{1}, x_{2}, \ldots, x_{a}, y_{1}, y_{2}, \ldots, y_{m}\right\}$. Then D and D^{\prime} are $\gamma_{c h}$-set and $\gamma_{c o n h}$-set in G^{\prime}, respectively. Thus, $\gamma_{c h}\left(G^{\prime}\right)=a$ and $\gamma_{\text {conh }}\left(G^{\prime}\right)=a+m=b$.

Figure 3: A graph G^{\prime} with $\gamma_{c h}\left(G^{\prime}\right)<\gamma_{c o n h}\left(G^{\prime}\right)$.
This proves the assertion.
Corollary 1. Let n be a positive integer. Then there exists a connected graph G such that $\gamma_{c o n h}(G)-\gamma_{c h}(G)=n$. In other words, $\gamma_{\text {conh }}-\gamma_{c h}$ can be made arbitrarily large.

Proposition 1. Let n be any positive integer. Then each of the following holds.
(i) $\gamma_{\text {conh }}\left(P_{n}\right)= \begin{cases}2 & \text { if } n=2,3,4,5 \\ n-4 & \text { if } n \geq 6 .\end{cases}$
(ii) $\gamma_{\text {conh }}\left(C_{n}\right)= \begin{cases}2 & \text { if } n=4,5 \\ 3 & \text { if } n=3 \\ n-4 & \text { if } n \geq 6 \\ n-4 i f 6 \leq n \leq 9 & \\ n i f n \geq 10 . & \end{cases}$
(iii) $\gamma_{c o n h}\left(K_{n}\right)=n$ for all $n \geq 1$.

Proof. (i) Clearly, $\gamma_{\text {conh }}\left(P_{n}\right)=2$ for $n \in\{2,3,4,5\}$. Suppose $n \geq 6$. Let $P_{n}=$ $\left[v_{1}, v_{2}, \ldots, v_{n}\right]$ and consider $C=\left\{v_{3}, v_{4}, \ldots, v_{n-3}, v_{n-2}\right\}$. Then C is a convex hop dominating set in P_{n}. Since every convex hop dominating set in P_{n} contains C, it follows that C is a $\gamma_{c o n h}$-set of P_{n}. Thus, $\gamma_{c o n h}\left(P_{n}\right)=n-4$ for all $n \geq 6$.
(ii) Clearly, $\gamma_{c o n h}\left(C_{n}\right)=2$ for $n \in\{4,5\}$ and $\gamma_{c o n h}\left(C_{n}\right)=3$ for $n=3$. Suppose $6 \leq n \leq 9$.. Let $C_{n}=\left[v_{1}, v_{2}, \ldots, v_{n}, v_{1}\right]$ and let C^{\prime} be a $\gamma_{c o n h-s e t ~ o f ~} C_{n}$. We may assume that $v_{1} \in C^{\prime}$ and $v_{n} \notin C$. Then $C^{\prime}=\left\{v_{1}, v_{2}, \ldots, v_{n-5}, v_{n-4}\right\}$. It follows that $\gamma_{c o n h}\left(C_{n}\right)=n-4$ for all $6 \leq n \leq 9$.

Next, suppose that $\mathrm{n} \geq 10 . I f S^{\prime}{ }^{i s a} \gamma_{\text {conh }}$-set of C_{n}, then $\left|S^{\prime}\right| \geq n-4$ since S^{\prime} is a connected hop dominating set. We may assume that $v_{1}, v_{2}, \ldots, v_{n-5}, v_{n-4} \in S^{\prime}$. Then $d_{C_{n}}\left(v_{1}, v_{n-4}\right) \leq n-5$. It follows that $v_{n-3}, v_{n-2}, v_{n-1}, v_{n}$ lieinthev $\mathrm{v}_{1-} v_{n-4}$ geodesic. Since S^{\prime} is convex, $S^{\prime}=V\left(C_{n}\right)$ and $\gamma_{\text {conh }}\left(C_{n}\right)=n$.
(iii) Since $\gamma_{c h}\left(K_{n}\right)=n$ for all $n \geq 1$, it follows from Remark 1 that $\gamma_{c o n h}\left(K_{n}\right)=n$ for all $n \geq 1$.

Theorem 3. Let G be a connected graph of order n. Then $\gamma_{c o n h}(G \bar{G})=2$. In particular, $\{u, \bar{u}\}$ is a $\gamma_{\text {conh-set }} G \bar{G}$ for any $u \in V(G)$.

Proof. Clearly, $\gamma_{\text {conh }}(G \bar{G})=2$ if $n=1$. Suppose $n \geq 2$. Let $S=\{u, \bar{u}\}$ where $u \in V(G)$ and $\bar{u} \in V(\bar{G})$. Clearly, S is a convex set. Let $w \in V(G \bar{G}) \backslash S$ and consider the following two cases:

Case 1: $w \in V(G)$.
If $u w \in E(G)$, then $d_{G \bar{G}}(\bar{u}, w)=2$. Suppose that $u w \notin E(G)$, then $\bar{u} \bar{w} \in E(\bar{G})$. This implies that $d_{G \bar{G}}(\bar{u}, w)=2$.

Case 2: $w \in V(\bar{G})$.
Let $w=\bar{z}$, where $z \in V(G)$. If $\bar{u} \bar{z} \in E(\bar{G})$, then $d_{G \bar{G}}(u, w)=2$. If $\bar{u} \bar{z} \notin E(\bar{G})$, then $u z \in E(G)$. This means that $d_{G \bar{G}}(u, w)=2$. Therefore, S is a convex hop dominating set in $G \bar{G}$. Since $G \bar{G}$ is non-trivial, it follows that $\gamma_{c o n h}(G \bar{G})=2$.

