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Abstract. In this paper we investigate the Burr distributions family which contains twelve mem-
bers. Second order expansions of quantiles of the Burr’s distributions are provided on which may
be based statistical methods, in particular in extreme value theory. Beyond the proper interest
of these expansions, we apply them to characterize the asymptotic laws of their records of Burr’s
distributions, lead to new statistical tests.
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1. Introduction

This papers deals of asymptotic laws of records values, extreme value theory when
applied to the important family of Burr distributions ([7], [8] and [9]). Let us introduce
to each of these three elements of the paper.

Records theory. The notion of records is present in real life at any corner. It is said that
the year 2021 is the hottest one in History. In general, Records of many natural phenomena
are monitored on a regularly basis: the coldest or hottest day, month, year, etc,; the rainiest
month, year, etc.; the month or year with the greatest or smallest number of car or planes
crashes, of biggest or smallest gross domestic product (GDP) [four countries]. At least any
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superlative corresponds to a record (lower record for positive superlatives, upper record for
naive ones). Generally, records are associated to catastrophes or to big successes. Sports is
punctuated by beaten records, in Olympic games, World championships. For example, the
(lower records) of 100m in Athletics is particularly followed. Fr upper records in Sports,
we can cite the upper apnea record (time spent under water). So, the notion of record is
extremely present in real file and it’s modeling is highly valuable.
Univariate Extreme value Theory (UEVT). That theory is strongly connected to
Records theory. Given a series of data (Xj)j≥1, the UEVT mainly studies the behavior
of the partial maxima Mn = max(X1, · · · , Xn), n ≥ 1. Of course, each Mn+1 is a strong
upper record value if and only if it exceeds the preceding one, that is Mn+1 > Mn. The im-
portance of UEVT resides in the following paradox. It happens that some extreme events,
for example p = P(X > x) for large values of x, are not observed in samples and so, any
plug-in estimator is exactly zero. In that context, how can we estimate the probability of
occurrence of such events. The probability is usually given in the form 1/T , where T is de-
fined as the temps needed to see a new occurrence of the event of exceedance of x. For large
values of x, T is counted in thousands or more. In conclusion, the UEVT is the theory of
rare events. It’s applications are countless and very important to circumvent catastrophes.

As expected, the asymptotic law of records values is strongly influenced by the asymptotic
behavior of the extreme value. On that basis, we will give a more detailed account for
these two theories but still concise in Subsections 1.1 and 1.2, respectively.

These two asymptotic theories are applied to the family of Burr’s statistics whose elements
have very interesting statistical properties and have important applications in a significant
number of disciplines as in Telecommunications, Reliability, Actuarial Sciences, Survival
analysis, etc. So, we have to introduce to that family in Subsection 1.3.

1.1. Univariate Extreme value theory

Let X, X1, X2, · · · be a sequence of independent real-valued randoms, defined on
the same probability space (Ω,A,P), with common cumulative distribution function F ,
which has the lower and upper endpoints, the first asymptotic moment function and the
generalized inverse function respectively defined by

lep(F ) = inf{x ∈ R, F (x) > 0}, uep(F ) = sup{x ∈ R, F (x) < 1}

R(x, F ) =
1

1− F (x)

∫ uep(F )

x
(1− F (y)) dy, x ∈]lep(F ), uep(F )[

and

F−1(u) = inf{x ∈ R, F (x) ≥ u} for u ∈]0, 1[ and F−1(0) = F−1(0+).
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F is said to be in the extreme value domain of attraction of a non-degenerate df M
whenever there exist real and nonrandom sequences (an > 0)n≥1 and (bn)n≥1 such that
for any continuity point x of M,

lim
n→∞

P
(
Xn,n − bn

an
≤ x

)
= lim

n→∞
Fn(anx+ bn) = M(x). (1)

It is known that M is necessarily of the family of the Generalized Extreme Value (GEV)
df :

Hγ(x) = exp(−(1 + γx)−1/γ), 1 + γx ≥ 0, (2)

parametrized by γ ∈ R, with H0(x) = 1− exp(−e−x), x ∈ R, for γ = 0. The parameter γ
is called the extreme value index.

In this paper, we use some important facts from EVT that we can summarize below,
especially regarding functional representation of cdf ’s and their quantile functions in the
extreme domain of attraction as well as their quantile functions.More details can be found
in [15], as a quick introduction on EVT and to have abroad view on how to find the
domain of attraction of a cdf. We will need the two following propositions.

Proposition 1. (see [? ]) We have the following equivalences.

Let G(x) = F (ex) the cdf of the log-transformation. We have :

(1) If γ > 0,

F ∈ D(Hγ) ⇔ (G ∈ D(H0) and R(x,G) → γ as x → uep(G)).

(2) If γ = 0,

F ∈ D(H0) ⇔ (G ∈ D(H0) and R(x,G) → 0 as x → uep(G)).

(3) If γ < 0,

F ∈ D(Hγ) ⇔ G ∈ D(Hγ).

The next proposition provides interesting functional representations of quantile functions
of cdf ’s in the extreme domain of attraction.

Proposition 2. ([13] and [11]) We have the following characterizations for the three
extremal domains.

(a) F ∈ D(Hγ), γ > 0, if and only if there exist a constant c and functions a(u) and ℓ(u)
of u ∈]0, 1[ satisfying
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(a(u), ℓ(u)) → (0, 0) as u → 0,

such that F−1 admits the following representation of Karamata

F−1(1− u) = c(1 + a(u))u−γ exp

(∫ 1

u

ℓ(t)

t
dt

)
. (3)

(b) F ∈ D(Hγ), γ < 0, if and only if uep(F ) < +∞ and there exist a constant c and
functions a(u) and ℓ(u) of u ∈]0, 1[ satisfying

(a(u), ℓ(u)) → (0, 0) as u → 0,

such that F−1 admit the following representation of Karamata

uep(F )− F−1(1− u) = c(1 + a(u))u−γ exp

(∫ 1

u

ℓ(t)

t
dt

)
. (4)

(c) F ∈ D(H0) if and only if there exist a constant d and a slowly varying function s(u)
such that

F−1(1− u) = d+ s(u) +

∫ 1

u

s(t)

t
dt, 0 < u < 1, (5)

and there exist a constant c and functions a(u) and ℓ(u) of u ∈]0, 1] satisfying

(a(u), ℓ(u)) → (0, 0) as u → 0,

such that the function s(u) of u ∈]0, 1[ admits the representation

s(u) = c(1 + a(u)) exp

(∫ 1

u

ℓ(t)

t
dt

)
. (6)

Moreover, if F−1(1−u) is differentiable for small values of u such that r(u) = −u(F−1(1−
u))′ = −u dF−1(1− u)/du is slowly varying at zero, then (5) may be replaced by

F−1(1− u) = d+

∫ u0

u

r(t)

t
dt, 0 < u < u0 < 1, (7)

which will be called a reduced de Haan representation of F−1.

On top of these representations, we may use the simple criteria (See more criteria in [11]
and [? ], recalled in theorem 1).
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Proposition 3. We have:

(a) F ∈ D(Gγ), γ > 0 if and only if uep(F ) = +∞ and

∀λ > 0, u ∈]0, 1[, lim
u→0

F−1(1− λu)

F−1(1− u)
= λ−γ

(b) F ∈ D(Gγ), γ < 0 if and only if uep(F ) < ∞ and

∀λ > 0, u ∈]0, 1[, lim
u→0

uep(F )− F−1(1− λu)

uep(F )− F−1(1− u)
= λ−γ

(c) F ∈ D(Gγ), γ = 0 if and only there exists a function s(u) of u ∈]0, 1[ which is slowly
varying function at zero and such that

∀λ > 0, u ∈]0, 1[, lim
u→0

F−1(1− λu)− F−1(1− u)

s(u)
= − log λ

if and only if

∀λ > 0, ∀ 0 < µ ̸= 1, u ∈]0, 1[, lim
u→0

F−1(1− λu)− F−1(1− u)

F−1(1− µu)− F−1(1− u)
=

log λ

logµ
.

1.2. Gaussian asymptotic laws of record values

Let us begin by define records values and records times for a sequence of real random
variables defined on the same probability space (Ω,A,P): Y1, Y2, · · · . Record times and
record values are defined as follows.

Strong upper record times. Let us put u(1) = 1 as the first strong upper record time.
For any n ≥ 2, we define, by induction, whenever the (n− 1)th upper record time u(n− 1)
exists,

Un =
{
j > u(n− 1), Yj > Yu(n−1)

}
.

Hence, for n ≥ 2, the (n)th upper record time is u(n) = +∞ if Un is empty and, otherwise

u(n) = inf Un.

