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Abstract. In this work, Gaussian Fibonacci functions with the use of the (ultimately) periodicity
and exponential Gaussian Fibonacci functions are also discussed. Especially, by giving a non-
negative real valued function, several exponential Gaussian Fibonacci functions are attained.
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1. Introduction

Fibonacci numbers have many applications in different disciplines such as in mathe-
matics, philosophy, physics, art, architecture etc, where can be found in [2, 3, 7]. A series
of the Fibonacci numbers is 1, 1, 2, 3, 5, 8, . . . , where the first two initiated numbers are
1 and every other number comes from the sum of the two preceding numbers. In 1963,
Fibonacci numbers were examined on the complex plane and some interesting properties
about them are established [1]. By the same strategy of finding the Fibonacci numbers,
Gaussian Fibonacci numbers GFn are defined recursively by GFn = GFn−1 + GFn−2,
where GF0 = i, GF1 = 1, and n ≥ 2 [6].

In [4], it is showed that if fG is a Gaussian Fibonacci function, we have that limx→∞
fG(x+1)
fG(x) =

ϕ, where ϕ = 1+
√
5

2 . Similarly, it is showed that if fG is a Gaussian Fibonacci function and

f is a Fibonacci function, then limx→∞
fG(x+1)

f(x) = ϕ+ i, where ϕ = 1+
√
5

2 .

The Fibonacci functions with periodicity is studied in [5]. In this paper, Gaussian Fi-
bonacci functions with periodicity are discussed and studied as well as discussing the ex-
ponential Gaussian Fibonacci functions, Especially, by giving a non-negative real valued
function, several exponential Gaussian Fibonacci functions are obtained.
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2. Preliminaries

Definition 1. [4] A Gaussian function fG on the real numbers R is said to be a Gaussian
Fibonacci function if it satisfies the formula

fG(x+ 2) = f(x+ 2) + f(x+ 1)i,

where f is a Fibonacci function and for any x ∈ R.

Remark 1. [4] For all n ≥ 0. The full Gaussian Fibonacci sequence, where Gu0 = i and
Gu1 = 1, are formed by the following formula

Gu−n = (−1)n ∗ i ∗Gn+1.

Then the full Gaussian Fibonacci sequence, where Gun = GFn the nth Gaussian Fibonacci
numbers, are: . . . ,−3 + 5i, 2− 3i,−1 + 2i, 1− i, i, 1, 1 + i, 2 + i, 3 + 2i, 5 + 3i, . . . .

Example 1. [4] Let {Gun}∞n=−∞ and {Gvn}∞n=−∞ be full Gaussian Fibonacci sequences.
We define a function fG by fG(x) := Gu⌊x⌋ + Gv⌊x⌋t and f(x) := u⌊x⌋ + v⌊x⌋t, where
t = x− ⌊x⌋ ∈ (0, 1) and x ∈ R. Then

fG(x+ 2) = Gu⌊x+2⌋ +Gv⌊x+2⌋t = Gu⌊x⌋+2 +Gv⌊x⌋+2t

by the fact that Gu⌊x⌋+2 = u⌊x⌋+2+ iu⌊x⌋+1 and Gv⌊x⌋+2 = v⌊x⌋+2+ iv⌊x⌋+1, we obtain that

fG(x+ 2) = (u⌊x⌋+2 + iu⌊x⌋+1) + (v⌊x⌋+2 + iv⌊x⌋+1)t

= (u⌊x+2⌋ + v⌊x+2⌋t) + i(u⌊x+1⌋ + v⌊x+1⌋t)

= f(x+ 2) + f(x+ 1)i.

Therefore, fG is a Gaussian Fibonacci function.