If G_{1} and G_{2} are the copies of graph G in the definition of the shadow graph $S(G)$ and if $S_{G_{1}} \subseteq V\left(G_{1}\right)$ and $S_{G_{2}} \subseteq V\left(G_{2}\right)$, then the sets $S_{G_{1}}^{\prime}$ and $S_{G_{2}}^{\prime}$ are the sets given by

$$
S_{G_{1}}^{\prime}=\left\{a^{\prime} \in V\left(G_{2}\right): a \in S_{G_{1}}\right\} \text { and } S_{G_{2}}^{\prime}=\left\{a \in V\left(G_{1}\right): a^{\prime} \in S_{G_{2}}\right\}
$$

Theorem 4. Let G be a non-trivial connected graph. Then a proper subset S of $V(S(G))$ is convex in $S(G)$ if and only if one of the following conditions holds:
(i) S is clique in G_{1}.
(ii) S is clique in G_{2}.
(iii) $S=S_{G_{1}} \cup S_{G_{2}}$ and satisfies the following conditions:
(a) $S_{G_{1}} \cap S_{G_{2}}^{\prime}=\varnothing$ and $S_{G_{1}}^{\prime} \cap S_{G_{2}}=\varnothing$.
(b) $S_{G_{1}}$ and $S_{G_{2}}$ are cliques in G_{1} and G_{2}, respectively.
(c) $S_{G_{1}} \cup S_{G_{2}}^{\prime}$ and $S_{G_{1}}^{\prime} \cup S_{G_{2}}$ are cliques in G_{1} and G_{2}, respectively.

Proof. Suppose S is convex in $S(G)$. If $S_{G_{2}}=\varnothing$, then $S=S_{G_{1}}$. Suppose S is not a clique in G_{1}. Then there exist $a, b \in S$ such that $d_{G_{1}}(a, b)=2=d_{S(G)}(a, b)$. It follows that $x \in S$ for all $x \in N_{G_{1}}(a) \cap N_{G_{1}}(b)$. Hence, $x^{\prime} \in S$ for all $x \in N_{G_{1}}(a) \cap N_{G_{1}}(b)$. This contradicts the assumption that $S_{G_{2}}=\varnothing$. Therefore, S is a clique in G_{1}. Similarly, if $C_{G_{1}}=\varnothing$, then S is a clique in G_{2}. Hence, (i) and (ii) hold.

Next, suppose $S_{G_{1}}$ and $S_{G_{2}}$ are both non-empty. Then $S=S_{G_{1}} \cup S_{G_{2}}$. Suppose $S_{G_{1}} \cap S_{G_{2}}^{\prime} \neq \varnothing$, say $v \in S_{G_{1}} \cap S_{G_{2}}^{\prime}$. Then $v, v^{\prime} \in S$. By convexity of $S, x, x^{\prime} \in S$ for all $x \in N_{G}(v)$. This implies that $S=V(S(G))$, a contradiction. Therefore, $S_{G_{1}} \cap S_{G_{2}}^{\prime}=\varnothing$. Similarly, $S_{G_{1}}^{\prime} \cap S_{G_{2}}=\varnothing$, showing that (a) holds. Now, suppose $S_{G_{1}}$ is not clique. Then there exist $a, b \in S_{G_{1}}$ such that $d_{G_{1}}(a, b)=2=d_{S(G)}(a, b)$. Again, by convexity of S, it follows that $x, x^{\prime} \in S$ for all $x \in N_{G_{1}}(a) \cap N_{G_{1}}(b)$. This implies that $S=V(S(G))$, a contradiction. Therefore, $S_{G_{1}}$ is a clique in G_{1}. Similarly, $S_{G_{2}}$ is a clique in G_{2}, showing that (b) holds. Suppose $S_{G_{1}} \cup S_{G_{2}}^{\prime}$ is not a clique in G_{1}. Then there exist $x, y \in S_{G_{1}} \cup S_{G_{2}}^{\prime}$ such that $d_{G_{1}}(x, y)=2$. Since $S_{G_{1}}$ and $S_{G_{2}}$ are cliques, we may assume that $x \in S_{G_{1}}$ and $y \in S_{G_{2}}^{\prime}$. Then $y^{\prime} \in S_{G_{2}}$. Let $z \in N_{G}(x) \cap N_{G}(y)$. Then $z, z^{\prime} \in N_{S(G)}(x) \cap N_{S(G)}\left(y^{\prime}\right)$. Since S is convex, $z, z^{\prime} \in S$. Since $y z, y z^{\prime} \in E(S(G)), y \in S$ by convexity of S. This would imply that $S=V(S(G))$, a contradiction. Therefore, $S_{G_{1}} \cup S_{G_{2}}^{\prime}$ is a clique in G_{1}. Similarly, $S_{G_{1}}^{\prime} \cup S_{G_{2}}$ is a clique in G_{2}. Thus, (c) holds.

The converse is clear.

Corollary 2. Let G be a non-trivial connected graph. Then $\operatorname{con}(S(G))=\omega(G)$.
Theorem 5. Let G be a non-trivial connected graph. Then S is a hop dominating set in $S(G)$ if and only if one of the following conditions holds:
(i) S is a hop dominating set in G_{1}.
(ii) S is a hop dominating set in G_{2}.
(iii) $S=S_{G_{1}} \cup S_{G_{2}}$ such that $S_{G_{1}} \cup S_{G_{2}}^{\prime}$ and $S_{G_{1}}^{\prime} \cup S_{G_{2}}$ are hop dominating sets in G_{1} and G_{2}.

Proof. Let S be a hop dominating set in $S(G)$. Set $S_{G_{1}}=S \cap V\left(G_{1}\right)$ and $S_{G_{2}}=$ $S \cap V\left(G_{2}\right)$. If $S_{G_{2}}=\varnothing$, then $S=S_{G_{1}}$ is a hop dominating set in G_{1}. If $S_{G_{1}}=\varnothing$, then $S=S_{G_{2}}$ is a hop dominating set in G_{2}. Hence, (i) or (ii) holds. Next, suppose $S_{G_{1}} \neq \varnothing$ and $S_{G_{2}} \neq \varnothing$. Let $x \in V\left(G_{1}\right) \backslash S_{G_{1}} \cup S_{G_{2}}^{\prime}$. Then $x \in V(S(G)) \backslash S$. Since S is a hop dominating set in $S(G)$, there exists $y \in S$ such that $d_{S(G)}(x, y)=2$. If $y \in S_{G_{1}}$, then we are done. Suppose $y \in S_{G_{2}}$, say $y=z^{\prime}$, where $z \in V\left(G_{1}\right)$. Then $z \in S_{G_{2}}^{\prime}$ and $d_{S(G)}(x, z)=d_{G_{1}}(x, z)=2$. Therefore, $S_{G_{1}} \cup S_{G_{2}}^{\prime}$ is a hop dominating set in G_{1}. Similarly, $S_{G_{1}}^{\prime} \cup S_{G_{2}}$ is a hop dominating set in G_{2}. Hence, (iii) holds.

