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Abstract. We applied sensitivity analysis and optimum control to the COVID-19 model in this
research. In addition, the basic reproduction number calculated as 1.57 indicates that this illness
is widespread across Indonesia. The most important factor in this model is the contact rate with
infected people, with or without comorbidity. Optimal control will minimize the number of infected
populations without and with comorbidity, and costs. Numerical experiments will be carried out to
describe and compare the graphical models of the spread of COVID-19 with and without controls.
From the numerical results and cost-effectiveness analysis on the optimal control problem, it is
found that applying a combination of controls can give the best results compared to a single
control.
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1. Introduction

COVID-19 symptoms are usually mild and appear gradually. COVID-19 symptoms
include fever, a dry cough, and tiredness. Other symptoms include chest pain and tender-
ness, nasal congestion, headache, conjunctivitis, diarrhea, loss of taste or smell, skin rash,
etc [22, 24]. People who have had diabetes, lung, or heart disease in the past are more
likely to get a severe disease with stronger COVID-19 symptoms than people who don’t
have comorbidity [9, 25]. COVID-19 comorbidity in Indonesia has recorded 12 different
diseases, listed from most dangerous to least dangerous: high blood pressure, diabetes,
heart disease, pregnancy, lung, kidney, immune disorders, cancer, other respiratory disor-
ders, asthma, tuberculosis, and liver disease [15, 21].
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On March 2, 2020, President Jokowi Widodo directly reported the first case in Indone-
sia [1]. According to data from the web worldometer [23], On October 2, 2020, Indonesia
ranked 23 out of 215 nations known to be afflicted [16].

The studies on the COVID-19 model are presented as follows: Das et al. [7] adds
a sub-population of people infected with comorbidity. This makes the population into
five sub-populations. The general congenital disease is the comorbidity of this study.
While research from Omame et al. [13] also proposed a comorbidity model of COVID-19
with co-morbidity (especially diabetes mellitus). So, Omame et al. construct a model
by dividing the population into eight sub-populations. Another study, by Rois et al.[19],
incorporates quarantine and isolation sub-populations; hence, the model splits the pop-
ulation into seven sub-populations. The model is also based on the most recent WHO
data, which says that susceptible people must be quarantined first to stop the disease
from spreading further. Research on COVID-19 was also conducted by Prathumwan et
al. [14] by adding quarantine and isolation sub-populations so that the constructed model
has six sub-populations.

Managing the developed mathematical model is necessary to lower COVID-19 infec-
tions. Researchers discussing control issues include Deressa & Duressa [8], Olaniyi et al.
[12], and Rois et al. [18]. Deressa & Duressa propose three controls: public education,
protecting yourself from COVID-19 infection (such as wearing masks, washing hands, and
keeping a safe distance), and treating COVID-19 patients in hospitals. While Olaniyi et al.
and Rois et al. provide two controls: public education, and individual care management
in hospitals. There are many other studies related to COVID-19 besides the ones listed
above. For example, see the following literature [2–4, 6, 11, 17].

The COVID-19 model will be built in this study by combining the research of Das et al.
[7], Rois et al. [19], and Prathumwan et al. [14] with two controls: 1) public education (u1),
and 2) individual treatment efforts for infected (u2). Model formulation, model validation,
sensitivity analysis, effect parameters, and optimum control are discussed. In addition, a
numerical simulation of the model is provided. The final topic is cost-effectiveness.

2. Results and Discussion

2.1. Model formulation and validation

The COVID-19 model consist of eight sub-populations: susceptible (S), exposed with-
out comorbidity (EN ), exposed with comorbidity (EC), infected without comorbidity (IN ),
infected with comorbidity (IC), isolated with treatment (HT ), isolated without treatment
(HN ), and recovered (R). Furthermore, the COVID-19 model can be presented in a com-
partment diagram in Figure 1.