Strong lower record times. Let us put ℓ(1) = 1 as the first strong lower record time.
For any n ≥ 2, we define, by induction, whenever the (n− 1)th lower record time ℓ(n− 1)
exists,
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Ln =
{
j > ℓ(n− 1), Yj < Yℓ(n−1)

}
Hence, for n ≥ 2, the n-th lower record time is ℓ(n) = +∞ if Ln is empty and, otherwise

ℓ(n) = inf Ln.

Strong record values. For each n ≥ 1 such that u(n) is finite, we have a sequence of
strong upper record values

(Y (k) = Yu(k), 1 ≤ k ≤ n).

For each n ≥ 1 such that ℓ(n) is finite, we have a sequence of strong lower record values

Y(k) = Yℓ(k), 1 ≤ k ≤ n.

There are many results on probability laws of record values and record times, especially
for iid random variables with common cdf F , eventually associated with the pdf f with
respect to the Lebesgue measure λ[ or iid random variables with common mass probability
functions p]. Important books introduce the the study of records in the iid scheme, such
as [17], [1], [2], [3], [4], [6], etc. Also, statistical applications are largely available and
Characterization problems involving functional equations (See [1], [17], [19], etc.).

In a recent paper, we are interesting in finding the asymptotic laws of records values
of elements of Burr’s family. In that extent, we will mainly follow [15] who provided
practical methods of finding the asymptotic law of record values depending, in general, on
the extreme value attraction domain of a distribution F . We intend to use such results
to the Burr’s family. Let us broaden the notation in order to be able to expose the main
theorem of the cited authors. Given the sequence defined above, we consider the sequence
of strong record values X(1) = X1, X

(n), · · · and the sequence of record times U(1) = 1,
U(2), · · · . Some conditions depend on a sequence of finite sum of n standard exponential
random variables, n ≥ 1,

S(n) = E1,n + · · ·+ En,n,

and we denote

Vn = exp(−S(n)) and vn = exp(−n), n ≥ 1.

From this, we may set

(Ha) : sup

{∣∣∣∣s(u)s(v)
− 1

∣∣∣∣ , min(vn, Vn) ≤ u, v ≤ max(vn, Vn)

}
→P 0 as n → +∞,
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(Hb) : (∃α > 0),
√
n s(vn) → α as n → +∞,

where →P stands for the convergence in probability.

[15] obtained the results below that cover the whole extreme value domain of attraction.
Let us begin by asymptotic laws for F ∈ D = D(Gγ), γ ∈ R.

Theorem 1. Let F ∈ D. We have :

(a) If γ > 0, the asymptotic law of X(n) is lognormal, precisely(
X(n)

F−1 (1− e−n)

)n−1/2

⇝ LN(0, γ2),

where LN(m,σ2) is the lognormal law of parameters m and σ > 0.

(b) If γ > 0 and X > 0, Y = logX ∈ D(Gγ) and R(x,G) → γ as x → uep(G) and we
have

Y (n) −G−1 (1− e−n)√
n

⇝ N (0, γ2).

(c) If γ < 0, the asymptotic law of X(n) is lognormal, precisely(
uep(F )−X(n)

uep(F )− F−1 (1− e−n)

)n−1/2

⇝ exp(N (0, γ2)).

(d) Suppose that γ = 0 and R(x,G) → 0 as x → uep(G). If (Ha) and (Hb) hold both, we
have

X(n) − F−1
(
1− e−n

)
⇝ N (0, α2).

More precisely, we have : Given γ = 0, R(x,G) → 0 as x → uep(G) and (Ha), the above
asymptotic normality is valid if and only if (Hb) holds.

The theorem can be extended outside the extreme domain of attraction as follows. Sup-
pose that:

(Ga) uep(F ) = +∞ and F is differentiable in some neighborhood of ]x0, +∞[.

(Gb) The function

s(x) = e−xF−1(1− t)

∣∣∣∣
t=e−x

, ex < u0 < 1, for some u0 ∈]0, 1[
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decreases to 0 as x → +∞ and is : for any sequence (xn, yn)n≥1 such that

lim sup
n→+∞

|xn − yn|/
√
n < +∞,

we have, for some α > 0,

lim
n→+∞

√
n s (exp(min(xn, yn))) = lim

n→+∞

√
n s (exp(max(xn, yn))) = α.

We have the following generalization.

Theorem 2. If F satisfies Assumptions (Ga) and (Gb), we have

X(n) − F−1
(
1− e−n

)
⇝ N (0, α2).

Important result. For γ ̸= 0, we need no condition for the asymptotic law to hold true.

Rule of working . Suppose that F lies in D, the extreme domain of attraction.

(e) If F ∈ D(Hγ), γ ̸= 0, we apply Points (a) or (c) of theorem 1 without any further
condition.

(f) If F ∈ D(H0) and exp(X) ∈ D(Hγ) for some γ > 0, we apply Point (b) without any
further condition.

(g) If F ∈ D(H0) and s(u) → 0 as u → 0 and if (Ha) and (Hb) hold, we conclude by
applying Point (d). If not (as it is for a lognormal law), we search whether X1 = exp(X) ∈
D(Hγ) for some γ > 0 or X1 = exp(X) fulfills (Ha) and (Hb). If yes, we conclude by Point
(b) or Point (d). If not, we consider X2 = exp(X1), and we continue the process until we
reach Xp = exp(Xp−1) ∈ D(Gγ) for some γ > 0 or Xp = exp(Xp−1) for some p ≥ 1.

Other results in [15] are expressed as representations as in the following theorem.

Theorem 3. Let F ∈ D(Hγ), γ ∈ R. Then, there exists a probability space (Ω,A,P)
holding a sequence of independent standard exponential random variables (En)n≥1 and a
Brownian Process {W (t), t ≥ 0} such that the record values X(n), n ≥ 1, of the sequence
Xj = F−1

(
1− eEj

)
, j ≥ 1, satisfy the following representations below under the appro-

priate conditions. Here, Sn = E1 + ... + En, n ≥ 1, are the partial sums of the sequence
(En)n≥1, S

∗
n = n−1/2(Sn − n), vn = e−n and Vn = e−Sn. Below, the function a(u), b(u)

and s(u) of u ∈]0, 1[ are those in the representations in Proposition 2.

By denoting W ∗
n = n−1/2W (n) and cn = n−1/2 log n, we have

W ∗
n ∼ N (0, 1) and |S∗

n −W ∗
n | = OP(cn).
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Further, we have the following results.

(a) Let γ > 0. Suppose that

1− 1 + a(Vn)

1 + a(vn)
= OP(an), sup{|b(t)|, 0 ≤ t ≤ vn ∨ Vn} = OP(bn) . (8)

Then, we have

(
X(n)

F−1 (1− e−n)

)n−1/2

= exp(γS∗
n) +OP(an ∨ bn)

= exp(γW ∗
n) +OP(an ∨ bn ∨ cn).

(b) Let γ > 0 and X > 0, Y = logX ∈ D(G0) and R(x,G) → γ as x → uep(G) and we
have

Y (n) −G−1 (1− e−n)√
n

= γS∗
n +OP(an ∨ bn)

= γW ∗
n +OP(an ∨ bn ∨ cn).

(c) Let γ < 0. Then, by using the rates of convergence in Formula (8), we have

(
uep(F )−X(n)

uep(F )− F−1 (1− e−n)

)n−1/2

= exp(γS∗
n) +OP(an ∨ bn)

= exp(γW ∗
n) +OP(an ∨ bn ∨ cn).

(d) Suppose that γ = 0 and R(x,G) → 0 as x → uep(G). Suppose that (Ha) and (Hb)
hold both. If

sup

{∣∣∣∣s(u)s(v)
− 1

∣∣∣∣ , min(vn, Vn) ≤ u, v ≤ max(vn, Vn)

}
= OP(dn), and

√
ns(vn)−α = O(en),

we have

X(n) − F−1
(
1− e−n

)
= αS∗

n +OP(dn ∨ en)

= αW ∗
n +OP(cn ∨ dn ∨ en).
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Rules of working . In the domain of extremal attraction, most of the cdf ’s which are
used in applications are differentiable in a left-neighborhood of the upper endpoint. In
such a case, we may take a ≡ 0 in Representation (3) and (4) in Proposition 2. By solving
easy differential equations, we have the representation for

b(u) = −u

(
G−1(1− u)

)′
− γ, u ∈]0, 1[ and a ≡ 0 (9)

for γ > 0 and

b(u) = −γ − u

F ′
(
F−1(1− u)

)(
uep(F )− F−1(1− u)

) , u ∈]0, 1[. (10)

for γ < 0, whenever we have b(u) → 0 as u → 0. Consequently, the rate of convergence
reduces to OP(bn ∨ cn).