For the converse, suppose (i) holds. Let $a \in V(S(G)) \backslash S$. If $a \in V\left(G_{1}\right) \backslash S$, then there exists $b \in S$ such that $d_{G_{1}}(a, b)=d_{S(G)}(a, b)=2$. Suppose $a \in V\left(G_{2}\right)$, say $a=v^{\prime}$, where $v \in V\left(G_{1}\right)$. If $v \in S$, then $d_{G_{1}}(a, v)=d_{S(G)}(a, v)=2$. If $v \notin S$, then there exists $w \in S$ such that $d_{G_{1}}(v, w)=2$. It follows that $d_{S(G)}(a, w)=d_{S(G)}\left(v^{\prime}, w\right)=2$. Therefore, S is a hop dominating set in $S(G)$. Similarly, if (ii) holds, then S is a hop dominating set in $S(G)$. Now, suppose (iii) holds. Let $y \in V(S(G)) \backslash S$. Then $y \notin S_{G_{1}} \cup S_{G_{2}}$. Suppose $y \in V\left(G_{2}\right) \backslash S_{G_{2}}$, say $y=z^{\prime}$, where $z \in V\left(G_{1}\right)$. Then $z \notin S_{G_{2}}^{\prime}$. If $z \in S_{G_{1}}$, then $d_{S(G)}(y, z)=d_{S(G)}\left(z^{\prime}, z\right)=2$. Suppose $z \notin S_{G_{1}}$. Since $S_{G_{1}} \cup S_{G_{2}}^{\prime}$ is a hop dominating set in G_{1}, there exists $p \in S_{G_{1}} \cup S_{G_{2}}^{\prime}$ such that $d_{G_{1}}(p, z)=2=d_{S(G)}(p, z)$. If $p \in S_{G_{1}}$, then $p \in S$ and $d_{S(G)}\left(p, z^{\prime}\right)=2$. If $p \in S_{G_{2}}^{\prime}$, then $p^{\prime} \in S_{G_{2}} \subseteq S$ and $d_{G_{2}}\left(p^{\prime}, z^{\prime}\right)=d_{S(G)}\left(p^{\prime}, z^{\prime}\right)=2$. Therefore, S is a hop dominating set in $S(G)$.

Corollary 3. Let G be a non-trivial connected graph. Then $\gamma_{h}(S(G))=\gamma_{h}(G)$.
Theorem 6. Let G be a non-trivial connected graph. Then S is a convex hop dominating set in $S(G)$ if and only if one of the following conditions holds:
(i) S is clique hop dominating set in G_{1}.
(ii) S is clique hop dominating set in G_{2}.
(iii) $S=S_{G_{1}} \cup S_{G_{2}}$ where
(a) $S_{G_{1}} \cap S_{G_{2}}^{\prime}=\varnothing$ and $S_{G_{1}}^{\prime} \cap S_{G_{2}}=\varnothing$.
(b) $S_{G_{1}}$ and $S_{G_{2}}$ are cliques in $S_{G_{1}}$ and $S_{G_{2}}$, respectively.
(c) $S_{G_{1}} \cup S_{G_{2}}^{\prime}$ and $S_{G_{1}}^{\prime} \cup S_{G_{2}}$ are clique hop dominating sets in $S_{G_{1}}$ and $S_{G_{2}}$, respectively.

Proof. Follows from Theorem 4 and Theorem 5.
Consider the following family of graphs:
$\mathcal{B}=\{G: G$ admits a clique hop domination $\}$. Then the following result follows from Theorem 6.

Corollary 4. Let G be a non-trivial connected graph. Then

$$
\gamma_{\text {conh }}(S(G))= \begin{cases}\gamma_{c l h}(G) & \text { if } G \in \mathcal{B} \\ |V(S(G))| & \text { if } G \notin \mathcal{B}\end{cases}
$$

Theorem 7. [7] Let G be a graph of order n. Then $1 \leq \operatorname{cpnd}(G) \leq n$. Moreover,
(i) $\operatorname{cpnd}(G)=1$ if and only if G has an isolated vertex.
(ii) $\operatorname{cpnd}(G)=n$ if and only if G is a complete graph.

Corollary 5. [7] Let n be any positive integer. Then
(i) $\operatorname{cpnd}\left(P_{n}\right)=2$ for any $n \geq 2$.
(ii) $\operatorname{cpnd}\left(C_{n}\right)=2$ for any $n \geq 4$.

The next result is found in [13].
Theorem 8. Let G and H be any two graphs. A set $S \subseteq V(G+H)$ is hop dominating set in $G+H$ if and only if $S=S_{G} \cup S_{H}$, where S_{G} and S_{H} are pointwise non-dominating sets in G and H, respectively.

The following two results are obtained in [12].
Theorem 9. Let G be a connected graph and K_{n} the complete graph of order n. Then a proper subset $C=S_{1} \cup S_{2}$ of $V\left(G+K_{n}\right)$, where $S_{1} \subseteq V(G)$ and $S_{2} \subseteq V\left(K_{n}\right)$, is a convex set in $G+H$ if and only if S_{1} induces a complete subgraph of G or $V(G) \backslash S_{1}$ is a non-connecting set and $S_{2}=V\left(K_{n}\right)$.

Theorem 10. Let G and H be two non-complete connected graphs. Then a proper subset $C=S_{1} \cup S_{2}$ of $V(G+H)$, where $S_{1} \subseteq V(G)$ and $S_{2} \subseteq V(H)$, is a convex set in $G+H$ if and only if S_{1} and S_{2} induce complete subgraphs of G and H, respectively, where it may occur that $S_{1}=\varnothing$ or $S_{2}=\varnothing$.

Theorem 11. Let G and H be two non-complete connected graphs. A set $S \subseteq V(G+H)$ is a convex hop dominating set in $G+H$ if and only if $S=S_{G} \cup S_{H}$, where S_{G} and S_{H} are clique pointwise non-dominating sets in G and H, respectively.

