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Abstract. Let G be an undirected connected graph with vertex and edge sets V (G) and E(G),
respectively. A set C ⊆ V (G) is called convex hop dominating if for every two vertices x, y ∈ C,
the vertex set of every x-y geodesic is contained in C and for every v ∈ V (G) \ C, there exists
w ∈ C such that dG(v, w) = 2. The minimum cardinality of convex hop dominating set of G,
denoted by γconh(G), is called the convex hop domination number of G. In this paper, we show
that every two positive integers a and b, where 2 ≤ a ≤ b, are realizable as the connected hop
domination number and convex hop domination number, respectively, of a connected graph. We
also characterize the convex hop dominating sets in some graphs and determine their convex hop
domination numbers.
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1. Introduction

Hop domination, a concept introduced and initially studied by Natarajan et al. in [18],
has become one of the topics of investigation recently. So far, there is a significant number
of variants of hop domination that have been defined and investigated. Some studies on
hop domination, its variants, and related concepts can be found in [1], [2], [5], [8], [7], [9],
[13], [14], [15], [19], [20], and [21].

Another interesting topic that had caught the attention of several researchers is con-
vexity. Convexity is a concept that appears in many areas of mathematics (e.g. real
analysis, topology, geometry, functional analysis). In Graph Theory, the concept can eas-
ily find a graph-theoretic formulation. Convexity in graphs is discussed in the book by
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Buckley and Harary [3]. The concept and other types of convexity are studied in [4], [6],
and [11]. The concept is also combined with many other parameters. One well-known
formed combination is convex domination. This variation of domination is studied in [4],
[10], [16], and [17]. In this paper, we introduce and study convex hop domination. This
study is motivated by the introduction of hop domination and convex domination. Just
like convex domination, we believe that this new parameter will yield significant results in
the topic of domination and can lead to other interesting research directions in the future.

2. Terminology and Notation

Let G = V (G), E(G)) be an undirected graph. For any two vertices u and v of G,
the distance dG(u, v) is the length of a shortest path joining u and v. Any u-v path
of length dG(u, v) is called a u-v geodesic. The interval IG [u, v] consists of u, v, and all
vertices lying on a u-v geodesic. The interval IG(u, v) = IG [u, v] \ {u, v}. Vertices u and
v are adjacent (or neighbors) if uv ∈ E(G). The set of neighbors of a vertex u in G,
denoted by NG(u), is called the open neighborhood of u. The closed neighborhood of u
is the set NG[u] = NG(u) ∪ {u}. If X ⊆ V (G), the open neighborhood of X is the set

NG(X) =
⋃
u∈X

NG(u). The closed neighborhood of X is the set NG[X] = NG(X) ∪X.

A set D ⊆ V (G) is a dominating set (resp. total dominating set) of G if for every
v ∈ V (G) \ D (resp. v ∈ V (G)), there exists u ∈ D such that uv ∈ E(G), that is,
NG[D] = V (G) (resp. NG(D) = V (G)). The domination number (resp. total domination
number) of G, denoted by γ(G) (resp. γt(G)), is the minimum cardinality of a dominating
(resp. total dominating) set in G. Any dominating (resp. total dominating) set in G with
cardinality γ(G) (resp. γt(G)), is called a γ-set (resp. γt-set) in G. If γ(G) = 1 and {v}
is a dominating set in G, then we call v a dominating vertex in G.

A vertex v in G is a hop neighbor of vertex u in G if dG(u, v) = 2. The set N2
G(u) =

{v ∈ V (G) : dG(v, u) = 2} is called the open hop neighborhood of u. The closed hop
neighborhood of u is given by N2

G[u] = N2
G(u) ∪ {u}. The open hop neighborhood of

X ⊆ V (G) is the set N2
G(X) =

⋃
u∈X

N2
G(u). The closed hop neighborhood of X is the set

N2
G[X] = N2

G(X) ∪X.
A set S ⊆ V (G) is a hop dominating set in G if N2

G[S] = V (G), that is, for every
v ∈ V (G)\S, there exists u ∈ S such that dG(u, v) = 2. The minimum cardinality among
all hop dominating sets in G, denoted by γh(G), is called the hop domination number
of G. Any hop dominating set with cardinality equal to γh(G) is called a γh-set. A
hop dominating set S is connected hop dominating if ⟨S⟩ is connected. The minimum
cardinality among all connected hop dominating sets of G, denoted by γch(G), is called
the connected hop domination number of G. Any connected hop dominating set with
cardinality equal to γch(G) is called a γch-set.

A set C ⊆ V (G) is convex set if for every two vertices x, y ∈ C, the vertex set of every
x-y geodesic is contained in C, that is, IG[x, y] ⊆ C. The largest cardinality of a proper
convex set in G, denoted by con(G), is called the convexity number of G. A set C ⊆ V (G)
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is called a convex dominating set (resp. convex hop dominating set) if C is both convex
and dominating (resp. convex and hop dominating). The minimum cardinality among all
convex dominating (resp. convex hop dominating) sets in G, denoted by γcon(G) (resp.
γconh(G)), is called the convex domination number (resp. convex hop domination number)
of G. Any convex dominating (resp. convex hop dominating set) with cardinality equal
to γcon(G) (resp. γconh(G)) is called a γcon-set (resp. γconh-set).