The following system of differential equations is derived from the compartmental dia-
gram in Figure 1:

dS

dt
= π − β1SIN

N
− β2SIC

N
− µS,
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Figure 1: COVID-19 Model with Partial Comorbidity Sub-populations and Two Isolation Treatments

dEN

dt
=

α (β1SIN + β2SIC)

N
− δ1EN − µEN ,

dEC

dt
=

(1− α) (β1SIN + β2SIC)

N
− δ2EC − µEC ,

dIN
dt

= δ1EN − h1IN − r1IN − d1IN − µIN , (1)

dIC
dt

= δ2EC − h2IC − r2IC − d2IC − µIC ,

dHT

dt
= θh1IN + δh2IC − r3HT − d3HT − µHT ,

dHN

dt
= (1− θ)h1IN + (1− δ)h2IC − r4HN − d4HN − µHN ,

dR

dt
= r1IN + r2IC + r3HT + r4HN − µR.

Based on Indonesian data, it can be concluded that the MAPE (Mean Absolute Per-
centage Error) for model validation that we present in Figure 2 using the lsqcurvefit com-
mand is 0.028579. This time period spans from November 1, 2020 to May 19, 2021.
Furthermore, the new parameter values and descriptions are shown in Table 1.

2.2. Sensitivity analysis

The basic reproduction number (R0) has a sensitivity index that is differentiation for
each of its parameters [5, 20]. R0 for system (1) is found.

R0 = ρ (M) = RI +RC ,

with RI = β1δ1α
a1a3

and RC = β2δ2(1−α)
a2a4

.
Here is the parameter sensitivity index R0, with Z = β1δ1a2a4α+ β2δ2a1a3 (1− α).

SR0
β1

=
δ1β1αa2a4

Z
, SR0

β2
=

δ2β2a1a3 (1− α)

Z
, SR0

d1
= −δ1β1d1a2a4α

a3Z
,

SR0
α =

(δ1β1a2a4 − δ2β2a1a3)α

Z
, SR0

δ1
=

β1δ1a2a4α

Z

(
1− δ1

a1

)
,
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Figure 2: Model validation

SR0
δ2

=
β2δ2a1a3 (1− α)

Z

(
1− δ2

a2

)
, SR0

h1
= −δ1β1h1a1a2a4α

a3Z
,

SR0
r1 = −δ1β1r1a2a4α

a3Z
, SR0

d2
= −δ2β2d2a1a3 (1− α)

a4Z
,

SR0
h2

= −δ2β2h2a1a3 (1− α)

a4Z
, SR0

r2 = −δ2β2r2a1a3 (1− α)

a4Z
, and

SR0
µ = −

δ1β1a2a4αµ
(

1
a1

+ 1
a3

)
+ δ2β2a1a3µ (1− α)

(
1
a2

+ 1
a4

)
Z

.

Table 2 displays the parameter sensitivity index, which indicates that β2 and β1 are the
most sensitive parameters.

2.3. Effect parameters

Using contour plots, the effect of parameters on R0 was investigated. We pick three
significant parameters (β1, β2, and h2) and plot them as a function of R0. Figure 3 inves-
tigates the impact of some R0 parameters further and shows that increasing parameters
β1 and β2 as parameters with a positive index can increase the value of R0. This implies
that more personal interaction will accelerate the transmission of COVID-19. Meanwhile,
increasing the parameter with a negative index, namely the parameter h2, can reduce
the value of R0 and implies that increased isolation will reduce the spread of COVID-19.
As a result, It is essential to improve education and isolation to stop the development of
COVID-19.
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Table 1: The new parameter values and descriptions

Parameter Value Descriptions

π 3783175.865 recruitment or birth rate
β1 0.5524 contact rate (without comorbidity)
β2 0.55348 contact rate (with comorbidity)
α 0.49383 contact proportions
δ1 0.028911 progressions rate from exposed to infection (without comorbidity)
δ2 0.22241 progressions rate from exposed to infection (with comorbidity)
δ 0.2349 proportion of isolation from infection (with comorbidity)
θ 0.25353 proportion of isolation from infection (without comorbidity)
h1 0.11791 isolation rate from infection (without comorbidity)
h2 0.11161 isolation rate from infection (with comorbidity)
r1 0.087527 recovery rate
r2 3.987× 10−5 recovery rate
r3 0.54385 recovery rate
r4 0.37245 recovery rate
d1 0.036233 COVID-19 death rate
d2 0.18549 COVID-19 death rate
d3 0.28641 COVID-19 death rate
d4 0.34042 COVID-19 death rate
µ 0.0138 natural death rate