Example 2. Let ϕ(t), ψ(t) be any real valued functions which are defined on [0, 1) and let
{Gu−n} and {Gv−n} be Gaussian Fibonacci sequences. Define a map fG(x) := Gu⌊x⌋ϕ(t)+
Gv⌊x⌋ψ(t), and f(x) = u⌊x⌋ϕ(t) + v⌊x⌋ψ(t) where t = x− ⌊x⌋ ∈ [0, 1). Then fG(x+ 2) :=
Gu⌊x+2⌋ϕ(t) +Gv⌊x+2⌋ψ(t). Since ⌊x+ 2⌋ = ⌊x⌋+2 and hence x+2−⌊x+ 2⌋ = x−⌊x⌋,
we obtain

fG(x+ 2) = Gu⌊x⌋+2ϕ(t) +Gv⌊x⌋+2ψ(t)

= (u⌊x⌋+2 + iu⌊x⌋+1)ϕ(t) + (v⌊x⌋+2 + iv⌊x⌋+1)ψ(t)

= (u⌊x⌋+2ϕ(t) + v⌊x⌋+2ψ(t)) + i(u⌊x⌋+1ϕ(t) + v⌊x⌋+1ψ(t))

= f(x+ 2) + if(x+ 1).

Therefore, fG(x) is a Gaussian Fibonacci function.

By using the concept of an fG-even and fG-odd functions, we attain some Gaussian
Fibonacci functions which are discussed in [1]
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Definition 2. [4] Let c(x) be real-valued function of a real variable such that c(x)h(x) ≡ 0
and h(x) is continuous, then h(x) = 0. The function c(x) is said to be fG-even function
(resp., fG-odd function) if c(x+ 1) = c(x) (resp., c(x+ 1) = −c(x)) for any x ∈ R.

Theorem 1. [4] Let fG(x) = c(x)gG(x) be a function and f(x) = c(x)g(x) be a Fibonacci
function, where c(x) is an fG-even function and gG(x) and g(x) are continuous functions.
Then fG(x) is a Gaussian Fibonacci function if and only if gG(x) is a Gaussian Fibonacci
function.

Note that if a Gaussian Fibonacci function is differentiable on R, then its derivative is
also a Gaussian Fibonacci function.

Proposition 1. Let fG be a Gaussian Fibonacci function. If we define gG(x) := fG(x+ t)
and g(x) := f(x + t) where t ∈ R, for any x ∈ R. If g is a Gaussian Fibonacci function,
then gG is also a Gaussian Fibonacci function.

Theorem 2. [4] If fG(x) is a Gaussian Fibonacci function, then the limit of quotient
fG(x+1)
fG(x) exists.

Corollary 1. [4] If fG(x) is a Gaussian Fibonacci function, then

lim
x→∞

fG(x+ 1)

fG(x)
=

1 +
√
5

2
= ϕ.

3. Gaussian Fibonacci functions with periodicity

In this section, several results of Gaussian Fibonacci functions with periodicity is
obtained.

Theorem 3. Let fG(x), gG(x) be Gaussian Fibonacci functions with gG(x) = aG(X)fG(x).
If aG(x+ 1) ̸= aG(X) for all x ∈ R, then

lim
x→∞

aG(x+ 1)

aG(x)
= 1.

Proof. Since aG(x+ 1) ̸= aG(X) for all x ∈ R, we have

aG(x+ 1)[f(x+ 1) + if(x)] = aG(x+ 1)fG(x+ 1)

= gG(x+ 1)

= g(x+ 1) + ig(x)

= aG(x+ 1)f(x+ 1) + iaG(x)f(x)

Comparing the two sides, we obtain

lim
x→∞

aG(x+ 1)

aG(x)
= 1.
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Corollary 2. Let fG(x), gG(x) be Gaussian Fibonacci functions with gG(x) = aG(X)fG(x).
If aG(x+ p) ̸= aG(x) for all x ∈ R, thwn

lim
x→∞

aG(x+ p)

aG(x)
= 1.

Proof. The proof is similar to the proof of the Proposition 3.

Corollary 3. Let fG(x) and gG(x) be Gaussian Fibonacci functions with gG(x) = a(x)fG(x)
for some a(x). If y > 0, then

lim
x→∞

a(x+ y)

a(x)
= lim

x→∞

a(x+ y)

a(x+ y − ⌊y⌋)

Proof.

lim
x→∞

a(x+ y)

a(x)
= lim

x→∞

a(x+ y)a(x+ y − ⌊y⌋)
a(x+ y − ⌊y⌋)a(x)

= lim
x→∞

a(x+ y)

a(x+ y − ⌊y⌋)
lim
x→∞

a(x+ y − ⌊y⌋)
a(x)

= lim
x→∞

a(x+ y − ⌊y⌋+ ⌊y⌋)
a(x+ y − ⌊y⌋)

lim
x→∞

a(x+ y − ⌊y⌋)
a(x)

= lim
x→∞

a(x+ y)

a(x+ y − ⌊y⌋)

Definition 3. A map tG(x) is said to be Gaussian ultimately periodic of period p > 0 if

lim
x→∞

tG(x+ p)

tG(x)
= 1.

