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Abstract. LetG be a connected graph. A set S ⊆ V (G) is a restrained 2-resolving hop dominating
set of G if S is a 2-resolving hop dominating set of G and S = V (G) or ⟨V (G)\S⟩ has no isolated
vertex. The restrained 2-resolving hop domination number of G, denoted by γr2Rh(G) is the
smallest cardinality of a restrained 2-resolving hop dominating set ofG. This study aims to combine
the concept of hop domination with the restrained 2-resolving sets of graphs. The main results
generated in this study include the characterization of restrained 2-resolving hop dominating sets
in the join, corona, edge corona and lexicographic product of graphs, as well as their corresponding
bounds or exact values.
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1. Introduction

The concept of domination in graphs is one of the most studied problems and one of
the fastest growing areas in graph theory. This was formally studied by Claude Berge [1]
in 1958 and Oystein Ore in 1962. In 2015, Natarajan and Ayyaswamy introduced and
studied the concept of hop domination [14].

On the other hand, in 1975 using the term locating set, the concept of resolving sets for
a connected graph was first introduced by Slater [17]. These concepts were studied much
earlier in the context of the coin-weighing problem. Later that year, Harary and Melter
introduced independently these concepts, but with different terminologies [10]. The term
metric dimension was used by Harary and Melter instead of locating number.

Recently, 2-resolving hop dominating sets in graphs was studied in [11]. Moreover,
other variations of 2-resolving sets in graphs were also studied in [4–6, 8, 12, 13], respec-
tively.
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2. Terminology and Notation

In this study, we consider finite, simple and connected graphs. For basic graph-
theoretic concepts, we then refer readers to [2] and [3]. The following concepts are found
in [2], [14] and [16].

Let G be a connected graph. A vertex v in G is a hop neighbor of vertex u in G if
dG(u, v) = 2. The set NG(u, 2) = {v ∈ V (G) : dG(v, u) = 2} is called the open hop neigh-
borhood of u. The closed hop neighborhood of u in G is given by NG[u, 2] = NG(u, 2)∪{u}.
The open hop neighborhood ofX ⊆ V (G) is the set NG(X, 2) =

⋃
u∈X NG(u, 2). The closed

hop neighborhood of X in G is the set NG[X, 2] = NG(X, 2) ∪X.
A set S ⊆ V (G) is a hop dominating set of G if NG[S, 2] = V (G), that is, for every

v ∈ V (G)\S, there exists u ∈ S such that dG(u, v) = 2. The minimum cardinality of a
hop dominating set of G, denoted by γh(G), is called the hop domination number of G.
Any hop dominating set with cardinality equal to γh(G) is called a γh-set.

For an ordered set of vertices W = {w1, w2, ..., wk} ⊆ V (G) and a vertex v in G, we
refer to the k-vector (ordered k-tuple)

rG(v/W ) = (dG(v, w1), dG(v, w2), ..., dG(v, wk))

as the (metric) representation of v with respect to W . The set W is called a resolving set
for G if distinct vertices have distinct representations with respect to W . Hence, if W is a
resolving set of cardinality k for a graph G of order n, then the set {rG(v/W ) : v ∈ V (G)}
consists of n distinct k-vectors. A resolving set of minimum cardinality is called aminimum
resolving set or a basis, and the cardinality of a basis for G is the dimension dim(G) of G.
An ordered set of vertices W = {w1, ..., wk} is a k-resolving set for G if, for any distinct
vertices u, v ∈ V (G), the (metric) representations rG(u/W ) and rG(v/W ) of u and v,
respectively, differ in at least k positions. If k = 1, then the k-resolving set is called a
resolving set for G. If k = 2, then the k-resolving set is called a 2-resolving set for G. If G
has a k-resolving set, the minimum cardinality dimk(G) of a k-resolving set is called the
k-metric dimension of G.

A set S ⊆ V (G) is a restrained 2-resolving hop dominating set of G if S is a 2-
resolving hop dominating set of G and S = V (G) or ⟨V (G)\S⟩ has no isolated vertex. The
restrained 2-resolving hop domination number of G, denoted by γr2Rh(G) is the smallest
cardinality of a restrained 2-resolving hop dominating set of G. Any restrained 2-resolving
hop dominating set of cardinality γr2Rh(G) is referred to as a γr2Rh-set of G.

Definition 1. [6] LetG be any nontrivial connected graph and S ⊆ V (G). A set S ⊂ V (G)
is a 2-locating set of G if it satisfies the following conditions:

(i)
∣∣[(NG(x)\NG(y)

)
∩S]∪ [

(
NG(y)\NG(x)

)
∩S]

∣∣ ≥ 2, for all x, y ∈ V (G)\S with x ̸= y.

(ii)
(
NG(v)\NG(w)

)
∩ S ̸= ∅ or

(
NG(w)\NG[v]

)
∩ S ̸= ∅, for all v ∈ S and for all

w ∈ V (G)\S.

The 2-locating number of G, denoted by ln2(G), is the smallest cardinality of a 2-locating
set of G. A 2-locating set of G of cardinality ln2(G) is referred to as an ln2-set of G.
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Definition 2. [15] A set D ⊆ V (G) is a point-wise non-dominating set of G if for each
v ∈ V (G)\D, there exists u ∈ D such that v /∈ NG(u). The smallest cardinality of a point-
wise non-dominating set of G, denoted by pnd(G), is called the point-wise non-domination
number of G. Any point-wise non-dominating set D of G with |D| = pnd(G), is called a
pnd-set of G.