2.4. Optimal control

The COVID-19 model by incorporate control variables u1 (public education) and u2
(individual treatment efforts for infected) is given by

dS

dt
= π − (1− u1) (β1SIN + β2SIC)

N
− µS,

dEN

dt
=

α (1− u1) (β1SIN + β2SIC)

N
− δ1EN − µEN ,

dEC

dt
=

(1− α) (1− u1) (β1SIN + β2SIC)

N
− δ2EC − µEC ,

dIN
dt

= δ1EN − (h1 + u2) IN − r1IN − d1IN − µIN ,

dIC
dt

= δ2EC − (h2 + u2) IC − r2IC − d2IC − µIC , (2)

dHT

dt
= (θh1 + u2) IN + (δh2 + u2) IC − r3HT − d3HT − µHT ,

dHN

dt
= ((1− θ)h1 + u2) IN + ((1− δ)h2 + u2) IC − r4HN − d4HN − µHN ,

dR

dt
= r1IN + r2IC + r3HT + r4HN − µR.
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Table 2: Sensitivity analysis.

Parameter β2 β1 d2 µ h1 h2
Index 0.53996 0.46004 −0.32211 −0.229 −0.21233 −0.19382

Parameter r1 δ1 α d1 δ2 r2
Index −0.15762 0.14864 −0.06675 −0.06525 0.03155 −0.000069

Figure 3: Effect parameters of R0.

Over a time range of [0, T ], the function that minimizes the number of infected cases
without and with comorbidity can be written as

F (u1, u2) =

∫ T

0
v (t,−→x ,−→u ) dt =

∫ T

0

(
IN + IC +

1

2

(
K1u

2
1 +K2u

2
2

))
dt, , (3)

where K1 and K2 are the relative cost associated with the controls u1 and u2, and T is
the final time. The objective of the control is to reduce the cost function.

F (u∗1, u
∗
2) = min F (u1, u2),

subject to the system (2), where 0 ≤ (u1, u2) ≤ 1 and t ∈ (0, T ).

2.5. Optimal Control Analysis

The Hamilton function can be defined as follows

H = IN + IC +
1

2

(
K1u

2
1 +K2u

2
2

)
+ τ1

(
π − (1− u1) (β1SIN + β2SIC)

N
− µS

)
+ τ2

(
α (1− u1) (β1SIN + β2SIC)

N
− δ1EN − µEN

)
+ τ3

(
(1− α) (1− u1) (β1SIN + β2SIC)

N
− δ2EC − µEC

)
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+ τ4 (δ1EN − (h1 + u2) IN − r1IN − d1IN − µIN ) + τ5 (δ2EC − (h2 + u2) IC − r2IC − d2IC − µIC)

+ τ6 ((θh1 + u2) IN + (δh2 + u2) IC − r3HT − d3HT − µHT ) (4)

+ τ7 (((1− θ)h1 + u2) IN + ((1− δ)h2 + u2) IC − r4HN − d4HN − µHN )

+ τ8 (r1IN + r2IC + r3HT + r4HN − µR) .