For γ = 0, Representation (7) in Proposition 2 holds for

s(u) = −u

(
F−1(1− u)

)′
, 0 < u < 1,

whenever it is slowly varying at zero and the rate of convergence dn becomes useless. In
such case, the rate of convergence reduces OP(dn ∨ cn).

Furthermore, based on the limit Sn/n → 1 as n → +∞, we get that, for any η ∈]0, 1[ ,

lim inf
n→+∞

P
(
e−n/η ≤ e−Sn ≤ e−ηn

)
= 1. (11)

So we may replace the rates of convergence dn and bn by dn(η) and bn(η) defined as follows,
for η ∈]0, 1[

sup{|b(t)|, 0 ≤ t ≤ e−ηn} = O(bn(η)) (12)

and

sup

{∣∣∣∣s(u)s(v)
− 1

∣∣∣∣ , e−n/η ≤ u, v ≤ e−ηn

}
= O(dn(η)). (13)
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1.3. Burr’s Family

We may quote [12], ”In a serie of papers, Burr ([7], [8] and [9]) has proposed a versatile
family of densities”. That class has twelve (12) statistical distributions given in Table 1,
in which k, c and r are positive parameters and the support or domain of each element of
the family are precised. We added the distribution (Xa) as a version of the distribution
(X).

Since, some elements of that family have taken important roles in many parts of Statistics
and have been extended a great number of times. Let us denote any Burr distribution by
B(T, a, b, c) where T stands of (I), · · · , (XII), the last cited parameter is the final power of
the cdf, if such a power exists, and the first parameters are cited in the order of appearance.

Also, that family intersects with celebrated other families of distribution : Pearson, Dagum
and Singh-Magdalla families to cite a few. For example the Sing-Madalla (See [21], [10],
[18], etc ) defined by

Fsm(a,b,c)(x) = 1− (1 + axc)−r, x ≥ 0, a > 0, b > 0, c > 0

reduces to the B(XII, 1, c, r) law. If X ∼ sm(a, b, c) , the variable 1/X becomes a Dagum
law with

FD(a,b,c)(x) = (1 + ax−b)−c, x ≥ 0, a > 0, b > 0, c > 0.

That element of the Dagum class has been generalized in [18] as the Topp-Leone Dagum
Distribution of parameters a > 0, b > 0, c > 0, d > 0, f > 0,

F (x) =

(
1−

({
1− (1 + ax−b)−c

})d)f

, x ≥ 0, (14)

where f = 2 is [18]. But we let f > 0 and we still have a cdf.

Especially, the B(XII, a, b, c) distribution is an instrumental tool in extreme value distri-
bution (See for example [20]). Also the B(III, a, b, c) distribution is also a member of the
Dagum distributions system ([14]) which Dagum himself named as a generalized Burr sys-
tem.

1.4. Motivations and organization of the paper

Our achievements in that paper is that we entirely characterized the asymptotic laws for
record values of cdf ’s in the Burr family based on the second order expansions of their
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Number F (x) Domain F−1(u)

I F (x) = x (0, 1) F−1(u) = u

II

(
1 + e−x

)−r

R log

(
u1/r

1−u1/r

)

III

(
1 + x−k

)−r

R+

(
u1/r

1−u1/r

)1/k

IV

(
1 +

(
c−x
x

)1/c)−r

(0, c) c

1+

(
1−u1/r

u1/r

)c

V

(
1 + ke− tanx

)−r

(−π/2, π/2) arctan

(
log

(
k

(u−1/r−1)

))

VI

(
1 + ke− sinhx

)−r

R arg sinh

(
log
(

k
u−1/r−1

))

VII 2−r

(
1 + tanhx

)r

R arg tanh

(
2u1/r − 1

)

VIII

(
2
π arctan(ex)

)r

R log

(
tan

(
π
2u

1/r

))

IX 1−
(

2
2+k((1+ex)r−1)

)
R log

((
1 + k−1

(
1+u
1−u

))1/r

− 1

)

X

(
1 + e−x2

)−r

R+

(
log
(

1
u−1/r−1

))1/2

XI

(
x− 1

2π sin(2πx)

)r

(0, 1) non explicit

XII 1−
(
1 + xc

)−r

R+

((
1− u

)−1/r

− 1

)1/c

Xa

(
1− e−x2

)r

R+

(
log
(

1
1−u1/r

))1/2

Table 1: Burr’s distributions



S. Dembele et al. / Eur. J. Pure Appl. Math, 16 (1) (2023), 609-656 621

quantile functions. Statistical tests are derived from these results. Simulations are given
to back the results. But adaptive tests will not be considered here. They will be the object
of an applied statistics paper.

The rest of the paper is organized as follows. In Section 2, we expose the second order
expansions of their quantile functions of cdf ’s in the Burr family the extremal domains
of attraction and the asymptotic law of their record values. In Section 3, we proceed to
a simulation study. The very technical part on the second order expansions of quantile
functions in given in Section 4. A conclusion part (Section 5) finishes the paper.

2. Our main results

For each cdf element of the Burr family, we give the expansion of the quantile function,
determine the extreme value domain D(Gγ) and next apply Theorems 1, 2 and 3 in [15] to
find the asymptotic law of the record values. However, we need to complete their theorem
3 by Theorem 4 below.

Theorem 4. Suppose that γ = 0 and R(x,G) → 0 as x → uep(G). Suppose that (Ha)
holds. If

sup

{∣∣∣∣s(u)s(v)
− 1

∣∣∣∣ , min(vn, Vn) ≤ u, v ≤ max(vn, Vn)

}
= OP(dn),

then we have

X(n) − F−1(1− e−n)

s(vn)
√
n

= S∗
n +OP (dn) = W ∗

n +OP(cn ∨ dn).

Proof. In the proof of Theorem 3 in [15], in Formula (25), we have

X(n) − F−1(1− e−n) = s(Vn)− s(vn) +

∫ Vn

vn

s(u)

u
du

= s(vn)

(
s(Vn)

s(vn)
− 1

)
+ s(vn)(Sn − n)(1 +OP(dn)).

Hence

X(n) − F−1(1− e−n)

s(vn)
√
n

=
1

n1/2

(
s(Vn)

s(vn)
− 1

)
+ (1 +OP(dn)) S

∗
n
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= S∗
n +

OP(dn)

n1/2
+ S∗

nOP(dn) = S∗
n +OP(dn).

So the conclusion

X(n) − F−1(1− e−n)√
ns(vn)

= S∗
n +OP (dn) = W ∗

n +OP(cn ∨ dn),

is straightforward. Of course if n1/2s(vn) → α > 0, we get the result of Theorem 2 again. ■

Now, let us state the asymptotic laws of record values for all members of the Burr family
and the distribution (Xa) in the theorem below. All the proofs of the quantile function of
second order expansions are given in Section 4. For every asymptotic law of record values,
we precise the arguments (from Theorems 1 and/or 3, and/or 4) to be applied. We do
not need to give the detailed proof of all of them. However, after the statement of all the
results, for each argument in Theorems 1 and/or 3, and/or 4, we will give the proof of a
case on which it is applied.

Theorem 5. Let X follows B(T, a, b, c) with cdf F . We have the following results for the
distribution in the table 1.

Burr I.

(i) The quantile function is expanded as follows.

uep(F )− F−1(1− u) = u. (15)

(ii) F ∈ D(Gγ), γ = −1, uep(F ) = 1.

(iii) The asymptotic law of the record values X(n), n ≥ 1, is given as follows.

(
en(1−X(n))

)n−1/2

= exp(−S∗
n) = exp(−W ∗

n) +OP(cn)

→ exp(N (0, 1)). (16)

Burr II.
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(i) The quantile function is expanded as follows.

F−1(1− u) = log r + log(1/u)− r + 1

2r
u+O(u2). (17)

(ii) Here Z = exp(X) ∈ D(Gγ), γ = 1, i.e., X = logZ and uep(F ) = +∞.

(iii) The asymptotic law of the record values X(n), n ≥ 1, is given as follows.

X(n) − n√
n

= S∗
n +OP(dn(η)) = W ∗

n +OP(dn(η) ∨ cn)

→ N (0, 1). (18)

Burr III.

(i) The quantile function is expanded as follows.

F−1(1− u) = r1/ku−1/k

(
1− r + 1

2kr
u+O(u2)

)
. (19)

(ii) F ∈ D(Gγ), γ = 1/k, uep(F ) = +∞.

(iii) The asymptotic law of the record values X(n), n ≥ 1, is given as follows.

(
X(n)

r1/k exp(n/k)

)n−1/2

= exp

(
1

k
S∗
n

)
+OP(an ∨ bn)

= exp

(
1

k
W ∗

n

)
+OP(an ∨ bn ∨ cn)

→ exp(N (0, k−2)). (20)

Burr IV.