A nonempty set S ⊆ V (G) is non-connecting if for each pair of vertices v, w ∈ V (G)\S
with dG(v, w) = 2, it holds that NG(v) ∩NG(w) ∩ S = ∅.

A set S ⊆ V (G) is a clique if the subgraph ⟨S⟩ induced by S is a complete graph. The
maximum cardinality of a clique in G, denoted by ω(G), is called the clique number of G.
A clique S which is also hop dominating in G is called clique hop dominating. Whenever
G admits a clique hop dominating set, we call the smallest cardinality of a clique hop
dominating set in G, denoted by γclh(G), the clique hop domination number of G.

A set C ⊆ V (G) is a pointwise non-dominating set if for every v ∈ V (G)\C, there exists
u ∈ C such that v /∈ NG(u). The minimum cardinality of a pointwise non-dominating set
in G, denoted by pnd(G), is called a pointwise non-domination number of G.

A set S ⊆ V (G) is a clique pointwise non-dominating set if S is both a clique and a
pointwise non-dominating set in G. The smallest cardinality of a clique pointwise non-
dominating set in G, denoted by cpnd(G), is called the clique pointwise non-domination
number of G. Any clique pointwise non-dominating set in G with cardinality cpnd(G) is
called a cpnd-set in G.

The shadow graph S(G) of graph G is constructed by taking two copies of G, say G1

and G2, and then joining each vertex u ∈ V (G1) to the neighbors of its corresponding
vertex u′ ∈ V (G2).

For a graph G, the complementary prism, denoted by GG, is formed from the disjoint
union of G and its complement G by adding a perfect matching between corresponding
vertices of G and G. For each v ∈ V (G), let v denote the vertex in G corresponding to v.
In simple terms, the graph GG is form from G∪G by adding the edge vv for every vertex
v ∈ V (G).

Let G and H be any two graphs. The join G + H is the graph with vertex set
V (G+H) = V (G)∪ V (H) and edge set E(G+H) = E(G)∪E(H)∪ {uv : u ∈ V (G), v ∈
V (H)}. The corona G ◦ H is the graph obtained by taking one copy of G and |V (G)|
copies of H, and then joining the ith vertex of G to every vertex of the ith copy of H.
We denote by Hv the copy of H in G ◦ H corresponding to the vertex v ∈ G and write
v + Hv for ⟨{v}⟩ + Hv. The lexicographic product G[H] is the graph with vertex set
V (G[H]) = V (G) × V (H) and (v, a)(u, b) ∈ E(G[H]) if and only if either uv ∈ E(G)
or u = v and ab ∈ E(H). Any non-empty set C ⊆ V (G) × V (H) can be expressed

as C =
⋃
x∈S

[{x} × Tx], where S ⊆ V (G) and Tx ⊆ V (H) for each x ∈ S. Specifically,

Tx = {a ∈ V (H) : (x, a) ∈ C} for each x ∈ S.
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3. Results

Since every convex set in a connected graph induces a connected graph, every convex
hop dominating set is connected hop dominating. We formally state a consequence of this
fact here.

Remark 1. Let G be any connected graph on n vertices. Then γch(G) ≤ γconh(G).

Remark 2. The bound given in Remark 1 is tight. Moreover, strict inequality can also be
attained.

For tightness, consider G = K1,5. Then γch(G) = γconh(G) = 2. Next, consider the
graph G in Figure 1. Let C = {c, d, f} and C ′ = {c, d, e, f}. Then C and C ′ are γch-set
and γconh-set in G, respectively. Hence, γch(G) = 3 < 4 = γconh(G).
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Figure 1: A graph G with γch(G) < γconh(G).

Theorem 1. Let G be any connected graph on n ≥ 2 vertices. Then 2 ≤ γconh(G) ≤ n.
Moreover, γconh(G) = 2 if and only if γch(G) = 2.

Proof. Clearly, 2 ≤ γconh(G) ≤ n.
Suppose γconh(G) = 2. By Remark 1, γch(G) ≤ γconh(G) = 2. Since γch(G) ≥ 2 for any
connected graph of order n ≥ 2, it follows that γch(G) = 2.

Conversely, suppose γch(G) = 2, say, S = {x, y} is a γch-set of G. Since the graph
induced by S is K2, S is convex. Thus, S is a convex hop dominating set in G and
γconh(G) ≤ 2. By Remark 1, γconh(G) = 2.

Theorem 2. Let a and b be positive integers such that 3 ≤ a ≤ b. Then there exists a
connected graph G such that γch(G) = a and γconh(G) = b.

Proof. For a = b, consider G = Ka. Then γch(G) = a = γconh(G). Suppose a < b.
Consider the following two cases:
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Case 1: a = 3.
Let m = b − a and consider the graph G in Figure 2. Let C = {x1, x2, x3} and C ′ =
{x1, x2, x3, y1, y2, . . . , ym}. Then C and C ′ are γch-set and γconh-set in G, respectively.
Thus, γch(G) = a and γconh(G) = a+m = b.
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Figure 2: A graph G with γch(G) < γconh(G).

Case 2: a ≥ 4.
Let m = b − a and consider the graph G′ in Figure 3. Let D = {x1, x2, . . . , xa} and
D′ = {x1, x2, . . . , xa, y1, y2, . . . , ym}. Then D and D′ are γch-set and γconh-set in G′,
respectively. Thus, γch(G

′) = a and γconh(G
′) = a+m = b.
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Figure 3: A graph G′ with γch(G
′) < γconh(G

′).