Definition 3. [11] A 2-locating set S ⊆ V (G) which is point-wise non-dominating is
called a 2-locating point-wise non-dominating set in G. The minimum cardinality of a 2-
locating point-wise non-dominating set in G, denoted by lnpnd

2 (G) is called the 2-locating
point-wise non-domination number of G. Any 2-locating point-wise non-dominating set
of cardinality lnpnd

2 (G) is then referred to as a lnpnd
2 -set in G.

Definition 4. A set S ⊆ V (G) is a restrained 2-locating point-wise non-dominating set
in G if S is a 2-locating point-wise non-dominating set in G and S = V (G) or ⟨V (G)\S⟩
has no isolated vertex. The restrained 2-locating point-wise non-dominating number of G,
denoted by rlnpnd

2 (G), is the smallest cardinality of a restrained 2-locating point-wise non-
dominating set in G. A restrained 2-locating point-wise non-dominating set of cardinality
rlnpnd

2 (G) is then referred to as an rlnpnd
2 -set in G.

Definition 5. [6] Let G be any nontrivial connected graph and S ⊆ V (G). S is a (2, 2)-
locating ((2, 1)-locating, respectively) set in G if S is 2-locating and |NG(y)∩ S| ≤ |S| − 2
(|NG(y)∩S| ≤ |S|− 1, respectively), for all y ∈ V (G). The (2, 2)-locating ( (2, 1)-locating,
respectively) number of G, denoted by ln(2,2)(G) (ln(2,1)(G), respectively), is the smallest
cardinality of a (2, 2)-locating ((2, 1)-locating, respectively) set in G. A (2, 2)-locating
((2, 1)-locating, respectively) set in G of cardinality ln(2,2)(G) (ln(2,1)(G), respectively) is
referred to as an ln(2,2)-set (ln(2,1)-set, respectively) in G.

Definition 6. [11] A (2,2)-locating ((2,1)-locating, respectively) set S ⊆ V (G) which is
a point-wise non-dominating is called a (2,2)-locating point-wise non-dominating ((2,1)-
locating point-wise non-dominating, respectively) set in G. The minimum cardinality
of a (2,2)-locating point-wise non-dominating ((2,1)-locating point-wise non-dominating,

respectively) set in G, denoted by lnpnd
(2,2)(G) (lnpnd

(2,1)(G),respectively) is called the (2,2)-

locating point-wise non-domination ((2,1)-locating point-wise non-domination) number of
G. Any (2,2)-locating point-wise non-dominating ((2,1)-locating point-wise non-dominating,

respectively) set of cardinality lnpnd
(2,2)(G) (lnpnd

(2,1)(G), respectively) is then referred to as a

lnpnd
(2,2)-set (ln

pnd
(2,1)-set) in G.

Definition 7. A set S ⊆ V (G) is a restrained (2, 2)-locating point-wise non-dominating
((2, 1)-locating point-wise non-dominating, respectively) in G if S is a (2, 2)-locating point-
wise non-dominating ((2, 1)-locating point-wise non-dominating, respectively) set in G and
S = V (G) or ⟨V (G)\S⟩ has no isolated vertex. The restrained (2, 2)-locating point-wise
non-domination ((2, 1)-locating point-wise non-domination, respectively) number of G, de-

noted by rlnpnd
(2,2)(G) (rlnpnd

(2,1)(G), respectively), is the smallest cardinality of a restrained

(2, 2)-locating point-wise non-dominating ((2, 1)-locating point-wise non-dominating, re-
spectively) set in G. A restrained (2, 2)-locating point-wise non-dominating ((2, 1)-locating
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point-wise non-dominating, respectively) set of cardinality rlnpnd
(2,2)(G) (rlnpnd

(2,1)(G), respectively)

is then referred to as an rlnpnd
(2,2)(G) (rlnpnd

(2,1)(G), respectively)-set in G.

Definition 8. A restrained 2-resolving set S ⊆ V (G) which is point-wise non-dominating
is called a restrained 2-resolving point-wise non-dominating set in G. The minimum
cardinality of a restrained 2-resolving point-wise non-dominating set in G, denoted by
rdim2pnd

(G) is called the restrained 2-resolving point-wise non-domination number of G.
Any r2R-pointwise non-dominating set of cardinality rdim2pnd

(G) is then referred to as a
rdim2pnd

-set in G.

Proposition 1. [9] Let G be a connected graph of order n ≥ 2. Then dim2(G) = 2 if and
only if G ∼= Pn.

Remark 1. [11] For a path Pn on n vertices, lnpnd
2 (Pn) =

{
3, n = 3

⌈n+1
2 ⌉, n ≥ 4

3. Preliminary Results

Remark 2. Every nontrivial connected graph G admits a restrained 2-resolving hop dom-
inating set. Indeed, the vertex set V (G) of G is a restrained 2-resolving hop dominating
set.

Theorem 1. If S ⊆ V (G) is a restrained 2-resolving hop dominating set in G, then S is
a restrained 2-resolving point-wise non-dominating set in G.

Proof. Suppose S is a restrained 2-resolving hop dominating set in G. Let v ∈ V (G)\S.
Since S is hop dominating set, there exists z ∈ S such that dG(v, z) = 2. Hence, v /∈ NG(z).
This shows that S is a point-wise non-dominating set of G. Thus, S is a restrained 2-
resolving point-wise non-dominating set in G.

The next result follows from [5].

Remark 3. Let G be any nontrivial connected graph. Then 2 ≤ rlnpnd
2 (G) ≤ |V (G)|.

Moreover,

(i) rlnpnd
2 (G) = 2 if and only if G = K2.

(ii) If G is a connected graph with 2 ≤ |V (G)| ≤ 4, then rlnpnd
2 (G) = |V (G)|.
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Proposition 2. Let G be any nontrivial connected graph. Then for any positive integers
n and k, we have

(i) rlnpnd
2 (Pn) =

n, if 2 ≤ n ≤ 7;
3n+ 2k

5
, if n = k(mod 5), 3 ≤ k ≤ 7.