Deriving the Hamilton function (4) for each co-state variable as (2) yields the equation
state. The next step is to realize that the negative value of the Hamilton function (4)
derivative for each state variable is the co-state, which is represented by the following
equation.

dτ1
dt

= −∂H

∂S
= (τ1 − ατ2 − (1− α) τ3)

(
(1− u1) (β1IN + β2IC)

N

)
+ (ατ2 + (1− α) τ3 − τ1)

(
(1− u1) (β1SIN + β2SIC)

N2

)
+ µτ1,

dτ2
dt

= − ∂H

∂EN
= (ατ2 + (1− α) τ3 − τ1)

(
(1− u1) (β1SIN + β2SIC)

N2

)
+ (τ2 − τ4) δ1 + µτ2,

dτ3
dt

= − ∂H

∂EC
= (ατ2 + (1− α) τ3 − τ1)

(
(1− u1) (β1SIN + β2SIC)

N2

)
+ (τ3 − τ5) δ2 + µτ3,

dτ4
dt

= − ∂H

∂IN
= (τ1 − ατ2 − (1− α) τ3)

(
(1− u1)β1S

N

)
+ (ατ2 + (1− α) τ3 − τ1)

(
(1− u1) (β1SIN + β2SIC)

N2

)
+ τ4 (d1 + µ)

+ h1 (τ4 − θτ6 − (1− θ) τ7) + u2 (τ4 − τ6 − τ7) + r1 (τ4 − τ8)− 1, (5)

dτ5
dt

= − ∂H

∂IC
= (τ1 − ατ2 − (1− α) τ3)

(
(1− u1)β2S

N

)
+ (ατ2 + (1− α) τ3 − τ1)

(
(1− u1) (β1SIN + β2SIC)

N2

)
+ λ5 (d2 + µ)

+ h2 (τ5 − δτ6 − (1− δ) τ7) + u2 (τ5 − τ6 − τ7) + r2 (τ5 − τ8)− 1,

dτ6
dt

= −∂HT

∂H
= (ατ2 + (1− α) τ3 − τ1)

(
(1− u1) (β1SIN + β2SIC)

N2

)
+ τ6 (d3 + µ) + r3 (τ6 − τ8) ,

dτ7
dt

= − ∂H

∂HN
= (ατ2 + (1− α) τ3 − τ1)

(
(1− u1) (β1SIN + β2SIC)

N2

)
+ τ7 (d4 + µ) + r4 (τ7 − τ8) ,

dτ8
dt

= −∂H

∂R
= (ατ2 + (1− α) τ3 − τ1)

(
(1− u1) (β1SIN + β2SIC)

N2

)
+ µτ8.

with transverse condition
τ1 (T ) = τ2 (T ) = τ3 (T ) = τ4 (T ) = τ5 (T ) = τ6 (T ) = τ7 (T ) = τ8 (T ) = 0.
So, the optimal control of u∗1 and u∗2 can be written as

u∗1 =
(β1S

∗I∗N + β2S
∗I∗C) (ατ2 + (1− α) τ3 − τ1)

NK1
, u∗2 =

I∗N (τ4 − τ6 − τ7) + I∗C (τ5 − τ6 − τ7)

K2
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3. Simulation

The forward-backward sweep method is used to solve this optimal control problem
[10]. In this numerical simulation, the values of the parameters used are shown in Table 1.
These values are based on the COVID-19 case in Indonesia, and the final time (T ) is 100
days. Next, the initial values given are as follows S(0) = 270911990, EN (0) = 1000000,
EC(0) = 10000, IN (0) = 412784, IC(0) = 500000, HT (0) = 56899, HN (0) = 200000, and
R(0) = 341942, with simulation intervals t ∈ [0, 100] . Following are the findings of the
simulation of optimum numerical control:

3.1. Strategy 1 (u1 ̸= 0 and u2 = 0)

Figure 4: Optimal control simulation results with u1 ̸= 0.

Figure 4 shows the control strategy, which is u1 ̸= 0 and u2 = 0. This result of
education gives people a constant sense of caution when interacting with others outside
the home. By using this strategy, the number of people who are exposed (with and without
comorbidity), infected (with and without comorbidity), and isolated (with and without
treatment) is significantly reduced. Furthermore, Figure 5 shows the control strategy
profiles u1 ̸= 0 and u2 = 0 for reducing the number of COVID-19 cases during t = 100.
The control strategy u1 ̸= 0 and u2 = 0 is given by the maximum from the beginning of
the period to t = 94. At the end of the period, u1 ̸= 0 and u2 = 0 decrease by a large
amount to reach zero. Control is ended at the end of the period, which means no more
control is given.
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Figure 5: Optimal control profile with u1 ̸= 0.