Proof. Suppose S is a convex hop dominating set in $G+H$. Then S_{G} and S_{H} are both non-empty. Since S is a hop dominating set, S_{G} and S_{H} are pointwise non-dominating sets in G and H, respectively by Theorem 8. Since S is a convex set, S_{G} and S_{H} are cliques in G and H, respectively, by Theorem 10. Therefore, S_{G} and S_{H} are clique pointwise non-dominating sets in G and H, respectively.

Conversely, suppose that $S=S_{G} \cup S_{H}$, where S_{G} and S_{H} are clique pointwise nondominating sets in G and H, respectively. Since S_{G} and S_{H} are pointwise non-dominating sets, $S=S_{G} \cup S_{H}$ is a hop dominating set in $G+H$ by Theorem 8. Since S_{G} and S_{H} are cliques, it follows that $S=S_{G} \cup S_{H}$ is a convex set in $G+H$ by Theorem 10. Consequently, $S=S_{G} \cup S_{H}$ is a convex hop dominating set in $G+H$.

The next result follows from Theorem 7, Corollary 5 and Theorem 11.
Corollary 6. Let G and H be two non-complete connected graphs. Then $\gamma_{\text {conh }}(G+H)=$ $\operatorname{cpnd}(G)+\operatorname{cpnd}(H)$. In particular, we have
(i) $\gamma_{\text {conh }}\left(P_{n}+P_{m}\right)=4$ for all $n, m \geq 3$, and
(ii) $\gamma_{\text {conh }}\left(C_{n}+C_{m}\right)=4$ for all $n, m \geq 4$.

Theorem 12. Let G be a connected graph and K_{n} the complete graph of order n. A set $S \subseteq V\left(G+K_{n}\right)$ is a convex hop dominating set in $G+K_{n}$ if and only if $S=V\left(K_{n}\right) \cup S_{G}$ where $V(G) \backslash S_{G}$ is a non-connecting set and S_{G} is a pointwise non-dominating set in G.

Proof. Suppose $S=S_{K_{n}} \cup S_{G}$ is a convex hop dominating set of $G+K_{n}$. By Theorem 8, $S_{K_{n}}$ and S_{G} are pointwise non-dominating sets of K_{n} and G, respectively. Hence, $S_{K_{n}}=V\left(K_{n}\right)$. Moreover, by Theorem $9, V(G) \backslash S_{G}$ is a non-connecting set in G.

Conversely, suppose that $S=V\left(K_{n}\right) \cup S_{G}$ such that $V(G) \backslash S_{G}$ is a non-connecting set and S_{G} is a pointwise non-dominating set in G. Then, by Theorem 8 and Theorem 9 , S is a convex hop dominating set of $G+K_{n}$.

The next result follows from Theorem 12.
Corollary 7. Let G a connected graph and K_{n} the complete graph of order n. Then

$$
\gamma_{c o n h}\left(G+K_{n}\right)=n+r_{G}
$$

where
$r_{G}=\min \{|S|: V(G) \backslash S$ is non-connecting and S is a pointwise non-dominating set in $G\}$.
In particular, the following hold:
(i) $\gamma_{\text {conh }}\left(K_{n}+C_{n}\right)= \begin{cases}n+3 & \text { if } n=3 \\ n+2 & \text { if } n \geq 4 .\end{cases}$
(ii) $\gamma_{\text {conh }}\left(K_{n}+P_{n}\right)=n+2$ for all $n \geq 2$.

The result that follows is a restatement of a result in [13].
Theorem 13. Let G and H be any two graphs. A set $C \subseteq V(G)$ is a hop dominating set in $G \circ H$ if and only if $C=A \cup\left(\cup_{v \in V(G)} C_{v}\right)$, where $A \subseteq V(G)$ and $C_{v} \subseteq V\left(H^{v}\right)$ for each $v \in V(G)$, and satisfies the following conditions:
(i) For each $w \in V(G) \backslash A$, there exists $x \in A$ with $d_{G}(w, x)=2$ or there exists $y \in N_{G}(w)$ with $C_{y} \neq \varnothing$.
(ii) C_{w} is a pointwise non-dominating set in H^{w} for each $w \in V(G) \backslash N_{G}(A)$.

Theorem 14. Let G be a non-trivial connected graph and let H be any graph. Then C is a convex hop dominating set in $G \circ H$ if and only if $C=A \cup\left(\cup_{v \in V(G)} C_{v}\right)$, where $A \subseteq V(G)$, $C_{v} \subseteq V\left(H^{v}\right)$ for each $v \in V(G)$, and satisfies the following conditions:
(i) For each $a \in V(G) \backslash A$, there exists $b \in A$ with $d_{G}(a, b)=2$ or there exists $y \in$ $A \cap N_{G}(a)$ with $C_{y} \neq \varnothing$.
(ii) A is a convex dominating set in G.
(iii) $C_{v}=\varnothing$ for each $v \in V(G) \backslash A$.
(iv) $V\left(H^{v}\right) \backslash C_{v}$ is a non-connecting in H^{v} for each $v \in A \cap N_{G}(A)$.
(v) $V\left(H^{v}\right) \backslash C_{v}$ is a non-connecting set and C_{v} is a pointwise non-dominating set in H^{v} if $A=\{v\}$ (that is, if $v \in A \backslash N_{G}(A)$).