(i) The quantile function is expanded as follows.

c− F−1(1− u) = cr−cuc
(
1 +

c(r + 1)

2r
u+O

(
u2
))

. (21)
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(ii) F ∈ D(Gγ), γ = −c, uep(F ) = c.

(iii) The asymptotic law of the records value X(n), n ≥ 1, is given as follows.

(
rcecn

c

(
c−X(n)

))n−1/2

= exp(−cS∗
n) +OP(an ∨ bn)

= exp(−cW ∗
n) +OP(an ∨ bn ∨ cn)

→ exp(N (0, c2)). (22)

Burr V.

(i) The quantile function is expanded as follows.

π

2
− F−1(1− u) =

(
log

(
kr

u

))−1

− 1

2

(
log

(
kr

u

))−3

+O
(
(log(1/u))−5

)
, (23)

i.e.,

π

2
− F−1(1− u) =

(
log

(
kr

u

))−1(
1− 1

2

(
log

(
kr

u

))−2

+O
(
(log(1/u))−4

))
. (24)

(ii) F ∈ D(Gγ), γ = 0, uep(F ) = π/2.

(iii) The asymptotic law of the record values X(n), n ≥ 1, is given as follows.

√
n

(
log

(
π

2
−X(n)

)
+ log n

)
= −S∗

n +OP(n
−1/2) = −W ∗

n +OP(cn)

→ N (0, 1). (25)

We also have

(log r + n)2
(
X(n) − arctan

(
− log

{
(1−e−n)−1/r−1

k

}))
√
n

= S∗
n +OP(n

−1/2) = W ∗
n +OP(cn)

→ N (0, 1). (VAlt)

Burr VI.
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(i) The quantile function is expanded as follows.

F−1(1−u) = log 2+log log kr+log log (1/u)+
1

4

(
log log

kr

u

)−2

+O
(
log log (1/u)−3

)
, u <

1

e
.

(26)
(ii) F ∈ D(Gγ), γ = 0, uep(F ) = +∞.

(iii) The asymptotic law of the record values X(n), n ≥ 1, is given as follows.

√
n

(
1

(2n log(kr))
exp(X(n))− 1

)
= S∗

n +OP((log n)
−3)

= W ∗
n +OP((log n)

−3)

→ N (0, 1) (27)

We also have

(log r + n)2
(
X(n) − arcsinh

(
− log

(
(1−e−n)−1/r−1

k

)))
√
n

= S∗
n +OP(n

−1/2)

= W ∗
n +OP(cn)

→ N (0, 1). (VIAlt)

Burr VII.

(i) The quantile function is expanded as follows.

F−1 (1− u) = log
√
r +

1

2
log (1/u)− 1 + r

4r
u+O

(
u2
)
. (28)

(ii) Here Z = exp(X) ∈ D(Gγ), γ = 1/2, i.e., X = logZ and uep(F ) = +∞.

(iii) The asymptotic law of the record values X(n), n ≥ 1, is given as follows.

X(n) − n/2− log
√
r√

n
= (1/2)S∗

n +OP(dn(η)) = (1/2)W ∗
n +OP(cn)

→ N (0, 1/4). (29)
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Burr VIII.

(i) The quantile function is expanded as follows.

F−1(1− u) = log(2r/π) + log(1/u)− 1− r

2r
u+O(u2). (30)

(ii) Here Z = exp(X) ∈ D(Gγ), γ = 1, i.e., X = logZ and uep(F ) = +∞.

(iii) The asymptotic law of the record values X(n), n ≥ 1, is given as follows.

X(n) − n− log(2r/π)√
n

= S∗
n +OP(dn(η)) = W ∗

n +OP(cn)

→ N (0, 1). (31)

Burr IX.

(i) The quantile function is expanded as follows.

F−1(1− u) =


1
r log

(
2
uk

)
−
(
2−k
2r

)
u+O(u2) if 0 < r ≤ 1/2

1
r log

(
2
uk

)
−
(
2−k
2r

)
u+O(u1/r) if r > 1/2

(ii) Here Z = exp(X) ∈ D(Gγ), γ = 1/r, i.e., X = logZ and uep(F ) = +∞.

(iii) The asymptotic law of the record values X(n), n ≥ 1, is given as follows for both
sub-cases.

X(n) − n
r − 1

r log
(
2
k

)
√
n

=
1

r
S∗
n +OP(dn(η)) =

1

r
W ∗

n +OP(cn)

→ N (0, r−2). (32)

Burr X.

(i) The quantile function is expanded as follows.
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F−1(1− u) = (log(1/u))1/2
{
1− r + 1

4r

u

log(1/u)
+O

(
u2

log(1/u)

)}
.

(ii) Here X ∈ D(Gγ), γ = 0, uep(F ) = +∞.

(iii) The asymptotic law of the record values X(n), n ≥ 1, is given as follows.

√
n log

(
X(n)

√
n

)
=

1

2
S∗
n +OP(n

−1/2)

=
1

2
W ∗

n +OP(cn)

→ N (0, 1/4). (33)

We also have

(log r + n)2
(
X(n)−

(
− log

(
(1− e−n)−1/r − 1

))1/2)
√
n

= S∗
n +OP(n

−1/2) = W ∗
n +OP(cn)

→ N (0, 1). (XAlt)

Burr XI.

(i) The quantile function is expanded as follows.

1− F−1 (1− u) = α−1/3u1/3
(
1− β

3α
α−1/3u2/3 +O

(
u4/9

))
, (34)

where α = (2π)2

6r , β = − (2π)4

120r .

(ii) F ∈ D(Gγ), γ = −1/3, uep(F ) = 1.

(iii) The asymptotic law of the record values X(n), n ≥ 1, is given as follows.

(
α1/3en/3

(
1−X(n)

))n−1/2

= exp

(
− 1

3
S∗
n

)
+OP(an ∨ bn)

= exp

(
− 1

3
W ∗

n

)
+OP(an ∨ bn ∨ cn)
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→ exp

(
N (0, 1/9)

)
. (35)

Burr XII.

(i) The quantile function is expanded as follows.

F−1(1− u) = u−1/(rc)

(
1− 1

c
u1/r +

1− c

2c2
u2/r +O(u3/r)

)
. (36)

(ii) F ∈ D(Gγ), γ = 1/(rc), uep(F ) = +∞.

(iii) The asymptotic law of the record values X(n), n ≥ 1, is given as follows.

(
X(n)

en/rc

)n−1/2

= exp

(
1

rc
S∗
n

)
+OP(an ∨ bn)

= exp

(
1

rc
W ∗

n

)
+OP(an ∨ bn ∨ cn)

→ exp

(
N (0, (rc)−2)

)
. (37)

Distribution (Xa).

(i) The quantile function is expanded as follows.

F−1(1− u) = (log(1/u))1/2
(
1 +

1− r

4r

u

log(1/u)
+O

(
u2

log(1/u)

))
. (38)

(ii) Here ∈ D(Gγ, γ = 0, uep(F ) = +∞.

(iii) The asymptotic law of the record values X(n), n ≥ 1, is given as follows.

√
n log

(
X(n)

√
n

)
=

1

2
S∗
n +OP(n

−1/2) =
1

2
W ∗

n +OP(cn)

→ N (0, 1/4). (39)

We also have
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(log r + n)2
(
X(n)−

(
− log

(
(1− e−n)−1/r − 1

))1/2)
√
n

= Sn
∗ +OP(n

−1/2)

= W ∗
n +OP(cn)

→ N (0, 1). (XaAlt)

Proofs. As announced, we are going to provide the full proof of one case in which one the
four arguments is applied. But for cases corresponding to Burr cdf ’s attracted to D(G0)
with s(u) → 0 as u → 0 (Burr V, Burr VI, Burr X, Burr Xa) , it is easier to draw the
asymptotic law of record values directly from the quantile function expansions which are
Formulas (25), (27), (33) and (39) respectively. We begin by giving the outlines of the
proofs using one of the three points (a,c,d) of Theorems 1 and/or 3.

Next, we give the direct proofs for Burr cdf ’s attracted to D(G0) with s(u) → 0 as u → 0.

However, in Appendix (A1), page 651, we will give alternative forms of the asymptotic
laws of record values derived form Theorem 4 corresponding to Formulas (VAlt), (VIAlt),
(XAlt) and (XaAlt) respectively.

A - Proofs based on Direct applications of Theorems 1 and/or 3 and/or 4.

Burr I. We have uep(F ) = 1. Next, by Part (b) of Proposition 3, we have F ∈ D(Gγ)
for γ = −1. The asymptotic law of the record values and the rates of convergence follow
from Parts (c) of Theorems 1 and 3.

Burr II. We have uep(F ) = +∞ and

exp(F−1(1− u)) = ru−1(1 + o(u)), u ∈]0, 1[.