(ii) rlnpnd
2 (Cn) =

n, if n = 3, 4;
3n+ 2k

5
, if n = k(mod 5), 0 ≤ k ≤ 4.

(iii) For all n ≥ 4, rlnpnd
(2,2)(Pn) =

n, if 4 ≤ n ≤ 7;
3n+ 2k

5
, if n = k(mod 5), 3 ≤ k ≤ 7.

For all n ≥ 6, rlnpnd
(2,2)(Cn) =

n, if n = 4;
3n+ 2k

5
, if n = k(mod 5), 0 ≤ k ≤ 4.

(iv) For all n ≥ 2, rlnpnd
(2,1)(Pn) =

n, if 2 ≤ n ≤ 7;
3n+ 2k

5
, if n = k(mod 5), 3 ≤ k ≤ 7.

For all n ≥ 3, rlnpnd
(2,1)(Cn) =

n, if n = 3, 4;
3n+ 2k

5
, if n = k(mod 5), 0 ≤ k ≤ 4.

Proof. (i) Let Pn = [v1, v2, . . . , vn] and S be an rlnpnd
2 - set of Pn. The case where

n ≤ 7 can be easily verified by Remark 1. Next, let n ≥ 8 and n ≡ k(mod 5) where

3 ≤ k ≤ 7. Then n = 5r + k. Hence, r =
n− k

5
. Then the set

S = {v1, v2, v3, v6, v7, v8, v11, v12, v13, . . . , v5r+1, v5r+2, . . . , v5r+k}

is an rlnpnd
2 - set of Pn. Therefore, |S| = 5r + k − 2r =

3n+ 2k

5
.

The proofs of (ii), (iii) and (iv) are similar to (i).

Theorem 2. Let G be a connected graph. Then 2 ≤ rdim2pnd
(G) ≤ |V (G)|. Moreover,

(i) rdim2pnd
(G) = 2 if and only if G is a path Pn except n = 3.

(ii) If G is a cycle Cn for n ̸= 4, then rdim2pnd
(Cn) = 3.

Proof. (i) Suppose rdim2pnd
(G) = 2. Note that every restrained 2-resolving point-

wise non-dominating set is a 2-resolving point-wise non-dominating set in G, that is
dim2pnd

(G) = 2. Hence, by Proposition 1, G = Pn. Since rdim2pnd
(P3) = 3, G = Pn

except n = 3.
Conversely, if G = Pn = [v1, v2, . . . , vn], then S = {v1, vn} is a restrained 2-resolving
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point-wise non-dominating set of G. Hence, rdim2pnd
(G) = 2.

(ii) Suppose G = Cn = [v1, v2, . . . , vn]. Let S be the rdim2pnd
-set of Cn. By (i),

rdim2pnd
(Cn) > 2. Thus, S = {v1, v2, v3} is a restrained 2-resolving point-wise non-

dominating set of G. Hence, rdim2pnd
(Cn) = 3.

Remark 4. For any connected graph G of order n ≥ 2, 2 ≤ γr2Rh(G) ≤ n. Moreover,
γr2Rh(P2) = 2 and γr2Rh(Kn) = n.

Example 1. (i) For complete graph Kn on n ≥ 2 vertices, γr2Rh(Kn) = n.

(ii) For complete bipartite graph Km,n on m+ n vertices where m,n ≥ 1,

γr2Rh(Km,n) = m+ n.

(iii) For star graph K1,n on n+ 1 vertices where n ≥ 1, γr2Rh(K1,n) = n+ 1.

The next results follow from [14] and by definition of restrained 2-resolving hop dom-
inating set.

Proposition 3. (i) For a path Pn on n vertices

γr2Rh(Pn) =



2, if n = 2, 4;

3, if n = 3, 5;

4, if n = 6;
n+ 2s

3
, if n ≡ s(mod 6) where 0 ≤ s ≤ 2 and n > 6;

n+ 6− s

3
, if n ≡ s(mod 6) where s = 3, 4 and n > 8;

n+ 4

3
, if n ≡ 5(mod 6)where n > 10.

(ii) For a cycle Cn on n vertices

γr2Rh(Cn) =



3, if n = 3, 5, 6;

4, if n = 4;
n+ 2s

3
, if n ≡ s(mod 6) where 0 ≤ s ≤ 2 and n > 6;

n+ 6− s

3
, if n ≡ s(mod 6) where 3 ≤ s ≤ 5 and n > 8.

Next, we show that every pair of positive integers are realizable as 2-resolving hop
domination number and restrained 2-resolving hop domination number. Thus, as a con-
sequence, the difference γr2Rh − γ2Rh can be made arbitrarily large.

Remark 5. Every restrained 2-resolving hop dominating set of G is a 2-resolving hop
dominating set of G. Thus, γ2Rh(G) ≤ γr2Rh(G).
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Theorem 3. Let a and b be positive integers such that 2 ≤ a ≤ b. Then there exists a
nontrivial connected graph H such that γ2Rh(H) = a and γr2Rh(H) = b.

Proof. Suppose 2 ≤ a = b. Consider graphH1 in Figure 1. Hence, S = {x1, x2, x3 . . . , xa}
is both γ2Rh and a γr2Rh-set of H1. Thus, 2 ≤ γ2Rh(H1) = a = b = γr2Rh(H1).
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Figure 1

Suppose 2 < a < b. Consider the graph H2 in Figure 2. Then S = {x1, x2, . . . , xa} is a
γ2Rh-set of H2 and X = S ∪ {y1, y2, . . . , yb−a} is a γr2Rh-set of H2. Hence γ2Rh(H2) = a
and γr2Rh(H2) = |X| = |S|+ (b− a) = a+ b− a = b.
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H2 :

We now characterize the restrained 2-resolving hop dominating sets in some graphs
under some binary operations.