Proof. Suppose C is a convex hop dominating set in $G \circ H$. By Theorem 13(ii), statement (i) holds. Let $x, y \in A$ with $x \neq y$. Then x and y are in C. Since C is convex and $I_{G \circ H}[x, y]=I_{G}[x, y]$, it follows that $I_{G}[x, y] \subseteq A$. Hence, A is convex. Suppose A is not a dominating set in G. Then there exists $v \in V(G) \backslash N_{G}[A]$. By Theorem $13(i i), C_{v}$ is a pointwise non-dominating set in H^{v}. Also, by Theorem $13(i)$, there exists $x \in A$ with $d_{G}(v, x)=2$ or there exists $y \in N_{G}(v)$ with $C_{y} \neq \varnothing$. Pick any $p \in C_{v}$ and let $q \in C$ such that $d_{G \circ H}(v, q)=2\left(q=x\right.$ or $\left.q \in C_{y}\right)$. Then $v \in I_{G \circ H}(p, q)$. By convexity of C, it follows that $v \in C$, a contradiction. Thus, A is a dominating set in G. This shows that (ii) holds. Next, let $y \in V(G) \backslash A$. Since A is a dominating set in $G, y \in N_{G}(A)$. By convexity of C, $C_{y}=\varnothing$. Hence, (iii) holds. Let $v \in A$. Suppose $V\left(H^{v}\right) \backslash C_{v}$ is not a non-connecting set in H^{v}. Then there exist $p, q \in C_{v}$ such that $p \neq q$ and $N_{H^{v}}(p) \cap N_{H^{v}}(q) \cap\left[V\left(H^{v}\right) \backslash C_{v}\right] \neq \varnothing$. This implies that C is not convex, a contradiction. Therefore, $V\left(H^{v}\right) \backslash C_{v}$ is a nonconnecting set in H^{v}, showing that (iv) holds. Suppose now that $v \in A \backslash N_{G}(A)$. Then, by Theorem $13(i i), C_{v}$ is a pointwise non-dominating set in H^{v}. Hence, (v) also holds.

Conversely, suppose that C has the given form and satisfies $(i),(i i),(i i i)(i v)$ and (v). Since (i) and (v) hold and A is a dominating set in G, the conditions (i) and (ii) of Theorem 13 hold. Thus, C is a hop dominating set in $G \circ H$. Next, let $x, y \in C$ with $x \neq y$. Let $v, w \in V(G)$ such that $x \in V\left(v+H^{v}\right)$ and $y \in V\left(w+H^{w}\right)$. Consider the following cases:

Case 1: $v=w$.
If one of x and y is v, say $x=v$, then $y \in C_{v}$ and $I_{G \circ H}[x, y]=\{x, y\} \subseteq C$. Suppose $x, y \in C_{v}$. Since $C_{v} \neq \varnothing, v \in A$ by (iii). By $(i v), V\left(H^{v}\right) \backslash C_{v}$ is a non-connecting set in H^{v}. Hence, $I_{G \circ H}[x, y] \subseteq C$.

Case 2: $v \neq w$.
Suppose $x=v$ and $y=w$. Since A is convex, $I_{G}[x, y] \subseteq A$. Since $I_{G \circ H}[x, y]=I_{G}[x, y]$, $I_{G \circ H}[x, y] \subseteq C$. Suppose $x=v$ and $y \in C_{w}$. Then $w \in A$ and, by convexity of A, $I_{G}[x, w] \subseteq A$. Since

$$
I_{G \circ H}[x, y]=I_{G}[x, w] \cup I_{G \circ H}[w, y]=I_{G \circ H}[x, w] \cup\{y\},
$$

it follows that $I_{G \circ H}[x, y] \subseteq C$. The same conclusion holds when $x \in C_{v}$ and $y=w$. Finally, let $x \in C_{v}$ and $y \in C_{w}$. Then, by (iii), $v, w \in A$. Again, by convexity of A, $I_{G \circ H}[v, w]=I_{G}[v, w]$ is contained in $A \subseteq C$. This implies that

$$
I_{G \circ H}[x, y]=I_{G \circ H}[v, w] \cup I_{G \circ H}[x, v] \cup I_{G \circ H}[y, w]=I_{G \circ H}[v, w] \cup\{x, y\}
$$

is contained in C.
Therefore, C is a convex set in $G \circ H$.
Accordingly, C is a convex hop dominating set in $G \circ H$.
Let G be a graph. We denote by $\mathcal{D}_{G}, \mathcal{L}_{G}$, and \mathcal{I}_{H} the sets containing the dominating vertices, leaves, and isolated vertices of G, respectively. Note that if $\gamma(G)=1$, then $\left|\mathcal{D}_{G}\right| \geq 1$.

Corollary 8. Let G be a non-trivial connected graph with $\gamma(G)=1$ and let H be any graph. Then

$$
\gamma_{\text {conh }}(G \circ H)= \begin{cases}2, & \text { if }\left|\mathcal{L}_{G}\right| \geq 1 \text { or }\left|\mathcal{I}_{H}\right| \geq 1 \\ 3, & \text { otherwise }\end{cases}
$$

Proof. Let $v \in \mathcal{D}_{G}$. Suppose $\left|\mathcal{L}_{G}\right| \geq 1$, say $w \in \mathcal{L}_{G}$. Set $A_{1}=\{v, w\}$. Then A_{1} is a convex dominating set in G. Let $C_{u}=\varnothing$ for each $u \in V(G)$. Then $C_{1}=$ $A_{1} \cup\left(\cup_{u \in V(G)} C_{u}\right)=A_{1}$ is a convex hop dominating set in $G \circ H$ by Theorem 14. Thus, $\gamma_{\text {conh }}(G \circ H)=2$. Next, suppose that $\left|\mathcal{I}_{H}\right| \geq 1$. Pick any $p \in \mathcal{I}_{H^{v}}$. Then $A_{2}=\{v\}$ is a convex dominating set in G. Set $C_{v}=\{p\}$ and let $C_{u}=\varnothing$ for all $u \in V(G) \backslash\{v\}$. Then $V\left(H^{v}\right) \backslash C_{v}$ is a non-connecting set and C_{v} is a pointwise non-dominating set in H^{v}. Hence, $C_{2}=A_{2} \cup\left(\cup_{z \in V(G)} C_{z}\right)=A_{2} \cup C_{v}$ is a convex hop dominating set in $G \circ H$ by Theorem 14. It follows that $\gamma_{\text {conh }}(G \circ H)=2$.