By Part (a) of Proposition 3, exp(X) with cdf F ∈ D(Gγ) for γ = 1. So, by Proposition
1, F ∈ D(G0). The asymptotic law of the record values and the rates of convergence
follow from Theorems 1 and 3.

Burr III. We have uep(F ) = +∞. Next, by Part (a) of Proposition 3, we have F ∈ D(Gγ)
for γ = 1/k. The asymptotic law of the record values and the rates of convergence follow
from Parts (a) of Theorems 1 and 3.

Burr IV. We have uep(F ) = c. Next, by Part (b) of Proposition 3, we have F ∈ D(Gγ)
for γ = −c. The asymptotic law of the record values and the rates of convergence follow
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from Parts (b) of Theorems 1 and 3.

Burr V. See Part B below .

Burr VI. See Part B below .

Burr VII. By Part (a) of Proposition 3, exp(X) with cdf F ∈ D(Gγ) for γ = 1/2. So,
by Proposition 1, F ∈ D(G0). The asymptotic law of the record values and the rates of
convergence follow from Parts (b) in Theorems 1 and 3.

Burr VIII. By Part (a) of Proposition 3, exp(X) with cdf F ∈ D(Gγ) for γ = 1. So,
by Proposition 1, F ∈ D(G0). The asymptotic law of the record values and the rates of
convergence follow from Parts (b) in Theorems 1 and 3.

Burr IX. By Part (a) of Proposition 3, exp(X) with cdf F ∈ D(Gγ) for γ = 1/r. So,
by Proposition 1, F ∈ D(G0). The asymptotic law of the record values and the rates of
convergence follow from Parts (b) in Theorems 1 and 3.

Burr X. See Part B below .

Burr XI. We have uep(F ) = 1. Next, by Part (b) of Proposition 3, we have F ∈ D(Gγ)
for γ = −1/3. The asymptotic law of the record values and the rates of convergence follow
from Parts (c) of Theorems 1 and 3.

Burr XII. uep(F ) = +∞. Next, by Part (a) of Proposition 3, we have F ∈ D(Gγ) for
γ = 1/(rc). The asymptotic law of the record values and the rates of convergence follow
from Parts (a) of Theorems 1 and 3.

Burr Xa. See Part B below.

B - Proofs using direct methods.

Burr V. We have to make a little effort to see that F ∈ D(G0). We recall the quantile
function (23)

F−1(1− u) =
π

2
−
(
log

(
kr

u

))−1

+O
(
(log(1/u))−3

)
. (40)

Let ℓ(u) = (log(kr/u)−1, u ∈]0, u0[, u0 ∈]0, 1[. We have ℓ′(u) = (log(kr/u))−2/u. So, for
s(u) = − log(kr/u)−2, there existe a real number c0 such that

ℓ(u) = c0 −
∫ u

u0

s(t)

t
dt.
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So ℓ(◦) is slowly varying at 0 and by the properties of slowly varying functions (See [19],[11]
and [16]), we have that for any λ > 0, for all u ∈]0, u0[,

lim
u→0

ℓ(λu)− ℓ(u)

s(u)
= − log λ.

By remarking that for g(u) = O
(
(log(1/u))−3

)
, we have g(u) = O(s(u)) as u → 0. Hence,

we may replace ℓ(u) by F−1(1− u) in the last limit to get

lim
u→0

F−1(1− λu)− F−1(1− u)

s(u)
= − log λ.

So F ∈ D(G0).

To find the asymptotic law of record values, we can use Theorem 4 as in Appendix (A1),
page 651. However, it is easier to use a direct method as below. From Expansion 24, we
have

π

2
− F−1(1− u) = (log(kr/u))−1(1 +O((log(1/u))−2), u ∈]0, 1[, (41)

i.e.,

log

(
π

2
− F−1(1− u)

)
= −(log log(kr/u)) +O((log(1/u))−2), u ∈]0, 1[.

We have for n ≥ 1,

log

(
π

2
−X(n)

)
= log

(
π

2
− F−1(1− e−S(n))

)
= − log

(
log(kr) + S(n)

)
+OP(n

−2)

= − log

(
S(n)

(
1 +

log kr

S(n)

))
+OP(n

−2)

= − logS(n) +OP(n
−1).

Hence
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log

(
π

2
−X(n)

)
+ log n = − log(S(n)/n) +OP(n

−1)

= −
(
log

(
1 +

S(n)

n
− 1

))
+OP(n

−1)

= −
S(n) − n

n
+OP(n

−1/2) +OP(n
−1)

= −
S∗
(n)√
n

+OP(n
−1/2). □

Burr VI. We proceed exactly as in the Proof related to Burr V with s(u) =

(
log(1/u)

)−1

,

0 < u ≤ u0 < 1, c0 = log log(1/u0),

log

(
log(1/u)

)
= c0 +

∫ u0

u

s(t)

t
dt.

We get that F ∈ D(G0). Let us use a direct method to find the asymptotic law of the
record values. We apply the quantile function V(n) to get

exp(X(n)) = 2 log(kr)S(n)(1 +OP((log n)
−3))

which leads to

1

2n log(kr)
exp(X(n)) =

S(n)

n
(1 +OP((log n)

−3))

= 1+

(
S(n)

n
− 1

)
(1 +OP((log n)

−3))

= 1+

(
S(n) − n

n

)
(1 +OP((log n)

−3)),

and next

√
n

(
1

(2n) log(kr)
exp(X(n))− 1

)
=

S(n) − n
√
n

(1 +OP((log n)
−3))

= S∗
n(1 +OP((log n)

−3)).
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Finally, we have

√
n

(
1

(2n) log(kr)
exp(X(n))− 1

)
= S∗

n +OP((log n)
−3))

= W ∗
n +OP((log n)

−3))

→ N (0, 1).

Burr X. We have

logF−1(1− u) =
1

2
log

(
log(1/u)

)1/2

− r + 1

4r

u

log(1/u)
+O

(
u2

(log(1/u))2

)
.

When applied to V(n), we get

logX(n) =
1

2
logS(n) +OP((log n)

−2dn(η))

and hence, by routine computations,

logX(n) − 1

2
log n =

(
1

2
logS(n) +OP((log n)

−2dn(η))

)
− 1

2
log n

=
1

2
log

S(n)

n
+OP((log n)

−2dn(η))

=
1

2

((
S(n)

n
− 1

)
+OP

(
S(n)

n
− 1

))
+OP((log n)

−2dn(η))

=
1

2

1√
n
S∗
n +OP(n

−1).

We conclude that

√
n log

(
X(n)

√
n

)
=

1

2
S∗
n +OP(n

−1/2) =
1

2
W ∗

n +OP(cn)

→ N (0, 1/4).

Burr Xa. We treat that case exactly as the case Burr X with the same final result,

F−1(1− u) = (log(1/u))1/2 +
1− r

4r

u

(log(1/u))1/2
+O

(
u2

(log(1/u))1/2

)
. (42)
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√
n log

(
X(n)

√
n

)
=

1

2
S∗
n +OP(n

−1/2) =
1

2
W ∗

n +OP(cn)

→ N (0, 1/4).

■

Remark. By the way, once we have a second order extension of the quantile function, we
may directly find the asymptotic law of the record value without applying arguments in
Theorems 1 and 3. However, those arguments, when put together, offer a unified approach
to determine such asymptotic laws.

3. Simulations

Here we proceed to simulation studies of the asymptotic laws obtained. Since, we only
want to illustrate how the results are for medium sizes, we will restric ourselves to two
or three case in each extremal domain. The first issue we have to deal with concerns the
sample sizes. In general, the sample size is fixed and the statistics using the generated
sample are computed alongside related parameters. The situation is not the same with
records theory.

Indeed, for a sample X1, · · · , Xn of size n ≥ 1, we study the nr-records. But, it is possible
the sample does not have nr records up to n obervations. From [5], we have the following
results. Let N(n) be the number records in the sumple. The law of N(n) is the sample is
free-distribution. We have:

E(N(n)) = (log n)(1 + o(1)) and Var(N(n)) = (log n)(1 + o(1)), (43)

N(n)− log n√
log n

→ N (0, 1), (44)

and

lim inf
n→+∞

N(n)− log n√
2 log n log log log n

= −11 and lim sup
n→+∞

N(n)− log n√
2 log n log log log n

= 1. (45)

So, for n fixed, we are not sure to have a fixed number of nr records values. For example,
by using the gaussian approximation, we have the following probability p(3) of having less
that nr records values in a sample of size n in Table 2 (see page 654).
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So, while we want to have a powerful test for small samples, we should ensure that we
have enough data to use a meaningful number of records. From Table 2, we recommend
to use the results for n al least equal to n = 50.