Note that a(x) discussed in Proposition 3 is Gaussian ultimately periodic of period 1.

Example 3. Let tG(x) := mx+ b. If m ̸= 0,then

lim
x→∞

tG(x+ p)

tG(x)
= lim

x→∞

m(x+ p) + b

mx+ b
= 1,

showing that tG(x) is a Gaussian ultimately periodic of period p for all p > 0.

Using Example 3, we obtain the following example.

Example 4. If tG(x) := anx
n + an−1x

n−1 + · · ·+ a0, then tG(x) is a Gaussian ultimately
periodic of period p for all p > 0.
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Example 5. If tG(x) = cos(x), then

lim
x→∞

tG(x+ p)

tG(x)
= lim

x→∞

cos(x+ p)

cos(x)

= lim
x→∞

cos(x) cos(p) + sin(x) sin(p)

cos(x)

= cos(p) + sin(p) lim
x→∞

tan(x).

Since limx→∞ tan(x) does not exist, tG(x) is not a Gaussian ultimately periodic of period
p > 0 unless sin(p) = 0 and cos(p) = 1.

Proposition 2. If aG(x) and bG(x) are Gaussian ultimately periodic of period p > 0, then
αaG(x) + βbG(x) is also a Gaussian ultimately periodic of period p > 0, for all α, β > 0

Proof. Since aG(x) and bG(x) are Gaussian ultimately periodic of period p > 0, there

exist ϵ1(x), ϵ2(x) > 0 such that aG(x+p)
aG(p) = 1 + ϵ1(x) and bG(x+p)

bG(p) = 1 + ϵ2(x) where

ϵ1(x), ϵ2(x) → 0. We know that 1+ϵ1(x)
1+ϵ2(x)

= 1 + ϵ(x). In fact, ϵ(x) = ϵ1(x)−ϵ2(x)
1+ϵ1(x)

→ 0. This
shows that

αaG(x+ p) + βbG(x+ p)

αaG(x) + βbG(x)
=

1 + βbG(x+p)
αaG(x+p)

1 + βbG(x)
αaG(x)

αaG(x+ p)

αaG(x)

=
1 + β(1+ϵ2(x))bG(x)

α(1+ϵ1(x))aG(x)

1 + βbG(x)
αaG(x)

aG(x+ p)

aG(x)

→ aG(x+ p)

aG(x)

→ 1.

Hence, the proposition is proved.

Proposition 3. If aG(x) and bG(x) are Gaussian ultimately periodic of period p > 0, then
aG(x)bG(x) is also a Gaussian ultimately periodic of period p > 0.

Proof. This can be prove by the following equation:

lim
x→∞

aG(x+ p)bG(x+ p)

aG(x)bG(x)
= lim

x→∞

aG(x+ p)

aG(x)
lim
x→∞

bG(x+ p)

bG(x)
= 1.

Note that GUp is the collection of all functions which are Gaussian ultimately periodic
of period p > 0.

Proposition 4. If aG(x) ∈ GUp and aG(x) ̸= 0 for all x ∈ [λ,∞), then 1
aG(x) ∈ GUp.

Proof.

lim
x→∞

1
aG(x+p)

1
aG(x)

= lim
x→∞

aG(x)

aG(x+ p)
= 1.
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A map fG which is defined on the set of all real numbers R is said to be Gaussian
periodic of period p > 0 if fG(x + p) = fG(x) for all x ∈ R. It is obvious that every
Gaussian map of period of periodic 1 is Gaussian ultimately periodic of period p.

Proposition 5. Let fG(x) be a Gaussian Fibonacci function and f(x) be a Fibonacci
function and let aG(x) be a Gaussian periodic of period 1. If gG(x) := aG(x)fG(x) and
g(x) := aG(x)f(x), then gG(x) is a Gaussian Fibonacci function.