This proves the assertion.

Corollary 1. Let n be a positive integer. Then there exists a connected graph G such that
γconh(G)− γch(G) = n. In other words, γconh − γch can be made arbitrarily large.

Proposition 1. Let n be any positive integer. Then each of the following holds.

(i) γconh(Pn) =

{
2 if n = 2, 3, 4, 5

n− 4 if n ≥ 6.
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(ii) γconh(Cn) =



2 if n = 4, 5

3 if n = 3

n− 4 if n ≥ 6

n− 4if6 ≤ n ≤ 9

nifn ≥ 10.

(iii) γconh(Kn) = n for all n ≥ 1.

Proof. (i) Clearly, γconh(Pn) = 2 for n ∈ {2, 3, 4, 5}. Suppose n ≥ 6. Let Pn =
[v1, v2, . . . , vn] and consider C = {v3, v4, . . . , vn−3, vn−2}. Then C is a convex hop domi-
nating set in Pn. Since every convex hop dominating set in Pn contains C, it follows that
C is a γconh-set of Pn. Thus, γconh(Pn) = n− 4 for all n ≥ 6.

(ii) Clearly, γconh(Cn) = 2 for n ∈ {4, 5} and γconh(Cn) = 3 for n = 3. Suppose 6 ≤ n ≤ 9..
Let Cn = [v1, v2, . . . , vn, v1] and let C ′ be a γconh-set of Cn. We may assume that v1 ∈ C ′

and vn /∈ C. Then C ′ = {v1, v2, . . . , vn−5, vn−4}. It follows that γconh(Cn) = n− 4 for all
6 ≤ n ≤ 9.

Next, suppose that n ≥ 10.IfS’isaγconh-set of Cn, then |S′| ≥ n − 4 since S′ is a
connected hop dominating set. We may assume that v1, v2, ..., vn−5, vn−4 ∈ S′. Then
dCn(v1, vn−4) ≤ n− 5. It follows that vn−3, vn−2, vn−1, vnlieinthev1- vn−4 geodesic. Since
S’ is convex, S′ = V (Cn) and γconh(Cn) = n.
(iii) Since γch(Kn) = n for all n ≥ 1, it follows from Remark 1 that γconh(Kn) = n for all
n ≥ 1.

Theorem 3. Let G be a connected graph of order n. Then γconh(GG) = 2. In particular,
{u, u} is a γconh-set of GG for any u ∈ V (G).

Proof. Clearly, γconh(GG) = 2 if n = 1. Suppose n ≥ 2. Let S = {u, u} where
u ∈ V (G) and u ∈ V (G). Clearly, S is a convex set. Let w ∈ V (GG) \ S and consider the
following two cases:

Case 1: w ∈ V (G).
If uw ∈ E(G), then dGG(u,w) = 2. Suppose that uw /∈ E(G), then u w ∈ E(G). This
implies that dGG(u,w) = 2.

Case 2: w ∈ V (G).
Let w = z, where z ∈ V (G). If u z ∈ E(G), then dGG(u,w) = 2. If u z /∈ E(G), then
uz ∈ E(G). This means that dGG(u,w) = 2. Therefore, S is a convex hop dominating set
in GG. Since GG is non-trivial, it follows that γconh(GG) = 2.

If G1 and G2 are the copies of graph G in the definition of the shadow graph S(G) and
if SG1 ⊆ V (G1) and SG2 ⊆ V (G2), then the sets S′

G1
and S′

G2
are the sets given by

S′
G1

= {a′ ∈ V (G2) : a ∈ SG1} and S′
G2

= {a ∈ V (G1) : a
′ ∈ SG2}.
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Theorem 4. Let G be a non-trivial connected graph. Then a proper subset S of V (S(G))
is convex in S(G) if and only if one of the following conditions holds:

(i) S is clique in G1.

(ii) S is clique in G2.

(iii) S = SG1 ∪ SG2 and satisfies the following conditions:

(a) SG1 ∩ S′
G2

= ∅ and S′
G1

∩ SG2 = ∅.

(b) SG1 and SG2 are cliques in G1 and G2, respectively.

(c) SG1 ∪ S′
G2

and S′
G1

∪ SG2 are cliques in G1 and G2, respectively.

Proof. Suppose S is convex in S(G). If SG2 = ∅, then S = SG1 . Suppose S is not a
clique in G1. Then there exist a, b ∈ S such that dG1(a, b) = 2 = dS(G)(a, b). It follows
that x ∈ S for all x ∈ NG1(a) ∩NG1(b). Hence, x′ ∈ S for all x ∈ NG1(a) ∩NG1(b). This
contradicts the assumption that SG2 = ∅. Therefore, S is a clique in G1. Similarly, if
CG1 = ∅, then S is a clique in G2. Hence, (i) and (ii) hold.