Now we are going to simulate the results on two for the cdf’s of each extremal types:
Burr II and Burr III for γ > 0, Burr I and Burr IV for γ < 0, Burr VI and XX for
γ = 0. For each of them we will compute the p-values of the asymptotic normality tests,
and we display the qq-plots and the Parzen estimators of the pdf’s of the centered and
normalized records values. In Figures 1 (for two Burr distributions in Type I), 2 (for two
Burr distributions in Type III), 3 (for two Burr distributions in Type II), the qq-plots and
the Parzen graphs support our findings. Table 3 (in page 655) provides the p-values that
validate our statistical tests.

Description of the simulation works.
For each case, we proceed as follow

Step 1:

Generate a N−sample of standard uniform law

list the records obtained

if the number of record values is enough (compared to the number of records fixed
(nr) at beginnig)

• Compute the statistic test associated to stantard normal law, Z[i]

• Compute the proportion of absolute value of Z greater than 1.96 (0.975-quantile
of standard normal law)

Step 2:

Repeat step 1, B = 1000 times

report P0 le mean of proportion obtained in the tries of Step 1

Step 3: Decision

If the value P0 is less than 5%, we accept the normality

The analysis on the tables

4. Second order expansions of Burr’s quantile functions

Quantile of Burr II distribution or parameter r > 0 .

Its support is V = R and its cdf is
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Figure 1: γ > 0 : Burr II and Burr III

1− u =

(
1 + e−x

)−r

, x ∈ V, u ∈]0, 1[. (FII )

First, we will repeatedly need the following expansions, as u → 0,

(1− u)−1/r = 1 +
u

r
+

r + 1

2r2
u2 +O(u3) (46)

(1− u)1/r = 1− u

r
+

1− r

2r2
u2 +O(u3). (47)

By applying Expansion (46) on (FII ), we get

−x = log

(
u

r
+

r + 1

2r2
u2 +O(u3)

)
= log

(
u

r

(
1 +

r + 1

2r
u+O(u2)

))



S. Dembele et al. / Eur. J. Pure Appl. Math, 16 (1) (2023), 609-656 637

Figure 2: γ < 0 : Burr I and Burr IV

= − log r + log u+ log

(
1 +

r + 1

2r
u+O(u2)

)
.

Now we develop the logarithm in v = r+1
2r u+O(u2) = O(u) → 0 at the first order, we get

−x = − log r + log u+
r + 1

2r
u+O(u2),

and we conclude

F−1(1− u) = log r + log(1/u)− r + 1

2r
u+O(u2). (48)

Quantile of Burr III distribution of parameters k > 0 and r > 0 .

Its support is V = R+ and its cdf is

1− u =

(
1 + x−k

)−r

, x ∈ V, u ∈]0, 1[. (FIII )
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Figure 3: γ = 0 : Burr VI and Burr X

By applying Expansion (46) on (FIII ), we get

x =

(
u

r

(
1 +

r + 1

2r
u+O(u2)

))−1/k

= r1/ku−1/k

(
1 +

r + 1

2r
u+O(u2)

)−1/k

= r1/ku−1/k

(
1− r + 1

2kr
u+O(u2)

)
.

We conclude

F−1(1− u) = r1/ku−1/k

(
1− r + 1

2kr
u+O(u2)

)
. (49)

Quantile of Burr IV distribution of parameters c > 0 and r > 0. .

Its domain is V = [0, c] and its cdf is given by
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F (x) =

[
1 +

(
c− x

x

)1/c
]−r

, x ∈]0, c].

We have for F (x) = 1− u with u ∈ [0; 1[,

1− u =

[
1 +

(
c− x

x

)1/c
]−r

(1− u)−1/r = 1 +

(
c− x

x

)1/c

1 +
1

r
u+

r + 1

2r2
u2 +O

(
u3
)

= 1 +

(
c− x

x

)1/c

1

r
u+

r + 1

2r2
u2 +O

(
u3
)

=

(
c− x

x

)1/c

.

Hence, we have (
c− x

x

)1/c

=
1

r
u+

r + 1

2r2
u2 +O

(
u3
)

( c
x
− 1
)1/c

=
1

r
u

(
1 +

r + 1

2r
u+O

(
u2
))

.

The last equation leads to,

c

x
− 1 =

[
1

r
u

(
1 +

r + 1

2r
u+O

(
u2
))]c

= r−cuc
(
1 +

r + 1

2r
u+O

(
u2
))c

= r−cuc
(
1 +

c(r + 1)

2r
u+O

(
u2
))

.

Then, we have

c

x
= 1 + r−cuc

(
1 +

c(r + 1)

2r
u+O

(
u2
))

. (50)

The Equation (50), leads to
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x

c
=

[
1 + r−cuc

(
1 +

c(r + 1)

2r
u+O

(
u2
))]−1

. (51)

Since c > 0, we have r−cuc
(
1 + c(r+1)

2r u+O
(
u2
))

→ 0 as u → 0.

Equation (51), leads to

x

c
= 1− r−cuc

(
1 +

c(r + 1)

2r
u+O

(
u2
))

.

That leads to,

x = c− cr−cuc
(
1 +

c(r + 1)

2r
u+O

(
u2
))

.

Finally, we have

uep(F )− F−1(1− u) = cr−cuc
(
1 +

c(r + 1)

2r
u+O

(
u2
))

. (52)

Quantile of Burr V distribution of parameters k > 0 and r > 0 .

Its support is V = [−π/2, π/2] and its cdf is

1− u =

(
1 + ke− tanx

)−r

, x ∈ V, u ∈]0, 1[. (FV )

By applying Expansion (46) on (FV ), we get u = 1− F (x),

(1− u)−1/r = 1 + ke− tan(x).

By (46) , we get

1 + ke− tan(x) = 1 +
u

r
+

r − 1

2r2
u2 +O

(
u3
)
.

And so, we get

e− tan(x) =
1

k

(
u

r
+

(r − 1)

2r2
u2 +O

(
u3
))

. (53)
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Let us set

h (x) = e− tan(x), x ∈]− π

2
,
π

2
[.

So, we get

x = h−1

(
1

k

(
u

r
+

(r − 1)

2r2
u2 +O

(
u3
)))

.

Let us find h−1. We begin by remarking that

∀x ∈]− π

2
,
π

2
[, tan (x) =

1

tan
(
π
2 − x

) .
We set

X =
π

2
− x.

and remark that X → 0+ as x → (π/2)−.

We expand tan (X) as follows

tan (X) = X +
X3

3
+

2

15
X5 +O

(
X7
)
.

Hence,

tan (x) =
1

tan (X)
= X−1

(
1 +

X2

3
+

2

15
X4 +O

(
X6
))−1

= X−1

(
1− X2

3
+

7

90
X4 +O

(
X6
))

.

We had already set

tan(x) = Y = − log y, as y ↓ 0. (54)

So, we have

Y = X−1

(
1− X2

3
+

7

90
X4 +O

(
X6
))

.
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By the routine methods developed earlier, we have

X = Y −1

(
1− 1

3
Y −2 +O

(
Y −4

))
.

So

π

2
− x = (log (1/y))−1

(
1− (log (1/y))−2

3
+O

(
log (1/y)−4

))
. (55)

By formula (54) , we have

tanx = − log y ⇐⇒ e− tanx = y ⇐⇒ h (x) = y.

But from Formulas (53) and (54), we may take

y =: y (u) =
u

kr

(
1 +

r + 1

2r
u+O

(
u2
))

.

Hence, Formula (55) becomes

π

2
− x = log (1/y (u))−1

(
1− log (1/y (u))−2

3
+O

(
log (1/y (u))−4

))

= log (1/y (u))−1 − log (1/y (u))−3

2
+O (log (1/y (u)))−5 .

But

log

(
1

y (u)

)
= − log (y (u))

= log

(
kr

u

)
− log

[
1 +

r + 1

2r
u+O

(
u2
)]−1

= log

(
kr

u

)(
1− r + 1

2r

u

log kr
u

+O

(
u2

log kr
u

))
.

Then

(
log

1

y (u)

)−1

=

(
log

kr

u

)−1
(
1 +

r + 1

2r

u

log kr
u

+O

(
u2

log kr
u

))
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=

(
log

kr

u

)−1

+
r + 1

2r

u(
log kr

u

)2 +O

( u

log kr
u

)2
 .

Finally, we have

π

2
− F−1(1− u) =

(
log

(
kr

u

))−1

− 1

2

(
log

(
kr

u

))−3

+O
(
(log(1/u))−5

)
. (56)

Quantile of Burr VI distribution of parameters k > 0 and r > 0 .