3.2. Strategy 2 (u1 = 0 and u2 ̸= 0)

Figure 6: Optimal control simulation results with u2 ̸= 0.

Figure 6 shows that u1 = 0 and u2 ̸= 0 are the control strategy. Because there is more
care for infected people, this strategy can reduce the number of people infected with or
without comorbidity. By using this strategy, the number of people who are exposed (with
or without comorbidity), infected (with or without comorbidity), and isolated (with or
without treatment) is reduced by a large amount. Figure 7 depicts the profiles of u1 = 0
and u2 ̸= 0 control strategies for reducing the number of COVID-19 instances for t = 100.
Furthermore, the management strategy u1 = 0 and u2 ̸= 0 are given by maximum from the



M. A. Rois, Fatmawati, C. Alfiniyah / Eur. J. Pure Appl. Math, 16 (1) (2023), 523-537 532

beginning to t = 31.4 and then decline gradually until t = 100 approaches zero, indicating
that control is terminated at the end of the period.

Figure 7: Optimal control profile with u2 ̸= 0.

3.3. Strategy 3 (u1 ̸= 0 and u2 ̸= 0)

Figure 8: Combined optimal control simulation results.

The combination control approach is depicted in Figure 8. This is the outcome of
education urging people to use caution at all times (such as while dealing with others
outside the home) and increased care for affected individuals. Combined control tactics
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can greatly minimize or limit deployment. In addition, Figure 9 depicts the combined
control plan profile for reducing the number of COVID-19 cases during t = 100. The
combined control technique incorporates two controls. Control u1 has a maximum value
of t = 84.3 and progressively approaches 0 as time progresses. Then, u2 is set to a
maximum value of t = 5.4 before declining till t = 100 reaches zero gradually. Both
controls expire at the end of time, rendering them powerless over u1 and u2.

Figure 9: Combined control profile.

3.4. Total infections comparison

Different starting values are given for the sub-populations that were exposed. Figure
10 shows the total number of infected sub-populations for four different initial conditions of
the exposed sub-populations: EN (0) = 200000, EN (0) = 1000000, EN (0) = 10000000, and
EN (0) = 100000000. Figure 10 shows that when the third strategy is used instead of the
other strategies, the number of infected sub-populations goes down. The above example
of an initial value is meant to help figure out how a disease will spread by showing several
ways to stop it. Based on strategies 1 to 3, we can say that strategy 3 is the best way to
reduce the number of people in the community infected with COVID-19.

4. Cost evaluation

The objective of the cost analysis is to identify the COVID-19 spread control approach
with the lowest cost-effectiveness ratio. This study evaluates costs using ACER (Average
Cost-Effectiveness Ratio) and ICER (Incremental Cost-Effectiveness Ratio). ACER is
mathematically defined as follows, according to the approach of cost-effectiveness analysis:

ACER =
Objective function (F )

Total number of infections averted

The most cost-effective use of ACER is the smallest ACER value. The ACER value is
presented in Table 3.
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Figure 10: Total subpopulation infected using various strategies.

In addition, ICER analyzes two competing intervention choices for the same scarce
resource, follows costs and converts them to health benefits. Considering the p and q
methods as two competing control intervention techniques, the ICER is defined as follows:

ICER =
Change in total costs for p and q strategies

Control benefits in strategies p and q change
.

ICER was computed in order to identify the most cost-effective control strategy among
the available options. First, calculate the competition for strategy 1 and strategy 2 using
the following formula:

ICER (1) =
5, 918, 200− 0

53, 996, 000, 000−0
= 0.0001096,

ICER (2) =
2, 533, 500− 5, 918, 200

54, 000, 000, 000−53, 996, 000, 000
= −3, 384, 700

4, 000, 000
= −0.846,

ICER results for strategy 1 were greater than those for strategy 2, indicating that educa-
tional controls alone were more expensive and ineffective than medical care enhancement
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Table 3: Total infections prevented, total costs, and ACER for strategies 1, 2, and 3.