Next, suppose SG1 and SG2 are both non-empty. Then S = SG1 ∪ SG2 . Suppose
SG1 ∩ S′

G2
̸= ∅, say v ∈ SG1 ∩ S′

G2
. Then v, v′ ∈ S. By convexity of S, x, x′ ∈ S for all

x ∈ NG(v). This implies that S = V (S(G)), a contradiction. Therefore, SG1 ∩ S′
G2

= ∅.
Similarly, S′

G1
∩ SG2 = ∅, showing that (a) holds. Now, suppose SG1 is not clique. Then

there exist a, b ∈ SG1 such that dG1(a, b) = 2 = dS(G)(a, b). Again, by convexity of S, it
follows that x, x′ ∈ S for all x ∈ NG1(a) ∩ NG1(b). This implies that S = V (S(G)), a
contradiction. Therefore, SG1 is a clique in G1. Similarly, SG2 is a clique in G2, showing
that (b) holds. Suppose SG1 ∪S′

G2
is not a clique in G1. Then there exist x, y ∈ SG1 ∪S′

G2

such that dG1(x, y) = 2. Since SG1 and SG2 are cliques, we may assume that x ∈ SG1 and
y ∈ S′

G2
. Then y′ ∈ SG2 . Let z ∈ NG(x) ∩ NG(y). Then z, z′ ∈ NS(G)(x) ∩ NS(G)(y

′).
Since S is convex, z, z′ ∈ S. Since yz, yz′ ∈ E(S(G)), y ∈ S by convexity of S. This
would imply that S = V (S(G)), a contradiction. Therefore, SG1 ∪ S′

G2
is a clique in G1.

Similarly, S′
G1

∪ SG2 is a clique in G2. Thus, (c) holds.
The converse is clear.

Corollary 2. Let G be a non-trivial connected graph. Then con(S(G)) = ω(G).

Theorem 5. Let G be a non-trivial connected graph. Then S is a hop dominating set in
S(G) if and only if one of the following conditions holds:

(i) S is a hop dominating set in G1.

(ii) S is a hop dominating set in G2.

(iii) S = SG1 ∪ SG2 such that SG1 ∪ S′
G2

and S′
G1

∪ SG2 are hop dominating sets in G1

and G2.
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Proof. Let S be a hop dominating set in S(G). Set SG1 = S ∩ V (G1) and SG2 =
S ∩ V (G2). If SG2 = ∅, then S = SG1 is a hop dominating set in G1. If SG1 = ∅,
then S = SG2 is a hop dominating set in G2. Hence, (i) or (ii) holds. Next, suppose
SG1 ̸= ∅ and SG2 ̸= ∅. Let x ∈ V (G1) \ SG1 ∪ S′

G2
. Then x ∈ V (S(G)) \ S. Since S is

a hop dominating set in S(G), there exists y ∈ S such that dS(G)(x, y) = 2. If y ∈ SG1 ,
then we are done. Suppose y ∈ SG2 , say y = z′, where z ∈ V (G1). Then z ∈ S′

G2
and

dS(G)(x, z) = dG1(x, z) = 2. Therefore, SG1 ∪S′
G2

is a hop dominating set in G1. Similarly,
S′
G1

∪ SG2 is a hop dominating set in G2. Hence, (iii) holds.
For the converse, suppose (i) holds. Let a ∈ V (S(G)) \ S. If a ∈ V (G1) \ S, then

there exists b ∈ S such that dG1(a, b) = dS(G)(a, b) = 2. Suppose a ∈ V (G2), say a = v′,
where v ∈ V (G1). If v ∈ S, then dG1(a, v) = dS(G)(a, v) = 2. If v /∈ S, then there exists
w ∈ S such that dG1(v, w) = 2. It follows that dS(G)(a,w) = dS(G)(v

′, w) = 2. Therefore,
S is a hop dominating set in S(G). Similarly, if (ii) holds, then S is a hop dominating
set in S(G). Now, suppose (iii) holds. Let y ∈ V (S(G)) \ S. Then y /∈ SG1 ∪ SG2 .
Suppose y ∈ V (G2) \ SG2 , say y = z′, where z ∈ V (G1). Then z /∈ S′

G2
. If z ∈ SG1 , then

dS(G)(y, z) = dS(G)(z
′, z) = 2. Suppose z /∈ SG1 . Since SG1∪S′

G2
is a hop dominating set in

G1, there exists p ∈ SG1∪S′
G2

such that dG1(p, z) = 2 = dS(G)(p, z). If p ∈ SG1 , then p ∈ S
and dS(G)(p, z

′) = 2. If p ∈ S′
G2

, then p′ ∈ SG2 ⊆ S and dG2(p
′, z′) = dS(G)(p

′, z′) = 2.
Therefore, S is a hop dominating set in S(G).

Corollary 3. Let G be a non-trivial connected graph. Then γh(S(G)) = γh(G).

Theorem 6. Let G be a non-trivial connected graph. Then S is a convex hop dominating
set in S(G) if and only if one of the following conditions holds:

(i) S is clique hop dominating set in G1.

(ii) S is clique hop dominating set in G2.

(iii) S = SG1 ∪ SG2 where

(a) SG1 ∩ S′
G2

= ∅ and S′
G1

∩ SG2 = ∅.

(b) SG1 and SG2 are cliques in SG1 and SG2, respectively.

(c) SG1 ∪ S′
G2

and S′
G1

∪ SG2 are clique hop dominating sets in SG1 and SG2,
respectively.

Proof. Follows from Theorem 4 and Theorem 5.

Consider the following family of graphs:
B = {G : G admits a clique hop domination}. Then the following result follows from
Theorem 6.