Its support is V = R and its cdf is

1− u =

(
1 + ke− sinhx

)−r

, x ∈ V, u ∈]0, 1[. (FV I)

By applying Expansion (46) to Formula (FVI), we have

e− sinh(x) =
1

k

(
u

r
+

r + 1

2r
u2 +O

(
u3
))

.

Thus

y = e− sinh(x) ⇐⇒ sinh (x) = − log y =: Y.

Then

sinh (x) =
ex − e−x

2
= Y

⇐⇒ e2x − 2Y ex − 1 = 0.

This equation has two solutions:

ex = Y −
√
Y 2 + 1(i), or ex = Y +

√
Y 2 + 1 (ii).

The solution (i) is impossible since for Y ≥ 0, Y −
√
Y 2 + 1 ≤ 0 and so, ex ̸= Y −

√
Y 2 + 1

for any x ∈ R. We keep Solution (ii). Hence
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x = log Y + log
(
1 +

(
1 + y−2

) 1
2

)
= log Y + log

(
2 +

1

2
Y −2 − 1

8
Y −4 +O

(
Y −6

))
= log Y + log 2 +

1

4
Y −2 − 3

32
Y −4 +O

(
Y −6

)
. (57)

By (57), we have

y = y (u) =
1

k

(
u

r
+

r + 1

2r2
u2 +O

(
u3
))

=
u

kr

(
1 +

r + 1

2r
u+O

(
u2
))

.

So

− log y (u) = log
kr

u
− r + 1

2r
u+O

(
u2
)

= log
kr

u

(
1− r + 1

2r

u

log kr
u

+O

(
u2

log kr
u

))
.

Hence

log Y = log log
kr

u
− r + 1

2r

(
u

log kr
u

)
+O

(
u

log 1/u

)
. (58)

By (58), we have

Y −α =

(
log

kr

u

)−α
1 +

α (r + 1)

2r

u

log kr
u

+O

(
u

log kr
u

)2
 .

Finally, by (57),

F−1(1−u) = log 2+log log kr+log log (1/u)+
1

4

(
log log

kr

u

)−2

+O
(
log log (1/u)−3

)
, u <

1

e
.

(59)
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Quantile of Burr VII distribution of parameter r > 0 .

Its support is V = R and its cdf is

1− u = 2r
(
1 + tanhx

)r

, x ∈ V, u ∈]0, 1[. (FVII )

By applying Expansion (47) on (FVII ), we get

tanh (x) = 2 (1− u)1/r − 1 = 1− 2

r
u+

1− r

r2
u2 +O

(
u3
)
=: y.

So, we have

ex − e−x

ex + ex
=

e2x − 1

e2x + 1
= y ∈]− 1, 1[.

Then,

e2x =
y + 1

y − 1
, y ∈]− 1, 1[, x ∈ R.

In the formula above, x ↑ +∞ as y ↑ 1. So

x =
1

2
log

y + 1

y − 1

=
1

2
[log (1 + y)− log (1− y)]

=
1

2

[
log

(
2− 2

r
u+

1− r

r2
u2 +O

(
u3
))

− log

(
2

r
u

(
1− 1− r

2r
u+O

(
u2
)))]

=
1

2

[(
log 2− 1

r
u+

1− r

2r2
u2 − 1

2

1

r2
u2 +O

(
u3
))

−
(
log

2

r
u− 1− r

2r
u+O

(
u2
))]

.

So we have,

2x = log r + log (1/u)− 1 + r

2r
u+O

(
u2
)
.

Thus,

x = log
√
r +

1

2
log (1/u)− 1 + r

4r
u+O

(
u2
)
.

Hence,
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F−1 (1− u) = log
√
r +

1

2
log (1/u)− 1 + r

4r
u+O

(
u2
)
. (60)

Quantile of Burr VIII distribution of parameter r > 0 .

Its support is V = R and its cdf is

1− u =

(
2

π
arctan(ex)

)r

, x ∈ V, u ∈]0, 1[. (FVIII )

Case r ̸= 1.

By applying Expansion (47) on (FVIII ), we get

x = log

[
tan

(
π

2

{
1− u

r
+

1− r

2r2
u2 +O(u3)

})]
.

From there, we use the property that tan(π/2 − u) = 1/ tan(u) for u positive and small,
to have

x = − log

[
tan

({
u

r
+

1− r

2r2
u2 +O(u3)

})]
.

Next, using expansion tan(v) = v+ v3/3+ 2v5/15+O(v7) as v → 0 but restricting to the
first order, we have

x = − log

[
π
2ru

(
1− 1−r

2r u+O(u2)

)]
.

Finally, we have

F−1(1− u) = log(2r/π) + log(1/u)− 1− r

2r
u+O(u2). (61)

Quantile of Burr IX distribution of parameters k > 0 and r > 0 .

Its support is V = R and its cdf is
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1− u = 1−
(

2

2 + k ((1 + ex)r − 1)

)
, x ∈ V, u ∈]0, 1[. (FIX )

We get

2

u
= 2 + k ((1 + ex)r − 1) ,

which leads to

(1 + ex)r − 1 =
1

k

(
2

u
− 2

)
,

that is

(1 + ex)r =
2u−1

k
(1− u) + 1

=
2u−1

k

(
1− u+

ku

2

)
=

2u−1

k

(
1− 2− k

2
u

)
.

So, we have by expanding

1 + ex =

(
2u−1

k

)1/r (
1− 2− k

2r
u+O(u2)

)
.

Then we have

ex =

(
2u−1

k

)1/r
(
1−

(
2− k

2r

)
u−

(
ku

2

)1/r

+O(u2)

)

and
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x =
1

r
log

(
2u−1

k

)
−
(
2− k

2r

)
u−

(
ku

2

)1/r

+O(u2).

Now, we conclude, that the quatile depends on the value of r > 0, as follows.

F−1(1− u) =


1
r log

(
2
uk

)
−
(
2−k
2r

)
u+O(u2) if 0 < r ≤ 1/2

1
r log

(
2
uk

)
−
(
2−k
2r

)
u+O(u1/r) if r > 1/2.

Quantile of Burr X distribution of parameter r > 0 .

Its support is V = R+ and its cdf is

1− u =

(
1 + e−x2

)−r

, x ∈ V, u ∈]0, 1[. (FXa)

By applying Expansion (46) on (FXa), we get

e−x2
=

u

r

(
1 +

r + 1

2r
u+O(u2))

)

and

−x2 = − log r + log u+
r + 1

2r
u+O(u2))

= −
(
log(1/u)

{
1− r + 1

2r

u

log(1/u)
+

log r

log(1/u)
+O

(
u2

log(1/u)

)})
.

So by expanding the latter line at the power 1/2, we get

x =

(
log(1/u)

{
1− r + 1

2r

u

log(1/u)
+

log r

log(1/u)
+O

(
u2

log(1/u)

)})1/2

= (log(1/u))1/2
{
1− r + 1

4r

u

log(1/u)
+O

(
u2

log(1/u)

)}
.
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Finally, we have

F−1(1− u) = (log(1/u))1/2
{
1− r + 1

4r

u

log(1/u)
+O

(
u2

log(1/u)

)}
.

Quantile of Burr XI distribution of parameter r > 0 .

Its support is V = [0, 1] and its cdf is

F (x) =

(
x− 1

2π
sin(2πx)

)r

, x ∈ V, u ∈]0, 1[. (FXI )

Let us set g(x) = sin(2πx) of x ∈ [0, 1]. The first seven derivatives (at left of x = 1) are

g′(x) = 2π cos(2πx), g′′(x) = −(2π)2 sin(2πx) , g(3)(x) = −(2π)3 cos(2πx),

g(4)(x) = +(2π)4 sin(2πx), g(5)(x) = (2π)5 cos(2πx),

g(6)(x) = −(2π)6 sin(2πx) and g(7)(x) = −(2π)6 cos(2πx).

The even derivatives vanish at x = 1 and the odd derivatives take values (−1)k(2π)2k+1,
k ≥ 0. Thus, g is expanded at x = 1 as follows.

sin(2πx) = (2π)(x− 1)− (2π)3

6
(x− 1)3 +

(2π)5

5!
(x− 1)5 − (2π)7

7!
(x− 1)7 +O

(
(x− 1)9)

)
.

So, we have

F (x) =

(
x− (x− 1) +

(2π)2

6
(x− 1)3 − (2π)4

5!
(x− 1)5 +

(2π)6

7!
(x− 1)7 +O

(
(x− 1)9)

))r

=

(
1 +

(2π)2

6
(x− 1)3 − (2π)4

5!
(x− 1)5 +

(2π)6

7!
(x− 1)7 +O

(
(x− 1)9)

))r

.