Suppose now that $\left|\mathcal{L}_{G}\right|=0$ and $\left|\mathcal{I}_{H}\right|=0$. Again, let $v \in \mathcal{D}_{G}$. Pick any $z \in V(G) \backslash\{v\}$ and let $A=\{v, z\}$. Then A is a convex dominating set of G. Choose any $q \in V\left(H^{v}\right)$ and let $C_{v}=\{q\}$. Put $C_{x}=\varnothing$ for all $x \in V(G) \backslash\{v\}$. Then $C_{z}=\varnothing$ and $V\left(H^{v}\right) \backslash C_{v}$ and $V\left(H^{z}\right) \backslash C_{z}$ are non-connecting sets in H^{v} and H^{z}, respectively. By Theorem 14, $C=A \cup\left(\cup_{y \in V(G)} C_{y}\right)=A \cup C_{v}$ is a convex hop dominating set in $G \circ H$. It follows that $\gamma_{c o n h}(G \circ H) \leq 3$. Suppose now that $C=A_{0} \cup\left(\cup_{u \in V(G)} S_{u}\right)$ is a $\gamma_{c o n h}$-set of $G \circ H$. Suppose first that $\left|A_{0}\right|=1$, say $A_{0}=\{z\}$. Then A_{0} is (convex) dominating set in G by Theorem $14(i i)$. Moreover, $S_{u}=\varnothing$ for all $u \in V(G) \backslash A_{0}$ by Theorem $14(i i i)$. Since $\left|\mathcal{I}_{H}\right|=0$, any pointwise non-dominating set in H^{z} contains at least two elements, that is, $\left|S_{z}\right| \geq 2$. It follows that $\gamma_{\text {conh }}(G \circ H)=\left|C_{0}\right| \geq 3$. Suppose that $\left|A_{0}\right|=2$, say $A_{0}=\{x, y\}$. If $x, y \notin \mathcal{D}_{G}$, then $C_{x} \neq \varnothing$ or $C_{y} \neq \varnothing$ (since x and y are not hop neighbors of a dominating vertex of G). Suppose one of x and y, say x, is a dominating vertex in G. Since $y \notin \mathcal{L}_{G}$, there exists a vertex $d \in N_{G}(y) \cap N_{G}(x)$. This implies that $C_{x} \neq \varnothing$ or $C_{y} \neq \varnothing$. In either case, $\gamma_{\text {conh }}(G \circ H)=\left|C_{0}\right| \geq 3$. Therefore, $\gamma_{\text {conh }}(G \circ H)=3$.

For a connected graph G,

$$
\gamma_{c o n}^{h}(G)=\min \{|S|: S \text { is a convex dominating and hop dominating set in } G\} .
$$

Since $V(G)$ is a convex dominating and hop dominating set, G admits a convex dominating and hop dominating set. Moreover, $\gamma_{c o n}(G) \leq \gamma_{c o n}^{h}(G)$.

Corollary 9. Let G be a non-trivial connected graph with $\gamma(G) \neq 1$ and let H be any
graph. Then

$$
\gamma_{\text {conh }}(G \circ H)= \begin{cases}\gamma_{c o n}(G), & \text { if } \gamma_{c o n}(G)=\gamma_{c o n}^{h}(G) \\ \gamma_{c o n}(G)+1, & \text { otherwise } .\end{cases}
$$

Proof. Suppose $\gamma_{c o n}(G)=\gamma_{c o n}^{h}(G)$. Let A be a $\gamma_{c o n}^{h}$-set of G. Then $|A| \geq 2$. Set $C_{v}=\varnothing$ for all $v \in V(G)$. Then, by Theorem 14, $C=A$ is a convex hop dominating set in $G \circ H$. Hence, $\gamma_{c o n h}(G \circ H) \leq \gamma_{c o n}(G)$. By Theorem 14(ii), it follows that $\gamma_{c o n h}(G \circ H)=\gamma_{c o n}(G)$.

Next, suppose that $\gamma_{c o n}(G)<\gamma_{c o n}^{h}(G)$. Let A^{\prime} be a $\gamma_{c o n}$-set of G. Since $\gamma(G) \neq 1$, $\left|A^{\prime}\right| \geq 2$. The assumption that $\gamma_{c o n}(G)<\gamma_{c o n}^{h}(G)$ implies that A^{\prime} is not a hop dominating set in G. Hence, there exists $v \notin N_{G}^{2}\left[A^{\prime}\right]$. Let $x, y \in A^{\prime}$ with $x \neq y$. Since A^{\prime} is a dominating set, there exists $w \in A^{\prime} \cap N_{G}(v)$. Because A^{\prime} is convex, $\left\langle A^{\prime}\right\rangle$ is connected. Let $\left[w_{1}, w_{2}, \ldots, w_{k}\right]$, where $w_{1}=w$ and $w_{k}=x$, be a $w-x$ geodesic in $\left\langle A^{\prime}\right\rangle$. Since $v \notin N_{G}^{2}\left[A^{\prime}\right]$, $v w_{j} \in E(G)$ for all $j \in\{1,2, \ldots, k\}$. In particular, $v x \in E(G)$. Let $\left[x_{1}, x_{2}, \ldots, x_{t}\right]$, where $x_{1}=x$ and $x_{t}=y$, be an $x-y$ geodesic in $\left\langle A^{\prime}\right\rangle$. Again, since $v \notin N_{G}^{2}\left[A^{\prime}\right], v x_{i} \in E(G)$ for all $i \in\{1,2, \ldots, t\}$. Moreover, by convexity of $A^{\prime},\left\langle\left\{x_{1}, x_{2}, \ldots, x_{t}\right\}\right\rangle$ is complete (otherwise, $v \in A^{\prime}$, a contradiction). Hence, $x y \in E(G)$. Thus, $\left\langle A^{\prime}\right\rangle$ is complete. Pick any $w \in A^{\prime}$ and $p \in V\left(H^{w}\right)$. Set $C_{w}=\{p\}$ and $C_{z}=\varnothing$ for all $z \in V(G) \backslash\{w\}$. Then $C^{\prime}=A^{\prime} \cup C_{w}$ is a convex hop dominating set in $G \circ H$ by Theorem 14. Hence, $\gamma_{\text {conh }}(G \circ H) \leq\left|C^{\prime}\right|=$ $\gamma_{\text {con }}(G)+1$. Now let $C^{*}=A^{*} \cup\left(\cup_{v \in V(G)} R_{v}\right)$ be a $\gamma_{\text {conh }}$-set of $G \circ H$. Then A^{*} is a convex dominating set in G by Theorem 14. If $\left|A^{*}\right|>\gamma_{\text {con }}(G)$, then $\left|C^{*}\right| \geq\left|A^{*}\right| \geq \gamma_{\text {con }}(G)+1$. Suppose $\left|A^{*}\right|=\gamma_{c o n}(G)$. Since $\gamma_{c o n}(G)<\gamma_{c o n}^{h}(G), A^{*}$ is not a hop dominating set, say $v \notin N_{G}^{2}\left[A^{*}\right]$. Hence, by Theorem $14(i)$, there exists $y \in A^{*} \cap N_{G}(v)$ with $R_{y} \neq \varnothing$. It follows that $\gamma_{\text {conh }}(G \circ H)=\left|C^{*}\right| \geq\left|A^{*}\right|+\left|R_{y}\right| \geq \gamma_{\text {con }}(G)+1$. This establishes the desired equality.