Corollary 4. Let G be a non-trivial connected graph. Then

γconh(S(G)) =

{
γclh(G) if G ∈ B
|V (S(G))| if G /∈ B.
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Theorem 7. [7] Let G be a graph of order n. Then 1 ≤ cpnd(G) ≤ n. Moreover,

(i) cpnd(G) = 1 if and only if G has an isolated vertex.

(ii) cpnd(G) = n if and only if G is a complete graph.

Corollary 5. [7] Let n be any positive integer. Then

(i) cpnd(Pn) = 2 for any n ≥ 2.

(ii) cpnd(Cn) = 2 for any n ≥ 4.

The next result is found in [13].

Theorem 8. Let G and H be any two graphs. A set S ⊆ V (G +H) is hop dominating
set in G+H if and only if S = SG ∪SH , where SG and SH are pointwise non-dominating
sets in G and H, respectively.

The following two results are obtained in [12].

Theorem 9. Let G be a connected graph and Kn the complete graph of order n. Then
a proper subset C = S1 ∪ S2 of V (G + Kn), where S1 ⊆ V (G) and S2 ⊆ V (Kn), is a
convex set in G+H if and only if S1 induces a complete subgraph of G or V (G) \ S1 is a
non-connecting set and S2 = V (Kn).

Theorem 10. Let G and H be two non-complete connected graphs. Then a proper subset
C = S1 ∪ S2 of V (G+H), where S1 ⊆ V (G) and S2 ⊆ V (H), is a convex set in G+H if
and only if S1 and S2 induce complete subgraphs of G and H, respectively, where it may
occur that S1 = ∅ or S2 = ∅.

Theorem 11. Let G and H be two non-complete connected graphs. A set S ⊆ V (G+H)
is a convex hop dominating set in G +H if and only if S = SG ∪ SH , where SG and SH

are clique pointwise non-dominating sets in G and H, respectively.

Proof. Suppose S is a convex hop dominating set in G+H. Then SG and SH are both
non-empty. Since S is a hop dominating set, SG and SH are pointwise non-dominating sets
in G and H, respectively by Theorem 8. Since S is a convex set, SG and SH are cliques
in G and H, respectively, by Theorem 10. Therefore, SG and SH are clique pointwise
non-dominating sets in G and H, respectively.

Conversely, suppose that S = SG ∪ SH , where SG and SH are clique pointwise non-
dominating sets in G and H, respectively. Since SG and SH are pointwise non-dominating
sets, S = SG ∪ SH is a hop dominating set in G+H by Theorem 8. Since SG and SH are
cliques, it follows that S = SG∪SH is a convex set in G+H by Theorem 10. Consequently,
S = SG ∪ SH is a convex hop dominating set in G+H.

The next result follows from Theorem 7, Corollary 5 and Theorem 11.

Corollary 6. Let G and H be two non-complete connected graphs. Then γconh(G+H) =
cpnd(G) + cpnd(H). In particular, we have
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(i) γconh(Pn + Pm) = 4 for all n,m ≥ 3, and

(ii) γconh(Cn + Cm) = 4 for all n,m ≥ 4.

Theorem 12. Let G be a connected graph and Kn the complete graph of order n. A set
S ⊆ V (G+Kn) is a convex hop dominating set in G+Kn if and only if S = V (Kn)∪SG

where V (G) \ SG is a non-connecting set and SG is a pointwise non-dominating set in G.

Proof. Suppose S = SKn ∪SG is a convex hop dominating set of G+Kn. By Theorem
8, SKn and SG are pointwise non-dominating sets of Kn and G, respectively. Hence,
SKn = V (Kn). Moreover, by Theorem 9, V (G) \ SG is a non-connecting set in G.

Conversely, suppose that S = V (Kn) ∪ SG such that V (G) \ SG is a non-connecting
set and SG is a pointwise non-dominating set in G. Then, by Theorem 8 and Theorem 9,
S is a convex hop dominating set of G+Kn.

The next result follows from Theorem 12.

Corollary 7. Let G a connected graph and Kn the complete graph of order n. Then

γconh(G+Kn) = n+ rG,

where

rG = min{|S| : V (G)\S is non-connecting and S is a pointwise non-dominating set in G}.

In particular, the following hold:

(i) γconh(Kn + Cn) =

{
n+ 3 if n = 3

n+ 2 if n ≥ 4.

(ii) γconh(Kn + Pn) = n+ 2 for all n ≥ 2.

The result that follows is a restatement of a result in [13].

Theorem 13. Let G and H be any two graphs. A set C ⊆ V (G) is a hop dominating set
in G ◦H if and only if C = A∪ (∪v∈V (G)Cv), where A ⊆ V (G) and Cv ⊆ V (Hv) for each
v ∈ V (G), and satisfies the following conditions:

(i) For each w ∈ V (G) \ A, there exists x ∈ A with dG(w, x) = 2 or there exists
y ∈ NG(w) with Cy ̸= ∅.

(ii) Cw is a pointwise non-dominating set in Hw for each w ∈ V (G) \NG(A).

Theorem 14. Let G be a non-trivial connected graph and let H be any graph. Then C is a
convex hop dominating set in G◦H if and only if C = A∪ (∪v∈V (G)Cv), where A ⊆ V (G),
Cv ⊆ V (Hv) for each v ∈ V (G), and satisfies the following conditions:

(i) For each a ∈ V (G) \ A, there exists b ∈ A with dG(a, b) = 2 or there exists y ∈
A ∩NG(a) with Cy ̸= ∅.
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(ii) A is a convex dominating set in G.