We set v = (2π)2

6 (x−1)3− (2π)4

5! (x−1)5+ (2π)6

7! (x−1)7+O
(
(x− 1)9)

)
and the cdf becomes

F (x) = (1 + v)r

= 1 + rv +
r(r − 1)

2
v2 +O(v3)



S. Dembele et al. / Eur. J. Pure Appl. Math, 16 (1) (2023), 609-656 650

= 1 +
(2π)2

6r
(x− 1)3 − (2π)4

120r
(x− 1)5 +

r(r − 1)

2

(2π)4

36
(x− 1)6 +O

(
(x− 1)7)

)
.

Hence

1− F (x) =
(2π)2

6r
(1− x)3 − (2π)4

120r
(1− x)5 − r(r − 1)

2

(2π)4

36
(x− 1)6 +O

(
(x− 1)7)

)
=

(2π)2

6r
(1− x)3 − (2π)4

120r
(1− x)5 +O

(
(x− 1)6

)
= αX3 + βX5 +O

(
X6
)
.

where α = (2π)2

6r , β = − (2π)4

120r and X = 1 − x. We set u = 1 − F (x) and we have the
following

u = αX3 + βX5 +O
(
X6
)

= αX3

(
1 +

β

α
X5 +O

(
X3
))

.

By the same method used previously,

X = α−1/3u1/3
(
1− β

3α
α−1/3u2/3 +O

(
u4/9

))
.

That leads to,

1− x = α−1/3u1/3
(
1− β

3α
α−1/3u2/3 +O

(
u4/9

))
.

Hence

uep (F )− F−1 (1− u) = α−1/3u1/3
(
1− β

3α
α−1/3u2/3 +O

(
u4/9

))
. (62)

Quantile of Burr XII distribution of parameters c > 0 and r > 0 .

Its support is V = R+ and its cdf is

1− u = 1−
(
1 + xc

)−r

, x ∈ V, u ∈]0, 1[. (FXII )
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We have

x = u−1/(rc)

(
1− u1/r

)1/c

= u−1/(rc)

(
1− 1

c
u1/r +

1− c

2c2
u2/r +O(u3/r)

)
.

Finally, we have

F−1(1− u) = u−1/(rc)

(
1− 1

c
u1/r +

1− c

2c2
u2/r +O(u3/r)

)
. (63)

Quantile of distribution (Xa) of parameter r > 0 .

Its support is V = R+ and its cdf is

1− u =

(
1− e−x2

)r

, x ∈ V, u ∈]0, 1[. (Fx )

We have

x2 = − log

(
1− (1− u)−1/r

)

By using the computations as defined in Burr II’s case, we get

F−1(1− u) = (log(1/u))1/2
(
1 +

1− r

4r

u

log(1/u)
+O

(
u2

log(1/u)

))
. (64)

5. Conclusion

Appendix (A1) : Applying Theorem 4 for Burr V, VI, X and Xa.

We compute s(u) = −u(F−1(1−u))′ for each of these four cases and remark that s(u) → 0
as u → 0 and s(◦) is slowly varying at zero. We consider the expression of F (◦) and F−1(◦)
for Burr V, VI, X and Xa in Table 1 and find the following expressions of s(◦) :

(Burr V ) : F−1(1− u) = arctan

(
− log

{
(1− u)−1/r − 1

k

})
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s(u) = (log r/u)−2 ε(u)d(u)(
1 + log k+log d(u)

log r/u

)2
+ (log r/u)−2

,

with ε(u) = (1 − u)−(r+1)/r , d(u) = (u/r)/{(1 − u)−1/r − 1}, arctan(◦) is the inverse
function of the tangent function tan(◦)

(Burr V I) : F−1(1− u) = arcsinh

(
− log

(
(1− u)−1/r − 1

k

))
s(u) = (log r/u)−1 ε(u)d(u)(

1 +
(
log k+log d(u)

log r/u

)2
+ (log r/u)−2

)1/2
,

with ε(u) = (1 − u)−(r+1)/r , d(u) = (u/r)/{(1 − u)−1/r − 1}, arcsinh(◦) is the inverse
function of the hyperbolic sine function sinh(◦)

(Burr X) : F−1(1− u) =

(
− log

(
(1− u)−1/r − 1

))1/2

s(u) =
1

2
(log r/u)−1/2 ε(u)d(u)(

1 + log d(u)
log r/u

) ,

with ε(u) = (1− u)−(r+1)/r , d(u) = (u/r)/{(1− u)−1/r − 1}.

(Burr Xa) : F−1(1− u) =

(
− log

(
1− (1− u)1/r

))1/2

s(u) =
1

2
(log r/u)−1/2 ε(u)d(u)(

1 + log d(u)
log r/u

) ,

with ε(u) = (1− u)(1−r)/r , d(u) = (u/r)/{1− (1− u)1/r}.

So, for all four cases, we have s(◦) is slowly varying at zero and hence by Representation
(7) in Proposition 2, we have that F ∈ D(G0). Also, s(u) → 0 as u → 0.

Now, we are going to use Theorem 4 to all four cases. We give the details for one case,
the first for example (Burr V ). We remark that ε(u) = 1 + O(u) and d(u) = O(u). For
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min(vn, Vn) ≤ u ≤ max(vn, Vn), we have An = min(n, S(n)) ≤ log(1/u) ≤ max(n, S(n)) =
Bn. So uniformly in (u, v) ∈ [min(vn, Vn),max(vn, Vn)]

2, we have for any η > 1

ε(u) = 1 +OP(dn(η)), d(u) = OP(dn(η)), log u = OP(n),

which leads to

s(u)

s(v)
=

(
log(1/u) + log r

log(1/v) + log r

)−1/2

(1 +OP(fn)),

for fn = n−2, since the rates OP(n
−1/2) are much lower that those of OP(dn(η)). Since

An = min(n, S(n)) ≤ log(1/u), log(1/v) ≤ max(n, S(n)) = Bn,

we have

Cn =

(
logAn − log r

logBn − log r

)−1/2

≤
(
log u− log r

log v − log r

)−1/2

≤
(
logBn − log r

logAn − log r

)−1/2

= Dn.

It straightforward to show that (Cn−1) and (Dn−1) are both OP(n
−1/2). So the condition

of Theorem 4 holds with dn = n−1/2. By handling the rates appropriately, we get (we
recall that cn = (log n)/

√
n, n ≥ 1):

(V) Alternative form of the asymptotic law of record values
from Burr V. (with fn = n−2, dn = n−2)

(log r + n)2
(
X(n) − arctan

(
− log

{
(1−e−n)−1/r−1

k

}))
√
n

= S∗
n +OP(n

−1/2) = W ∗
n +OP(cn)

→ N (0, 1). (VAlt)

By using again the same techniques, we get the following forms.

(VI) Alternative form of the asymptotic law of record values
from Burr VI. (with fn = n−1/2, dn = n−1/2)

(log r + n)2
(
X(n) − arcsinh

(
− log

{
(1−e−n)−1/r−1

k

}))
√
n

= S∗
n +OP(n

−1/2) = W ∗
n +OP(cn)

→ N (0, 1). (VIAlt)
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(X) Alternative form of the asymptotic law of record values
from Burr X. (with fn = n−1, dn = n−1/2)

(log r + n)2
(
X(n)−

(
− log

(
(1− e−n)−1/r − 1

))1/2)
√
n

= S∗
n +OP(n

−1/2) = W ∗
n +OP(cn)

→ N (0, 1). (XAlt)

(Xa) Alternative form of the asymptotic law of record values
from Burr Xa. (with fn = n−1/2, dn = n−1/2)

(log r + n)2
(
X(n)−

(
− log

(
1− (1− en)−1/r

))1/2)
√
n

= S∗
n +OP(n

−1/2) = W ∗
n +OP(cn)

→ N (0, 1). (XaAlt)

Conclusions and Perspective

This paper has its own interests by giving all the asymptotic laws of the upper records
values that can be adapted to give the corresponding results for the lower records val-
ues. Actually, the results are at intersection of three major sub-disciplines of Statistics
(Extreme value theory, records theory and asymptotic expansions) and the opportunity
to summarize them has been seized. Most importantly, the study of the distributions of
the so important Burr law paves the way of a handbook of similar results for as much as
possible continuous distributions. This handbook already exists as a draft. The current
paper will be main source of citations of it.
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n 25 50 75 100 150 200 250 300 350 500 1000
p(3) 0.45 0.322 0.26 0.22 0.18 0.15 0.14 0.13 0.11 0.098 0.069

Table 2: Probabilities table of having less three records in a sample of size n
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γ > 0 γ < 0 γ = 0

Burr II III I IV V I X
(parameters) (r = 2) (r = 2, k = 3) (r = 2, c = 3) (k = 2, r = 3) (k = 2, r = 3)

P0(%) 3.78 3.05 2.28 14.65 3.54 1.77

Table 3: Empirical p−value of test record values normality (nr = 3 records)
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