The next result is found in [13].
Theorem 15. Let G and H be connected non-trivial graphs. Then $C=\bigcup_{x \in S}\left[\{x\} \times T_{x}\right]$ is a hop dominating set in $G[H]$ if and only if the following conditions hold.
(i) S is a hop dominating set in G.
(ii) T_{x} is a pointwise non-dominating set in H for each $x \in S \backslash N_{G}^{2}(S)$.

The next result is a restatement of the one obtained by Canoy and Garces in [12].
Theorem 16. Let G and H be connected non-complete graphs. Then $C=\bigcup_{x \in S}\left(\{x\} \times T_{x}\right)$ is convex in $G[H]$ if and only if S is a clique in G and T_{x} is a clique in H for each $x \in S$.

Theorem 17. Let G and H be connected non-complete graphs. Then $C=\bigcup_{x \in A}\left[\{x\} \times T_{x}\right]$, where $A \subseteq V(G)$ and $T_{x} \subseteq V(H)$ for each $x \in A$, is a convex hop dominating set in $G[H]$ if and only if $C=V(G[H])$ or C satisfies the following conditions:
(i) A is a clique hop dominating set in G.
(ii) T_{x} is a clique pointwise non-dominating set in H for each $x \in A$.

Proof. If $C=V(G[H])$, then we are done. Suppose $C \neq V(G[H])$. Then A is a clique in G and T_{x} is a clique in H for each $x \in A$ by Theorem 16. Since C is hop dominating set, A is a hop dominating set in G by Theorem 15. Since A is a clique, $x \notin N_{G}^{2}(A)$ for all $x \in A$. Thus, T_{x} is a pointwise non-dominating set in H for every $x \in A$ by Theorem $15(i i)$. Therefore, (i) and (ii) hold.

For the converse, suppose that $C=V(G[H])$. Then C is convex hop dominating in $G[H]$. Next, suppose C satisfies i and (ii). Then by Theorem $15, C$ is a hop dominating set in $G[H]$. By $(i),(i i)$ and Theorem 16, C is a convex set in $G[H]$. Hence, C is a convex hop dominating set in $G[H]$.

In the next result, we shall consider the family \mathcal{C} of graphs given by
$\mathcal{C}=\{G: G$ is a connected non-complete graph that admits a clique hop dominating set $\}$.
Corollary 10. Let G and H be connected non-complete graphs of orders m and n, respectively. Then

$$
\gamma_{\text {conh }}(G[H])= \begin{cases}n m & \text { if } G \notin \mathcal{C} \\ \gamma_{c l h}(G) \operatorname{cpnd}(H) & \text { if } G \in \mathcal{C} .\end{cases}
$$

The next result is taken from [10].
Theorem 18. Let G be a connected graph and K_{m} the complete graph of order m. A subset $C=\bigcup_{x \in S}\left(\{x\} \times T_{x}\right)$ of $V\left(G\left[K_{m}\right]\right)$ is convex in $G\left[K_{m}\right]$ if and only if S is convex in G and $T_{x}=V\left(K_{m}\right)$ for each $x \in S \cap I_{G}(S)$.

Theorem 19. Let G be a connected graph and K_{m} the complete graph of order m. Then $C=\bigcup_{x \in A}\left[\{x\} \times T_{x}\right]$, where $A \subseteq V(G)$ and $T_{x} \subseteq V\left(K_{m}\right)$ for each $x \in A$, is a convex hop dominating set in $G\left[K_{m}\right]$ if and only if $C=V(G[H])$ or C satisfies the following conditions:
(i) A is a convex hop dominating set in G.
(ii) $T_{x}=V\left(K_{m}\right)$ for each $x \in\left(A \cap I_{G}(A)\right) \cup\left(A \backslash N_{G}^{2}(A)\right)$.

Proof. Suppose C is a convex hop dominating set of $G\left[K_{m}\right]$. By Theorem 15 and Theorem 18, A is a convex hop dominating set in G and $T_{x}=V\left(K_{m}\right)$ for each $x \in$ $\left(A \cap I_{G}(A)\right) \cup\left(A \backslash N_{G}^{2}(A)\right)$. Hence, (i) and (ii) hold.

Conversely, suppose that (i) and (ii) hold. Then, by Theorem 15 and Theorem 18, C is a convex hop dominating set in $G\left[K_{m}\right]$.

Corollary 11. Let G be a connected graph and K_{m} the complete graph of order m. Then $\gamma_{\text {conh }}\left(G\left[K_{m}\right]\right)=\min \left\{|S|+(m-1)\left|S^{0} \cup\left(S \backslash N_{G}^{2}(S)\right)\right|: S\right.$ is a convex hop dominating set in $\left.G\right\}$, where $S^{0}=S \cap I_{G}(S)$.