(iii) Cv = ∅ for each v ∈ V (G) \A.

(iv) V (Hv) \ Cv is a non-connecting in Hv for each v ∈ A ∩NG(A).

(v) V (Hv) \Cv is a non-connecting set and Cv is a pointwise non-dominating set in Hv

if A = {v} (that is, if v ∈ A \NG(A)).

Proof. Suppose C is a convex hop dominating set in G ◦ H. By Theorem 13(ii),
statement (i) holds. Let x, y ∈ A with x ̸= y. Then x and y are in C. Since C is convex
and IG◦H [x, y] = IG[x, y], it follows that IG[x, y] ⊆ A. Hence, A is convex. Suppose A is
not a dominating set in G. Then there exists v ∈ V (G) \NG[A]. By Theorem 13(ii), Cv

is a pointwise non-dominating set in Hv. Also, by Theorem 13(i), there exists x ∈ A with
dG(v, x) = 2 or there exists y ∈ NG(v) with Cy ̸= ∅. Pick any p ∈ Cv and let q ∈ C such
that dG◦H(v, q) = 2 (q = x or q ∈ Cy). Then v ∈ IG◦H(p, q). By convexity of C, it follows
that v ∈ C, a contradiction. Thus, A is a dominating set in G. This shows that (ii) holds.
Next, let y ∈ V (G) \A. Since A is a dominating set in G, y ∈ NG(A). By convexity of C,
Cy = ∅. Hence, (iii) holds. Let v ∈ A. Suppose V (Hv)\Cv is not a non-connecting set in
Hv. Then there exist p, q ∈ Cv such that p ̸= q and NHv(p)∩NHv(q)∩ [V (Hv) \Cv] ̸= ∅.
This implies that C is not convex, a contradiction. Therefore, V (Hv) \ Cv is a non-
connecting set in Hv, showing that (iv) holds. Suppose now that v ∈ A \NG(A). Then,
by Theorem 13(ii), Cv is a pointwise non-dominating set in Hv. Hence, (v) also holds.

Conversely, suppose that C has the given form and satisfies (i), (ii), (iii) (iv) and (v).
Since (i) and (v) hold and A is a dominating set in G, the conditions (i) and (ii) of The-
orem 13 hold. Thus, C is a hop dominating set in G ◦H. Next, let x, y ∈ C with x ̸= y.
Let v, w ∈ V (G) such that x ∈ V (v+Hv) and y ∈ V (w+Hw). Consider the following cases:

Case 1: v = w.
If one of x and y is v, say x = v, then y ∈ Cv and IG◦H [x, y] = {x, y} ⊆ C. Suppose
x, y ∈ Cv. Since Cv ̸= ∅, v ∈ A by (iii). By (iv), V (Hv) \ Cv is a non-connecting set in
Hv. Hence, IG◦H [x, y] ⊆ C.

Case 2: v ̸= w.
Suppose x = v and y = w. Since A is convex, IG[x, y] ⊆ A. Since IG◦H [x, y] = IG[x, y],
IG◦H [x, y] ⊆ C. Suppose x = v and y ∈ Cw. Then w ∈ A and, by convexity of A,
IG[x,w] ⊆ A. Since

IG◦H [x, y] = IG[x,w] ∪ IG◦H [w, y] = IG◦H [x,w] ∪ {y},

it follows that IG◦H [x, y] ⊆ C. The same conclusion holds when x ∈ Cv and y = w.
Finally, let x ∈ Cv and y ∈ Cw. Then, by (iii), v, w ∈ A. Again, by convexity of A,
IG◦H [v, w] = IG[v, w] is contained in A ⊆ C. This implies that

IG◦H [x, y] = IG◦H [v, w] ∪ IG◦H [x, v] ∪ IG◦H [y, w] = IG◦H [v, w] ∪ {x, y}
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is contained in C.
Therefore, C is a convex set in G ◦H.
Accordingly, C is a convex hop dominating set in G ◦H.

Let G be a graph. We denote by DG, LG, and IH the sets containing the dominating
vertices, leaves, and isolated vertices of G, respectively. Note that if γ(G) = 1, then
|DG| ≥ 1.

Corollary 8. Let G be a non-trivial connected graph with γ(G) = 1 and let H be any
graph. Then

γconh(G ◦H) =

{
2, if |LG| ≥ 1 or |IH | ≥ 1

3, otherwise

Proof. Let v ∈ DG. Suppose |LG| ≥ 1, say w ∈ LG. Set A1 = {v, w}. Then
A1 is a convex dominating set in G. Let Cu = ∅ for each u ∈ V (G). Then C1 =
A1 ∪ (∪u∈V (G)Cu) = A1 is a convex hop dominating set in G ◦H by Theorem 14. Thus,
γconh(G ◦ H) = 2. Next, suppose that |IH | ≥ 1. Pick any p ∈ IHv . Then A2 = {v}
is a convex dominating set in G. Set Cv = {p} and let Cu = ∅ for all u ∈ V (G) \ {v}.
Then V (Hv)\Cv is a non-connecting set and Cv is a pointwise non-dominating set in Hv.
Hence, C2 = A2 ∪ (∪z∈V (G)Cz) = A2 ∪ Cv is a convex hop dominating set in G ◦ H by
Theorem 14. It follows that γconh(G ◦H) = 2.