Strategy Infections prevented Total cost (thousands) ACER

No strategy 0 0 0

Strategy 1 53,996,000,000 5,918,200 0.0001096

Strategy 2 54,000,000,000 2,533,500 0.0000469

Strategy 3 54,001,000,000 1,738,200 0.0000322

controls. Thus, strategy 1 is eliminated from the list of potential control strategies. The
ICER for strategies 2 and 3 is then recalculated as follows:

ICER (2) =
2, 533, 500− 0

54, 000, 000, 000−0
= 0.0000469,

ICER (3) =
1, 738, 200−2, 533, 500

54, 001, 000, 000−54, 000, 000, 000
= − 795, 300

1, 000, 000
= −0, 795.

Strategy 2 has a greater ICER than strategy 3. Due to its cost-effectiveness and
ability to prevent the spread of infectious illnesses, strategy 3 (combined control) is the
best control plan of all possibilities.

5. Conclusions

The COVID-19 model uses public health education and improves the care of infected
individuals. The Comorbidity of COVID-19 with other diseases can be controlled by im-
plementing public health education and improving the care of infected individuals. The
sensitivity analysis of model parameters in this paper shows that contact rate with comor-
bidity (β2 = 0.53996) and without comorbidity (β1 = 0.46004) have the biggest effect on
R0. Numerical studies, comparison of total infections, and cost-effectiveness analysis of
the optimal control problem show that using controls together can improve performance
compared to using one control alone.

References

[1] W. Adisasmito, A. Suwandono, Trihono, A. Gani, D. N. Aisyah, D. A. Solikha, A. Fi-
tria, M. Kim, C. Jeon, J. Jang, Y. H. Kim, B. J. Kim, J. Seo, and S. Lee. Studi Kom-
parasi Pembelajaran Penanganan COVID-19 Indonesia-Korea Selatan. Direktorat
Kesehatan dan Gizi Masyarakat Kementerian PPN/ BAPPENAS, 2021.

[2] I. A. Baba, B. A. Nasidi, and D. Baleanu. Optimal control model for the transmission
of novel covid-19. Computers, Materials & Continua, 66:3089–3106, 2021.

[3] E. Bonyah, M. Juga, and Fatmawati. Fractional dynamics of coronavirus with co-
morbidity via caputo-fabrizio derivative. Communications in Mathematical Biology
and Neuroscience, 2022:12, 2022.



REFERENCES 536

[4] I. O. Onwubuya C. E. Madubueze, S. Dachollom. Controlling the spread of covid-19:
Optimal control analysis. Computational and Mathematical Methods in Medicine,
2020:6862516, 2020.

[5] N. Chitnis, J. M. Hyman, and J. M. Cushing. Determining important parameters
in the spread of malaria through the sensitivity analysis of a mathematical model.
Bulletin of Mathematical Biology, 70:1272, 2008.

[6] P. Das, S.S. Nadim, S. Das, and P. Das. Dynamics of covid-19 transmission
with comorbidity: a data driven modelling based approach. Nonlinear Dynamics,
106:1197–1211, 2021a.

[7] P. Das, R. K. Upadhyay, A. K. Misra, F. A. Rihan, P. Das, and D. Ghosh. Mathe-
matical model of covid-19 with comorbidity and controlling using non-pharmaceutical
interventions and vaccination. Nonlinear Dynamics, 106:1213–1227, 2021b.

[8] C. T. Deressa and G. F. Duressa. Modeling and optimal control analysis of trans-
mission dynamics of covid-19: The case of ethiopia. Alexandria Engineering Journal,
60:719–732, 2020.