Proof. Let $C=\bigcup_{x \in S}\left[\{x\} \times T_{x}\right]$ be a $\gamma_{\text {conh }}$-set of $G\left[K_{m}\right]$. Then S is a convex hop dominating set and $T_{x}=V\left(K_{m}\right)$ for all $x \in S^{0} \cup\left(S \backslash N_{G}^{2}(S)\right)$ by Theorem 19. Since C is a $\gamma_{c o n h}$-set, $\left|T_{x}\right|=1$ for all $x \in S \backslash\left[S^{0} \cup\left(S \backslash N_{G}^{2}(S)\right)\right]$. It follows that

$$
\begin{aligned}
|C| & =\sum_{x \in\left[S^{0} \cup\left(S \backslash N_{G}^{2}(S)\right)\right]}\left|T_{x}\right|+\sum_{\left.x \in S \backslash \backslash S^{0} \cup\left(S \backslash N_{G}^{2}(S)\right)\right]}\left|T_{x}\right| \\
& =m\left|S^{0} \cup\left(S \backslash N_{G}^{2}(S)\right)\right|+|S|-\left|S^{0} \cup\left(S \backslash N_{G}^{2}(S)\right)\right| \\
& =|S|+(m-1)\left|S^{0} \cup\left(S \backslash N_{G}^{2}(S)\right)\right| .
\end{aligned}
$$

This proves the desired equality.
It is worth mentioning that the value of the parameter given in Corollary 11 is not necessarily attained when S is a $\gamma_{c o n h}$-set in G. To see this, consider $P_{5}\left[K_{3}\right]$. It is easily verified that $\gamma_{c o n h}\left(P_{5}\right)=2$. If S is $\gamma_{c o n h}$-set in P_{5}, then $\langle S\rangle=K_{2}$ and $S^{0} \cup\left(S \backslash N_{G}^{2}(S)\right)=S$. Hence, $|S|+(3-1)\left|S^{0} \cup\left(S \backslash N_{G}^{2}(S)\right)\right|=6$. However, by taking any three consecutive vertices of P_{5}, one can see that $\gamma_{\text {conh }}\left(P_{5}\left[K_{3}\right]\right)=5$.

4. Conclusion

The concept of convex hop domination has been introduced and initially investigated in this study. Graphs which attained some specific convex hop domination number have been characterized. The convex hop domination number of the complementary prism has been obtained and necessary and sufficient conditions for a subset to be convex hop dominating in the shadow graph, join, corona, and lexicographic product of two graphs have been obtained. These characterizations have been used to obtain bounds or exact value of the convex hop domination number of each of these graphs. The concept can be studied for other interesting graphs. Moreover, it is conjectured that the convex hop domination problem is $N P$-complete.

Acknowledgements

The authors would like to thank the referees for the invaluable assistance they gave us through their comments and suggestions which led to the improvement of the paper. The authors are also grateful to the Department of Science and Technology - Accelerated Science and Technology Human Resource Development Program (DOST-ASTHRDP)Philippines and MSU-Iligan Institute of Technology for funding this research.

References

[1] S. Ayyaswamy, B. Krishnakumari, B. Natarjan, and Y. Venkatakrishnan. Bounds on the hop domination number of a tree. Proceedings-Mathematical Sciences., 125(4):449-455, 2015.
[2] S. Ayyaswamy, C. Natarajan, and G. Sathiamoorphy. A note on hop domination number of some special families of graphs. International Journal of Pure and Applied Mathematics., 119(12):11465-14171, 2018.
[3] F. Buckley and F. Harary. Distance in graphs. Addison-Wesley, Redwood City, CA, 1990.
[4] G. Chartrand, J. Fink, and P. Zhang. Convexity in graphs. Discrete Applied Mathematics, 116:115-126, 2002.
[5] T. Daniel and S. Canoy Jr. Clique domination in a graph. Applied Mathematical Sciences, 9(116):5749-5755, 2015.
[6] F. Harary and J. Nieminen. Convexity in graphs. J. Differential Geom., 16:185-190, 1981.
[7] J. Hassan and S. Canoy Jr. Hop independent hop domination in graphs. Eur. J. Pure Appl. Math., 15(4):1783-1796, 2022.
[8] J. Hassan, S. Canoy Jr., and A. Aradais. Hop independent sets in graphs. Eur. J. Pure Appl. Math., 15(2):467-477, 2022.
[9] M. Henning and N. Rad. On 2-step and hop dominating sets in graphs. Graphs and Combinatorics., 33(4):913-927, 2017.
[10] S. Canoy Jr. A short note on convexity and convex domination in g[k_m]. Applied Mathematical Sciences, 8(115):5737-5741, 2014.
[11] S. Canoy Jr., G. Cagaanan, and S. Gervacio. Convexity, geodetic, and hull numbers of the join of graphs. Utilitas Mathematica, 71:143-159, 2006.
[12] S. Canoy Jr. and I.J.L. Garces. Convex sets under some graph operations. Graphs and Combinatorics, 18:787-793, 2002.
[13] S. Canoy Jr., R. Mollejon, and J. G. Canoy. Hop dominating sets in graphs under binary operations. Eur. J. Pure Appl. Math., 12(4):1455-1463, 2019.
[14] S. Canoy Jr. and G. Salasalan. Revisiting domination, hop domination, and global hop domination in graphs. Eur. J. Pure Appl. Math., 14:1415-1428, 2021.
[15] S. Canoy Jr. and G. Salasalan. Locating-hop domination in graphs. Kyungpook Mathematical Journal., 62:193-204, 2022.
[16] M. Labendia and S. Canoy Jr. Convex domination in the composition and cartesian product of graphs. Czechoslovak Mathematical Journal, 62(4):1003-1009, 2012.
[17] M. Lemanska. Weakly convex and convex domination numbers. Opusc. Math., 24:181188, 2004.
[18] C. Natarajan and S. Ayyaswamy. Hop domination in graphs ii. Versita, 23(2):187199, 2015.
[19] Y. Pabilona and H. Rara. Connected hop domination in graphs under some binary operations. Asian-Eur. J. Math., 11(5):1850075-1-1850075-11, 2018.
[20] R. Rakim, H. Rara, and C.J. Saromines. Perfect hop domination in graphs. Applied Mathematical Sciences, 12(13):635-649, 2018.
[21] G. Salasalan and S. Canoy Jr. Global hop domination numbers of graphs. Eur. J. Pure Appl. Math., 14(1):112-125, 2021.

[^0]: *Corresponding author.
 DOI: https://doi.org/10.29020/nybg.ejpam.v16i1.4656
 Email addresses: javier.hassan@g.msuiit.edu.ph (J. Hassan),
 sergio.canoy@g.msuiit.edu.ph (S. Canoy),
 chrisley.saromines@g.msuiit.edu.ph (C. Saromines)
 (C) 2023 EJPAM All rights reserved.