Suppose now that |LG| = 0 and |IH | = 0. Again, let v ∈ DG. Pick any z ∈ V (G) \ {v}
and let A = {v, z}. Then A is a convex dominating set of G. Choose any q ∈ V (Hv)
and let Cv = {q}. Put Cx = ∅ for all x ∈ V (G) \ {v}. Then Cz = ∅ and V (Hv) \ Cv

and V (Hz) \ Cz are non-connecting sets in Hv and Hz, respectively. By Theorem 14,
C = A ∪ (∪y∈V (G)Cy) = A ∪ Cv is a convex hop dominating set in G ◦ H. It follows
that γconh(G ◦H) ≤ 3. Suppose now that C = A0 ∪ (∪u∈V (G)Su) is a γconh-set of G ◦H.
Suppose first that |A0| = 1, say A0 = {z}. Then A0 is (convex) dominating set in G
by Theorem 14(ii). Moreover, Su = ∅ for all u ∈ V (G) \ A0 by Theorem 14(iii). Since
|IH | = 0, any pointwise non-dominating set in Hz contains at least two elements, that is,
|Sz| ≥ 2. It follows that γconh(G ◦H) = |C0| ≥ 3. Suppose that |A0| = 2, say A0 = {x, y}.
If x, y /∈ DG, then Cx ̸= ∅ or Cy ̸= ∅ (since x and y are not hop neighbors of a dominating
vertex of G). Suppose one of x and y, say x, is a dominating vertex in G. Since y /∈ LG,
there exists a vertex d ∈ NG(y) ∩NG(x). This implies that Cx ̸= ∅ or Cy ̸= ∅. In either
case, γconh(G ◦H) = |C0| ≥ 3. Therefore, γconh(G ◦H) = 3.

For a connected graph G,

γhcon(G) = min{|S| : S is a convex dominating and hop dominating set in G}.

Since V (G) is a convex dominating and hop dominating set, G admits a convex dominating
and hop dominating set. Moreover, γcon(G) ≤ γhcon(G).

Corollary 9. Let G be a non-trivial connected graph with γ(G) ̸= 1 and let H be any
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graph. Then

γconh(G ◦H) =

{
γcon(G), if γcon(G) = γhcon(G)

γcon(G) + 1, otherwise.

Proof. Suppose γcon(G) = γhcon(G). Let A be a γhcon-set ofG. Then |A| ≥ 2. Set Cv = ∅
for all v ∈ V (G). Then, by Theorem 14, C = A is a convex hop dominating set in G ◦H.
Hence, γconh(G◦H) ≤ γcon(G). By Theorem 14(ii), it follows that γconh(G◦H) = γcon(G).

Next, suppose that γcon(G) < γhcon(G). Let A′ be a γcon-set of G. Since γ(G) ̸= 1,
|A′| ≥ 2. The assumption that γcon(G) < γhcon(G) implies that A′ is not a hop dominating
set in G. Hence, there exists v /∈ N2

G[A
′]. Let x, y ∈ A′ with x ̸= y. Since A′ is a

dominating set, there exists w ∈ A′ ∩NG(v). Because A′ is convex, ⟨A′⟩ is connected. Let
[w1, w2, ..., wk], where w1 = w and wk = x, be a w-x geodesic in ⟨A′⟩. Since v /∈ N2

G[A
′],

vwj ∈ E(G) for all j ∈ {1, 2, ..., k}. In particular, vx ∈ E(G). Let [x1, x2, ..., xt], where
x1 = x and xt = y, be an x-y geodesic in ⟨A′⟩. Again, since v /∈ N2

G[A
′], vxi ∈ E(G) for

all i ∈ {1, 2, ..., t}. Moreover, by convexity of A′, ⟨{x1, x2, ..., xt}⟩ is complete (otherwise,
v ∈ A′, a contradiction). Hence, xy ∈ E(G). Thus, ⟨A′⟩ is complete. Pick any w ∈ A′

and p ∈ V (Hw). Set Cw = {p} and Cz = ∅ for all z ∈ V (G) \ {w}. Then C ′ = A′ ∪ Cw

is a convex hop dominating set in G ◦H by Theorem 14. Hence, γconh(G ◦H) ≤ |C ′| =
γcon(G)+1. Now let C∗ = A∗∪ (∪v∈V (G)Rv) be a γconh-set of G ◦H. Then A∗ is a convex
dominating set in G by Theorem 14. If |A∗| > γcon(G), then |C∗| ≥ |A∗| ≥ γcon(G) + 1.
Suppose |A∗| = γcon(G). Since γcon(G) < γhcon(G), A∗ is not a hop dominating set, say
v /∈ N2

G[A
∗]. Hence, by Theorem 14(i), there exists y ∈ A∗ ∩ NG(v) with Ry ̸= ∅. It

follows that γconh(G ◦H) = |C∗| ≥ |A∗|+ |Ry| ≥ γcon(G) + 1. This establishes the desired
equality.

The next result is found in [13].

Theorem 15. Let G and H be connected non-trivial graphs. Then C =
⋃

x∈S [{x} × Tx]
is a hop dominating set in G[H] if and only if the following conditions hold.