Proof. Given x ∈ R. Since aG(x) is a Gaussian periodic of period 1, we have

gG(x+ 2) = aG(x+ 2)fG(x+ 2)

= aG(x)[f(x+ 2) + if(x+ 1)]

= aG(x)f(x+ 2) + iaG(x)f(x+ 1)

= aG(x+ 2)f(x+ 2) + iaG(x+ 1)f(x+ 1)

= g(x+ 2) + ig(x+ 1).

Hence, gG(x) is a Gaussian Fibonacci function.

We ask the following question: Are there a Gaussian Fibonacci function fG(x) and
a function aG(x) which is a Gaussian ultimately periodic of period 1 but not periodic of
period 1 such that gG(x) = aG(X)fG(x) is also a Gaussian Fibonacci function?

4. Exponential Gaussian Fibonacci functions

Consider a Gaussian map TG(x) = ln(x+i)
ln(x) with domain D = (0,∞) \ {1}. If we let

C := C \ [0, 1], then TG : D → C is a bijective function.

Proposition 6. If gG(x) = A(x)f(x) is a Gaussian Fibonacci function where A(x) > 0,
then there exists γ(x) ∈ C such that

gG(x+ 2)

g(x+ 1)
=

[
g(x+ 2)

g(x+ 1)

]γ(x)
.

Proof. If gG(x) = A(x)f(x), A(x) > 0, then gG(x) > 0. Assume

gG(x+ 2)

g(x+ 1)
=

[
g(x+ 2)

g(x+ 1)

]γ(x)
for some γ(x). If we let B(x) := g(x+2)

g(x+1) , then

B(x)γ(x) =
gG(x+ 2)

g(x+ 1)
=
g(x+ 2) + ig(x+ 1)

g(x+ 1)
= B(x) + i.

It follows that

γ(x) =
ln(B(x) + i)

lnB(x)
=

ln
(
g(x+2)
g(x+1) + i

)
ln
(
g(x+2)
g(x+1)

) = TG(B(x)) ∈ C.
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This has proved the proposition.

Proposition 7. There is no Gaussian Fibonacci function fG(x) such that gG(x) = AfG(x)

and g(x) = Af(x), A > 0 where fG(x) and f(x) are differentiable and gG(x) and g(x) are
Gaussian Fibonacci function and Fibonacci function, respectively.

Proof. Suppose that fG(x) is a Gaussian Fibonacci function. Since fG(x) is differen-
tiable, we have

f ′G(x+ 2) = f ′(x+ 2) + if ′(x+ 2) (1)

Since gG(x) is a Gaussian Fibonacci function, then gG(x+2) = g(x+2)+ ig(x+1). Since
gG(x + 2) = AfG(x) and g(x) = Af(x) and fG(x) and fG(x) are differential, g′G(x + 2) =
g′(x + 2) + ig′(x + 2), i.e., g′G(x) is also a Gaussian Fibonacci function. It follows from
g′G(x) = gG(x) lnAf

′
G(x) and g

′(x) = g(x) lnAf ′(x) that

gG(x+ 2) lnAf ′G(x+ 2) = g′G(x+ 2)

= g′(x+ 2) + ig′(x+ 1)

= g(x+ 2) lnAf ′(x+ 2) + ig(x+ 1) lnAf ′(x+ 1)

Comparing the two sides, we obtain

f ′G(x+ 2) =
g(x+ 2)

gG(x+ 2)
f ′(x+ 2) + i

g(x+ 1)

gG(x+ 2)
f ′(x+ 1) (2)

From equations (1) and (2), we obtain[
g(x+ 2)

gG(x+ 2)
− 1

]
f ′(x+ 2) + i

[
g(x+ 1)

gG(x+ 2)
− 1

]
f ′(x+ 1) = 0

This implies that

f ′(x+ 2)

if ′(x+ 1)
=
g(x+ 1)− gG(x+ 2)

g(x+ 2)− gG(x+ 2)
=
g(x+ 1)− gG(x+ 2)

ig(x+ 1)
=

1

i
− g(x+ 2)

ig(x+ 1)
− 1

This follows that

ϕ = lim
x→∞

f ′(x+ 2)

f ′(x+ 1)
= 1− lim

x→∞

g(x+ 2)

g(x+ 1)
− i = 1− ϕ− i

Which is contradiction because ϕ = 1+
√
5

2 but we obtain that ϕ = 1−i
2 . Hence, fG(x) is a

Gaussian Fibonacci function.
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