4. Restrained 2-Resolving Hop Dominating Sets in the Join of Graphs

This section presents characterizations on the restrained 2-resolving hop dominating
sets in the join of graphs.

Theorem 4. [7] Let G be a connected graph of order greater than 3 and let K1 = {v}.
Then S ⊆ V (K1 +G) is a 2-resolving set in K1 +G if and only if either v /∈ S and S is a
(2, 2)-locating set in G or S = {v} ∪ T where T is a (2, 1)-locating set in G.

Theorem 5. [11] Let G be a connected graph and let K1 = {x}. Then S ⊆ V (K1 +G)
is a 2-resolving hop dominating set in K1 + G if and only if S = {x} ∪ T where T is a
(2, 1)-locating point-wise non-dominating set in G.

Theorem 6. Let G be a connected graph and let K1 = {x}. Then S ⊆ V (K1 + G) is a
restrained 2-resolving hop dominating set in K1 +G if and only if S = {x} ∪ T where T
is a restrained (2, 1)-locating point-wise non-dominating set in G.
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Proof. Let S ⊆ V (K1 +G) be a restrained 2-resolving hop dominating set in K1 +G.
Then S is a restrained 2-resolving set in K1 +G. Since S is a hop dominating set, x ∈ S.
Hence, S = {x} ∪ T for T ⊆ V (G). Then by Theorem 5, T is a (2,1)-locating point-wise
non-dominating set in G. Now, since ⟨V (K1 +G)\S⟩ = ⟨V (G)\T ⟩, and S is a restrained
2-resolving hop dominating set in K1+G, then it follows that T = V (G) or ⟨V (G)\T ⟩ has
no isolated vertex. Therefore, T is a restrained (2, 1)-locating point-wise non-dominating
set in G.

Conversely, assume that S = {x}∪T , where T is a restrained (2,1)-locating point-wise
non-dominating set in G. By Theorem 5, S is a 2-resolving hop dominating set in K1+G.
Next, since ⟨V (K1 +G)\S⟩ = ⟨V (G)\T ⟩ and T is a restrained (2,1)-locating point-wise
non-dominating set in G, it follows that S is a restrained 2-resolving hop dominating set
in K1 +G.

As a consequence of Theorem 6 the next result follows.

Corollary 1. Let G be connected nontrivial graph. Then γr2Rh(K1+G) = rlnpnd
(2,1)(G)+1.

Example 2. For a fan Fn = Pn +K1 on n+ 1 vertices

γr2Rh(Fn) = rlnpnd
(2,1)(Pn) + 1 =

n+ 1, if 2 ≤ n ≤ 7;
3n+ 2k

5
+ 1, if n = k(mod 5), 3 ≤ k ≤ 7.

Example 3. For a wheel Wn = Cn + 1 on n+ 1 vertices

γr2Rh(Wn) = rlnpnd
(2,1)(Cn) + 1 =

n+ 1, if n = 3, 4;
3n+ 2k

5
+ 1, if n = k(mod 5), 0 ≤ k ≤ 4.

Theorem 7. [11] Let G and H be any two graphs. A set S ⊆ V (G+H) is a 2-resolving
hop dominating set in G+H if and only if S = SG ∪ SH where SG = V (G) ∩ S and
SH = V (H) ∩ S are 2-locating point-wise non-dominating sets in G and H, respectively,
where SG or SH is a (2, 2)-locating point-wise non-dominating set or SG and SH are
(2, 1)-locating point-wise non-dominating sets of G and H, respectively.

Theorem 8. [8] Let G and H be any two graphs. A set S ⊆ V (G+H) is a restrained 2-
resolving set in G+H if and only if SG = V (G)∩S and SH = V (H)∩S where S = SG∪SH

are 2-locating set in G and H, respectively where SG or SH is a (2, 2)-locating or SG and
SH are (2, 1)-locating sets and one of the following holds:

(i) SG = V (G) and SH is a restrained 2-locating set in H;

(ii) SH = V (H) and SG is a restrained 2-locating set in G;

(iii) SG ̸= V (G) and SH ̸= V (H).

Theorem 9. Let G and H be any two graphs. A set S ⊆ V (G + H) is a restrained
2-resolving hop dominating set in G+H if and only if SG = V (G)∩S and SH = V (H)∩S



A.M. Mahistrado, H. Rara / Eur. J. Pure Appl. Math, 16 (1) (2023), 286-303 294

are 2-locating pointwise non-dominating sets in G and H, respectively where SG or SH is
a (2, 2)-locating point-wise non-dominating set or SG and SH are (2, 1)-locating point-wise
non-dominating sets and one of the following holds:

(i) SG = V (G) and SH is a restrained 2-locating point-wise non-dominating set in H;

(ii) SH = V (H) and SG is a restrained 2-locating point-wise non-dominating set in G;
and

(iii) SG ̸= V (G) and SH ̸= V (H).

Proof. Suppose that S ⊆ V (G+H) is a restrained 2-resolving hop dominating set in
G+H. Let SG = V (G) ∩ S and SH = V (H) ∩ S where S = SG ∪ SH . Now, since S is a
2-resolving hop dominating set by Theorem 7, SG and SH are 2-locating point-wise non-
dominating sets in G and H, respectively, where SG or SH is a (2, 2)-locating point-wise
non-dominating set or SG and SH (2, 1)-locating point-wise non-dominating sets of G and
H, respectively. Suppose SG = V (G). Let SH ̸= V (H). Since S is restrained 2-resolving
hop dominating, S = V (G +H) or ⟨V (G+H)\S⟩ = ⟨V (H)\SH⟩ has no isolated vertex.
Hence, SH = V (H) or ⟨V (H)\SH⟩ has no isolated vertex. Thus, it follows that SH is a
restrained 2-locating point-wise non-dominating set of H and so (i) holds. Next, suppose
that SG ̸= V (G). If SH ̸= V (H), then (iii) holds. On the other hand, if SH = V (H),
then ⟨V (G)\SG⟩ has no isolated vertex and so (ii) holds.