[9] W. Guan, W. Liang, Y. Zhao, H. Liang, Z. Chen, Y. Li, X. Liu, R. Chen, C. Tang,
T. Wang, C. Ou, L. Li, P. Chen, L. Sang, W. Wang, J. Li, C. Li, L. Ou, B. Cheng,
S. Xiong, Z. Ni, J. Xiang, Y. Hu, L. Liu, H. Shan, C. Lei, Y. Peng, L. Wei, Y. Liu,
Y. Hu, P. Peng, J. Wang, J. Liu, Z. Chen, Z., G. Li, Z. Zheng, S. Qiu, J. Luo,
C. Ye, S. Zhu, L. Cheng, F. Ye, S. Li, J. Zheng, N. Zhang, N. Zhon, and J. He.
Comorbidityity and its impact on 1590 patients with covid-19 in china: a nationwide
analysis. 55:2000547, 2020.

[10] S. Lenhart and J. T. Workman. Optimal Control Applied to Biological Models. Chap-
man and Hall/CRC, New York, 2007.

[11] S. S. Musa, S. Qureshi, S. Zhao, A. Yusuf, U. T. Mustapha, and D. He. Mathematical
modeling of covid-19 epidemic with effect of awareness programs. Infectious Disease
Modelling, 6:448–460, 2021.

[12] S. Olaniyi, O. S. Obabiyi, K. O. Okosun, A. T. Oladipo, and S. O. Adewale. Mathe-
matical modelling and optimal cost-effective control of covid-19 transmission dynam-
ics. The European Physical Journal Plus, 135:938, 2020.

[13] A. Omame, N. Sene, I. Nometa, C. I. Nwakanma, E. U. Nwafor, N. O. Iheonu, and
D. Okuonghae. Analysis of covid-19 and comorbidity co-infection model with optimal
control. Optimal Control Applications and Methods, 42:1568–1590, 2021.

[14] D. Prathumwan, K. Trachoo, and I. Chaiya. Mathematical modeling for prediction
dynamics of the coronavirus disease 2019 (covid-19) pandemic, quarantine control
measures. Symmetry, 12:1404, 2020.



REFERENCES 537

[15] M A Rois, Fatmawati, and C Alfiniyah. Mathematical modeling of covid-19 with par-
tial comorbid subpopulations and two isolation treatments in indonesia. International
Journal of Mathematics and Computer Science, 18:233–242, 2023.

[16] M A Rois, Fatmawati, C Alfiniyah, and C W Chukwu. Dynamic analysis and optimal
control of covid-19 with comorbidity: A modeling study of indonesia. Front. Appl.
Math. Stat, 8, 2023.

[17] M A Rois, M Tafrikan, Y Norasia, I Anggriani, and M. Ghani. Seihr model on spread
of covid-19 and its simulation. Telematika, 15, 2022.

[18] M. A. Rois, Trisilowati, and U. Habibah. Optimal control of mathematical model for
covid-19 with quarantine and isolation. International Journal of Engineering Trends
and Technology, 69:154–160, 2021.

[19] M. A. Rois, T. Trisilowati, and U. Habibah. Dynamic analysis of covid-19 model with
quarantine and isolation. JTAM (Jurnal Teori dan Aplikasi Matematika), 5:418–433,
2021.

[20] M. A. Rois, T. Trisilowati, and U. Habibah. Local sensitivity analysis of covid-19
epidemic with quarantine and isolation using normalized index. Telematika, 14:13–
24, 2021.

[21] Satgas. Peta sebaran covid-19. 2021.

[22] WHO. Novel coronavirus. 2020.

[23] worldometers. Report coronavirus cases. 2021.

[24] Y. C. Wu, C. S. Chen, and Y. J. Chan. The outbreak of covid-19: An overview.
Journal of the Chinese Medical Association, 83:217–220, 2020.

[25] J. Yang, Y. Zheng, X. Gou, K. Pu, Z. Chen, and Q. Guo. Prevalence of comorbidities
and its effects in patients infected with sars-cov-2: a systematic review and meta-
analysis. International Journal of Infectious Diseases Journal, 94:91–95, 2020.