(i) S is a hop dominating set in G.

(ii) Tx is a pointwise non-dominating set in H for each x ∈ S \N2
G(S).

The next result is a restatement of the one obtained by Canoy and Garces in [12].

Theorem 16. Let G and H be connected non-complete graphs. Then C =
⋃

x∈S({x}×Tx)
is convex in G[H] if and only if S is a clique in G and Tx is a clique in H for each x ∈ S.

Theorem 17. Let G and H be connected non-complete graphs. Then C =
⋃
x∈A

[{x}× Tx],

where A ⊆ V (G) and Tx ⊆ V (H) for each x ∈ A, is a convex hop dominating set in G[H]
if and only if C = V (G[H]) or C satisfies the following conditions:

(i) A is a clique hop dominating set in G.

(ii) Tx is a clique pointwise non-dominating set in H for each x ∈ A.
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Proof. If C = V (G[H]), then we are done. Suppose C ̸= V (G[H]). Then A is a clique
in G and Tx is a clique in H for each x ∈ A by Theorem 16. Since C is hop dominating
set, A is a hop dominating set in G by Theorem 15. Since A is a clique, x /∈ N2

G(A) for
all x ∈ A. Thus, Tx is a pointwise non-dominating set in H for every x ∈ A by Theorem
15(ii). Therefore, (i) and (ii) hold.

For the converse, suppose that C = V (G[H]). Then C is convex hop dominating in
G[H]. Next, suppose C satisfies i and (ii). Then by Theorem 15, C is a hop dominating
set in G[H]. By (i), (ii) and Theorem 16, C is a convex set in G[H]. Hence, C is a convex
hop dominating set in G[H].

In the next result, we shall consider the family C of graphs given by

C = {G : G is a connected non-complete graph that admits a clique hop dominating set}.

Corollary 10. Let G and H be connected non-complete graphs of orders m and n, re-
spectively. Then

γconh(G[H]) =

{
nm if G /∈ C
γclh(G)cpnd(H) if G ∈ C.

The next result is taken from [10].

Theorem 18. Let G be a connected graph and Km the complete graph of order m. A
subset C =

⋃
x∈S({x} × Tx) of V (G[Km]) is convex in G[Km] if and only if S is convex

in G and Tx = V (Km) for each x ∈ S ∩ IG(S).

Theorem 19. Let G be a connected graph and Km the complete graph of order m. Then

C =
⋃
x∈A

[{x} × Tx], where A ⊆ V (G) and Tx ⊆ V (Km) for each x ∈ A, is a convex

hop dominating set in G[Km] if and only if C = V (G[H]) or C satisfies the following
conditions:

(i) A is a convex hop dominating set in G.

(ii) Tx = V (Km) for each x ∈ (A ∩ IG(A)) ∪ (A \N2
G(A)).

Proof. Suppose C is a convex hop dominating set of G[Km]. By Theorem 15 and
Theorem 18, A is a convex hop dominating set in G and Tx = V (Km) for each x ∈
(A ∩ IG(A)) ∪ (A \N2

G(A)). Hence, (i) and (ii) hold.
Conversely, suppose that (i) and (ii) hold. Then, by Theorem 15 and Theorem 18, C

is a convex hop dominating set in G[Km].

Corollary 11. Let G be a connected graph and Km the complete graph of order m. Then

γconh(G[Km]) = min{|S|+(m−1)|S0∪(S\N2
G(S))| : S is a convex hop dominating set in G},

where S0 = S ∩ IG(S).
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Proof. Let C =
⋃
x∈S

[{x} × Tx] be a γconh-set of G[Km]. Then S is a convex hop

dominating set and Tx = V (Km) for all x ∈ S0 ∪ (S \N2
G(S)) by Theorem 19. Since C is

a γconh-set, |Tx| = 1 for all x ∈ S \ [S0 ∪ (S \N2
G(S))]. It follows that

|C| =
∑

x∈[S0∪(S\N2
G(S))]

|Tx|+
∑

x∈S\[S0∪(S\N2
G(S))]

|Tx|

= m|S0 ∪ (S \N2
G(S))|+ |S| − |S0 ∪ (S \N2

G(S))|
= |S|+ (m− 1)|S0 ∪ (S \N2

G(S))|.

This proves the desired equality.

It is worth mentioning that the value of the parameter given in Corollary 11 is not
necessarily attained when S is a γconh-set in G. To see this, consider P5[K3]. It is easily
verified that γconh(P5) = 2. If S is γconh-set in P5, then ⟨S⟩ = K2 and S0∪(S\N2

G(S)) = S.
Hence, |S| + (3 − 1)|S0 ∪ (S \ N2

G(S))| = 6. However, by taking any three consecutive
vertices of P5, one can see that γconh(P5[K3]) = 5.

4. Conclusion

The concept of convex hop domination has been introduced and initially investigated
in this study. Graphs which attained some specific convex hop domination number have
been characterized. The convex hop domination number of the complementary prism
has been obtained and necessary and sufficient conditions for a subset to be convex hop
dominating in the shadow graph, join, corona, and lexicographic product of two graphs
have been obtained. These characterizations have been used to obtain bounds or exact
value of the convex hop domination number of each of these graphs. The concept can
be studied for other interesting graphs. Moreover, it is conjectured that the convex hop
domination problem is NP -complete.
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