Conversely, suppose that S = SG ∪ SH where SG ⊆ V (G) and SH ⊆ V (H) are 2-
locating point-wise non-dominating sets of G and H, respectively, and (i), (ii) and (iii)
hold. By Theorem 7, S is a 2-resolving hop dominating set of G + H. If (i) holds,
then S = V (G +H) or ⟨V (G+H)\S⟩ = ⟨V (H)\SH⟩ has no isolated vertex since SH is
restrained 2-resolving hop dominating. Similarly, if (ii) holds, then S = V (G + H) or
⟨V (G+H)\S⟩ = ⟨V (G)\SG⟩ has no isolated vertex since SG is restrained 2-resolving hop
dominating set. Therefore, it follows that S is a restrained 2-resolving hop dominating set
of G+H.

As a consequence of Theorem 9 the next result follows.

Corollary 2. Let G and H be nontrivial connected graphs. Then

γr2Rh(G+H) =


m+ n, if rlnpnd

2 (G) = m and rlnpnd
2 (H) = n

min{lnpnd
(2,2)(G) + lnpnd

2 (H), lnpnd
2 (G) + lnpnd

(2,2)(H),

lnpnd
(2,1)(G) + lnpnd

(2,1)(H)}, otherwise.

Example 4. For any nontrivial connected graph G and H of order n and m, respectively;

(i) γr2Rh(G+H) = m+ n if G and H are complete;



A.M. Mahistrado, H. Rara / Eur. J. Pure Appl. Math, 16 (1) (2023), 286-303 295

(ii)

γr2Rh(G+H) =



(
n
2 + 1

)
+
(
m
2 + 1

)
, if n,m are even(

n
2 + 1

)
+ ⌈m2 ⌉, if n is even,m is odd

⌈n2 ⌉+
(
m
2 + 1

)
, if n is odd,m is even

⌈n2 ⌉+ ⌈m2 ⌉, if n,m are odd.

where G = Pn and H = Pm and n,m ≥ 4.

(iii)

γr2Rh(G+H) =



(
n
2

)
+
(
m
2

)
, if n,m are even(

n
2

)
+ ⌈m2 ⌉, if n is even,m is odd

⌈n2 ⌉+
(
m
2

)
, if n is odd,m is even

⌈n2 ⌉+ ⌈m2 ⌉, if n,m are odd.

where G = Cn and H = Cm and n,m ≥ 5.

5. Restrained 2-Resolving Hop Dominating Sets in the Corona of
Graphs

This section presents characterizations on the restrained 2-resolving hop dominating
sets in the corona of graphs.

Remark 6. [7] Let v ∈ V (G). For every x, y ∈ V (Hv), dG◦H(x,w) = dG◦H(y, w) and
dG◦H(v, w) + 1 = dG◦H(x,w) for every w ∈ V (G ◦H)\V (Hv).

Theorem 10. [11] Let G and H be nontrivial connected graphs. A set
S ⊆ V (G ◦H) is a 2-resolving hop dominating set of G ◦H if and only if

S = A ∪

 ⋃
v∈V (G)∩NG(A)

Sv

 ∪

 ⋃
w∈V (G)\NG(A)

Dw


where

(i) A ⊆ V (G) such that for each w ∈ V (G)\A, there exists x ∈ A with dG(w, x) = 2 or
there exists y ∈ V (G) ∩NG(w) with V (Hy) ∩ S ̸= ∅;

(ii) Sv ⊆ V (Hv) is a 2-locating set of Hv for all v ∈ V (G) ∩NG(A); and

(iii) Dw ⊆ V (Hw) is a 2-locating point-wise non-dominating set of Hw for all w ∈
V (G)\NG(A).
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Theorem 11. Let G and H be nontrivial connected graphs. A set S ⊆ V (G ◦ H) is a
restrained 2-resolving hop dominating set of G ◦H if and only if

S = A∪

 ⋃
v∈(V (G)\A)∩NG(A)

Sv

∪

 ⋃
w∈(V (G)\A)\NG(A)

Dw

∪

 ⋃
u∈A∩NG(A)

Eu

∪

 ⋃
j∈A\NG(A)

Fj


where

(i) A ⊆ V (G) such that for each w ∈ V (G)\A, there exists x ∈ A with dG(w, x) = 2 or
there exists y ∈ V (G) ∩NG(w) with V (Hy) ∩ S ̸= ∅;

(ii) Sv is a 2-locating set of Hv for all v ∈ (V (G)\A) ∩NG(A);

(iii) Dw is a 2-locating point-wise non- dominating set ofHw for all w ∈ (V (G)\A)\NG(A);

(iv) Eu is a restrained 2-locating set of Hu for all u ∈ A ∩NG(A);

(v) Fj is a restrained 2-locating point-wise non-dominating set ofHj for all j ∈ A\NG(A).

Proof. Suppose S ⊆ V (G◦H) be a restrained 2-resolving hop dominating set of G◦H.
Let A = S∩V (G), Sv = S∩V (Hv) for each v ∈ (V (G)\A)∩NG(A), Dw = S∩V (Hw) for
each w ∈ (V (G)\A)\NG(A), Eu = S∩V (Hu) for each u ∈ A∩NG(A) and Fj = S∩V (Hj)
for each j ∈ A\NG(A). Then

S = A∪

 ⋃
v∈(V (G)\A)∩NG(A)

Sv

∪

 ⋃
w∈(V (G)\A)\NG(A)

Dw

∪

 ⋃
u∈A∩NG(A)

Eu

∪

 ⋃
j∈A\NG(A)

Fj

 .

Since S is a 2-resolving hop dominating set, (i), (ii) and (iii) follow immediately from
Theorem 10.

Next, let u ∈ A∩NG(A). If Eu = V (Hu), then Eu is a restrained 2-locating. Suppose
that Eu ̸= V (Hu). Then V (G ◦H) ̸= S. Now, since V (Hu)\Eu ⊆ V (G ◦H)\S and S is a
restrained 2-resolving, it follows that ⟨V (Hu)\Eu⟩ has no isolated vertex. Thus, Eu is a
restrained 2-locating set of Hu. Hence, (iv) follows.

Finally, suppose j ∈ A\NG(A). Since S is a restrained 2-resolving hop dominating set
and Fj ⊆ S, Fj is a restrained 2-locating point-wise non-dominating set of Hj . Thus, (v)
follows.

Conversely, let S be the set as described and satisfies the given conditions. By Theorem
10, S is 2-resolving hop dominating set. Furthermore, because (i), (ii), (iii), (iv) and (v)
hold, S is a restrained 2-resolving hop dominating set in G ◦H.

As a consequence of Theorem 11 the next results follow.

Corollary 3. Let G and H be nontrivial connected graphs and |V (G)| = n. Then

(i) γr2Rh(G ◦H) ≤ n(1 + rln2(H)).
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(ii) γr2Rh(G ◦H) ≤ n(lnpnd
2 (H)).

Proof. (i) Let A = V (G), E be an rln2-set of H and Eu ⊆ V (Hu) be an rln2-set

of Hu with ⟨Eu⟩ ∼= ⟨E⟩ for each u ∈ V (G). Then S = A ∪

( ⋃
u∈V (G)

Ew

)
is a restrained

2-resolving hop dominating set of G ◦H by Theorem 11. Hence,

γr2Rh(G ◦H) ≤ |S| = |V (G)|+
∑

w∈V (G)

|Eu| = |V (G)|+ |V (G)| · |E| = n(1 + rln2(H)).

(ii) Let A = ∅, D be a lnpnd
2 -set of H and Dw ⊆ V (Hw) be a lnpnd

2 -set of Hw with

⟨Dw⟩ ∼= ⟨D⟩ for each w ∈ V (G). Then S = A ∪

( ⋃
w∈V (G)

Dw

)
is a restrained 2-resolving

hop dominating set of G ◦H by Theorem 11. Hence,

γr2Rh(G ◦H) ≤ |S| = |A|+
∑

w∈V (G)

|Dw| = |V (G)| · |D| = n(lnpnd
2 (H)).

Corollary 4. Let G and H be nontrivial connected graphs where |V (G)| = n and

lnpnd
2 (H) = ln2(H). Then γr2Rh(G ◦H) = n(lnpnd

2 (H)).

Proof. We have γr2Rh(G ◦ H) ≤ n(lnpnd
2 (H)) by Corollary 3 (ii). Since lnpnd

2 (H) =
ln2(H), then by Remark 5 and Corollary 5 in [11], we have γr2Rh(G◦H) ≥ γ2Rh(G◦H) =

n(lnpnd
2 (H)). Therefore, γr2Rh(G ◦H) = n(lnpnd

2 (H)).

Example 5. For any nontrivial connected graph G of order n,

(i) γr2Rh(G ◦H) ≤ 4n if H = P3;

(ii) γr2Rh(G ◦H) = n ·
(⌈

m+1
2

⌉)
if H = Pm and m ≥ 4;

(iiii) γr2Rh(G ◦H) = n ·
(⌈

m
2

⌉)
if H = Cm and m ≥ 5.

6. Restrained 2-Resolving Hop Dominating Sets in the Edge Corona of
Graphs

This section presents characterizations on the 2-resolving hop dominating sets and
restrained 2-resolving hop dominating sets in the edge corona of graphs.

Remark 7. Let uv ∈ E(G). For every x, y ∈ V (Huv), dG⋄H(x,w) = dG⋄H(y, w),
dG⋄H(u,w) = dG⋄H(x,w), and dG⋄H(v, w)+1 = dG⋄H(x,w) for every w ∈ V (G⋄H)\V (Huv).
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Remark 8. Let G and H be nontrivial connected graphs, C ⊆ V (G ⋄ H) and Suv =
V (Huv) ∩ C where uv ∈ E(G). For each x ∈ V (Huv)\Suv and z ∈ Suv,

dG⋄H(x, z) =

{
1 if z ∈ NHuv(x)

2 otherwise.

Definition 9. A leaf l(G) of a graph G is a set of vertices v in G with degG(v) = 1.

Theorem 12. Let G ̸= P2 and H be any nontrivial connected graphs. A set
C ⊆ V (G ⋄H) is a 2-resolving hop dominating set of G ⋄H if and only if

C = A ∪

 ⋃
uv∈E(G)

Suv


where

(i) A ⊆ V (G);

(ii) Suv ⊆ V (Huv) is a 2-locating set of Huv for all uv ∈ E(G) or if uv is a pendant
edge, then Suv is a (2, 1)-locating set of Huv whenever l(⟨{u, v}⟩) ⊆ A and Suv is a
(2, 2)-locating set of Huv otherwise.

Proof. Suppose that C ⊆ V (G ⋄H) is a 2-resolving hop dominating set of G ⋄H. Let

A = V (G) ∩ C and Suv = C ∩ V (Huv) for all uv ∈ E(G). Then C = A ∪

( ⋃
uv∈E(G)

Suv

)
where A ⊆ V (G) and Suv ⊆ V (Huv). Now, suppose that Suv = ∅ for some uv ∈ E(G)
where v ∈ V (G) ∩NG(A) or u ∈ V (G) ∩NG(A). Let x, y ∈ V (Huv). Then rG⋄H(x/C) =
rG⋄H(y/C) which is a contradiction to the assumption of C. Thus, Suv ̸= ∅. Next, we
claim that Suv is a 2-locating set in Huv for each uv ∈ E(G). Let a, b ∈ V (Huv)\Suv where
a ̸= b or [a ∈ Suv and b /∈ Suv]. Since C is a 2-resolving set in G ⋄ H, rG⋄H(a/C) and
rG⋄H(b/C) differ in at least 2 positions. By Remark 7, rHuv(a/Suv) and rHuv(b/Suv) must
differ in at least 2 positions. By definition of G ⋄H, there exists at least two vertices say
p, q ∈ V (Huv) ∩ Suv such that either p, q ∈ NHuv(a)\NHuv(b) or p, q ∈ NHuv(b)\NHuv(a)
or p ∈ NHuv(a)\NHuv(b) and q ∈ NHuv(b)\NHuv(a). Similarly, if a ∈ Suv and b ∈
V (Huv)\Suv, then there exists a vertex s ∈ V (Huv)∩Suv such that s ∈ NHuv(a)\NHuv(b)
or s ∈ NHuv(b)\NHuv(a). Thus, it follows that Suv is a 2-locating set of Huv. Next,
suppose that uv is a pendant edge and suppose u is an end-vertex. Then ⟨v⟩ +Huv is a
subgraph G ⋄ H. Since Suv = C ∩ V (Huv) ⊆ C and C is a 2-resolving set it follows by
Theorem 4, Suv is a (2, 1)-locating set of Huv whenever u ∈ C and Suv is a (2, 2)-locating
set of Huv otherwise.

Conversely, let C be the set as described and satisfies the given conditions. Let x, y ∈
V (G ⋄H) with x ̸= y. Then it can be easily verify that rG⋄H(x/C) and rG⋄H(y/C) differ
in at least two positions for all x, y ∈ V (G) or x ∈ V (Huv) and y ∈ V (G) for all edge
uv ∈ E(G) or x ∈ V (Hpq) and y ∈ V (Hab) such that pq ̸= ab for some pq, ab ∈ E(G).
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Hence, consider only the following cases:
Case 1: x, y ∈ V (Huv)\Suv or x ∈ V (Huv)\Suv and y ∈ Suv for some edge uv ∈ E(G).

Now, since Suv is a 2-locating set, rHuv(x/Suv) and rHuv(y/Suv) differ in at least two
positions. Then by definition of G ⋄H, rG⋄H(x/C) and rG⋄H(y/C) differ in at least two
positions.
Case 2: x ∈ V (Huv)\Suv or x ∈ Suv and y = u for some pendant edge uv ∈ E(G) and u
is an end-vertex

Since Suv is a (2, 2)-locating set, there exists a, b ∈ Suv\NHuv(x) but a, b ∈ NG⋄H(y).
Thus, it follows that rG⋄H(x/C) and rG⋄H(y/C) differ in ath and bth positions.

Therefore, C is a 2-resolving set in G ⋄H.
Next, we claim that C is a hop dominating set. Let x ∈ V (G)\A. Since G is a connected
graph and G ̸= P2, there exist y, q ∈ V (G) such that y ∈ NG(x) ∩ NG(q). Now, since
Syq ̸= ∅, a vertex z ∈ Syq∩NG⋄H(x, 2) exists. On the other hand, if x ∈ V (Huv)\Suv, then
there exists y ∈ NG(u)∪NG(v) such that NG⋄H(x, 2)∩Svy ̸= ∅ or NG⋄H(x, 2)∩Suy ̸= ∅.
Thus, C is a hop dominating set in G ⋄H.

Accordingly, C is a 2-resolving hop dominating set in G ⋄H.

As a consequence of Theorem 12 the next result follows.

Corollary 5. Let G ̸= P2 be any nontrivial connected graph of size m and H a nontrivial
connected graph. Then the following statements hold.

(i) If G is a graph with no pendant edges, then γ2Rh(G ⋄H) = m · ln2(H).

(ii) If G is a graph with k ≥ 1 pendant edges, then

γ2Rh(G⋄H) = min
{(

m−k
)
ln2(H)+k · ln(2,1)(H)+k,

(
m−k

)
ln2(H)+k · ln(2,2)(H)

}
and γ2Rh(G ⋄H) =

(
m− k

)
ln2(H) + k · ln(2,2)(H) whenever ln(2,2)(H) = ln(2,1)(H).

Theorem 13. Let G ̸= P2 and H be any nontrivial connected graphs. A set S ⊆ V (G⋄H)
is a restrained 2-resolving hop dominating set of G ⋄H if and only if

C = A ∪

 ⋃
uv∈E(G)

Suv


is a 2-resolving hop dominating set and

(i) ⟨V (G)\A⟩ has no isolated vertex whenever Suv = V (Huv); and

(ii) Suv is a restrained 2-locating set of Huv for all uv ∈ E(G) if u ∈ A and v ∈ A.

Proof. Suppose C is a restrained 2-resolving hop dominating set in G ⋄ H. Then C
is a 2-resolving hop dominating set in G ⋄H. By Theorem 12, Suv is a 2-locating set in
Huv for all uv ∈ E(G). Let A = V (G) ∩ C and Suv = C ∩ V (Huv) for all uv ∈ E(G).

Then C = A ∪

( ⋃
uv∈E(G)

Suv

)
where A ⊆ V (G) and Suv ⊆ V (Huv) for each uv ∈ E(G).
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Now, suppose Suv = V (Huv). Since C is a restrained 2-resolving hop dominating set,
then ⟨V (G)\A⟩ must contain no isolated vertex. Thus, (i) holds. Next, let u, v ∈ A. If
Suv = V (Huv), then Suv is a restrained 2-locating set of Huv. Suppose Suv ̸= V (Huv).
Since V (Huv)\Suv ⊆ V (G ⋄H)\C and C is a restrained 2- resolving hop dominating set
in G⋄H, it follows ⟨V (Huv)\Suv⟩ must have no isolated vertex. Hence, Suv is a restrained
2-locating set in Huv. Hence, (ii) holds.

Conversely, let C be a 2-resolving hop dominating set as described and satisfies the
given conditions. Suppose V (Huv) = Suv for all uv ∈ E(G). Then ⟨V (G ⋄ H)\C⟩ =
⟨V (G)\A⟩. By (i), ⟨V (G⋄H)\C⟩ has no isolated vertex. Next, suppose V (Huv) ̸= Suv for
some uv ∈ E(G). If u or v is not an element of A, then ⟨V (Huv)\Suv⟩ + ⟨{u, v}⟩ has no
isolated vertex. On the other hand, if u, v ∈ A, then V (Huv)\Suv has no isolated vertex
by (ii). Thus, it follows that ⟨V (G ⋄ H)\C⟩ has no isolated vertex. Therefore, C is a
restrained 2-resolving hop dominating set in G ⋄H.

Corollary 6. Let G and H be a nontrivial connected graph. Then

γr2Rh(G ⋄H) = γ2Rh(G ⋄H).

7. Restrained 2-Resolving Hop Dominating Sets in the Lexicographic
Product of Graphs

This section presents characterizations on the restrained 2-resolving hop dominating
sets in the lexicographic product of graphs.

Theorem 14. [11] Let G and H be nontrivial connected graphs. Then
W =

⋃
x∈S [{x} × Tx], where S ⊆ V (G) and Tx ⊆ V (H) for each x ∈ S, is a 2-resolving

hop dominating set in G[H] if and only if

(i) S = V (G);

(ii) Tx is a 2-locating set in H for every x ∈ V (G) ;

(iii) Tx or Ty is a (2, 1)-locating set or one of Tx and Ty is a (2, 2)-locating set in H
whenever x, y ∈ EQ1(G);

(iv) Tx and Ty are (2 − locating) dominating sets in H or one of Tx and Ty is a 2-
dominating set whenever x, y ∈ EQ2(G).

(v) Tx is a 2-locating point-wise non-dominating set inH for every x ∈ S with |NG(x, 2)∩
S| = 0.

Theorem 15. Let G and H be nontrivial connected graphs. Then
W =

⋃
x∈S [{x} × Tx], where S ⊆ V (G) and Tx ⊆ V (H) for each x ∈ S, is a restrained

2-resolving hop dominating set in G[H] if and only if it is a 2-resolving hop dominating set
and Tx is a restrained 2-locating point-wise non-dominating set for each x with Ty = V (H)
for all y ∈ NG(x).
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Proof. Let W =
⋃

x∈S [{x} × Tx], where S ⊆ V (G) and Tx ⊆ V (H) for each x ∈ S, be
a restrained 2-resolving hop dominating set in G[H]. Then W is a 2-resolving hop domi-
nating set in G[H]. By Theorem 14, (i)-(iv) hold and Tx is a 2-locating point-wise non-
dominating set inH for every x ∈ S with |NG(x, 2)∩S| = 0. Since V (H)\Tx ⊆ V (G[H])\W
and W is a restrained 2-resolving hop dominating set, it follows that ⟨V (H)\Tx⟩ has no
isolated vertex. Hence, Tx is a restrained 2-locating point-wise non-dominating set of H.

For the converse, let W be a 2-resolving hop dominating set as described and satisfies
the given conditions. Suppose that V (G[H]) = W . Then W is a restrained 2-resolving
hop dominating set of G[H]. Suppose that V (G[H]) ̸= W . Let (x, v) ∈ V (G[H])\W . If
Ty ̸= V (H), for all y ∈ NG(x), then ⟨V (G[H])\W ⟩ has no isolated vertex. If Ty = V (H),
for some y ∈ NG(x), then Tx is a restrained 2-locating point-wise non-dominating set.
Thus, ⟨V (H)\Tx⟩ has no isolated vertex. Hence, ⟨V (G[H])\W ⟩ has no isolated vertex.
Therefore, W is a restrained 2-resolving hop dominating set in G[H].

The following results follow from Theorem 15.

Corollary 7. Let G and H be nontrivial connected graphs such that G is not free-
equidistant.. Then,

γr2Rh(G[H]) ≤ n · ln(2,1)(H) +m · γ2L(H) + p · rlnpnd
2 (H),

where n+m+ p = |V (G)| with |EQ1(G)| = n, |EQ2(G)| = m and |fr(G)| = p.

Corollary 8. Let G and H be any nontrivial connected graph and G is a free-equidistant.
Then

γr2Rh(G[H]) =

{
|V (G)| · lnpnd

2 (H), if lnpnd
2 (H) ̸= V (H)

|V (G)| · rlnpnd
2 (H), otherwise.

Example 6. For any nontrivial connected graph G of order n ≥ 3,

(i) γr2Rh(G[H]) = n ·
(⌈

m+1
2

⌉)
if H = Pm;

(ii) γr2Rh(G[H]) = n ·
(⌈

m
2

⌉)
if H = Cm .

(iii) γr2Rh(G[H]) = n · lnpnd2 (H) if G = Kn .
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