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Abstract. Let G be a connected graph. A set W ⊆ V (G) is a resolving hop dominating set of
G if W is a resolving set in G and for every vertex v ∈ V (G) \ W there exists u ∈ W such that
dG(u, v) = 2. A set S ⊆ V (G) is a 1-movable resolving hop dominating set of G if S is a resolving
hop dominating set of G and for every v ∈ S, either S \ {v} is a resolving hop dominating set
of G or there exists a vertex u ∈ ((V (G) \ S) ∩NG(v)) such that (S \ {v}) ∪ {u} is a resolving
hop dominating set of G. The 1-movable resolving hop domination number of G, denoted by
γ1
mRh(G) is the smallest cardinality of a 1-movable resolving hop dominating set of G. This paper

presents the characterization of the 1-movable resolving hop dominating sets in the join, corona
and lexicographic product of graphs. Furthermore, this paper determines the exact value or bounds
of their corresponding 1-movable resolving hop domination number.
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1. Introduction

Dominating sets in graphs have been studied extensively and there have been many
published studies that have introduced different variants of domination in graphs [7, 13].
In 2015, Natarajan and Ayyaswamy [12] studied the concept of hop domination in graphs
and the hop domination number.

Movable resolving domination in graphs was studied in [11] and the resolving hop
domination sets in graphs was introduced in [10]. Other variations of resolving sets can be
found in [2, 3, 6] and resolving dominating sets in [1, 4, 5, 9, 14]. This paper introduces
and characterizes the concept of 1-movable resolving hop domination in graphs.
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We consider connected graphs that are finite, simple, and undirected. For elementary
Graph Theory concepts, it is recommended that readers refer to [8].

Let G =
(
V (G), E(G)

)
be a graph. NG(v) = {u ∈ V (G) : uv ∈ E(G)} is a neighbor-

hood of v. An element u ∈ NG(v) is called a neighbor of v. NG[v] = NG(v) ∪ {v} is a
closed neighborhood of v. The degree of v, denoted by degG(v), is equal to |NG(v)|. For

S ⊆ V (G), NG(S) =
⋃
v∈S

NG(v) and NG[S] =
⋃
v∈S

NG[v].

The distance dG(u, v) of two vertices u, v in G is the length of a shortest u-v path in
G. The greatest distance between any two vertices in G, denoted by diam(G), is called
the diameter of G.

A set S ⊆ V (G) is a dominating set if every u ∈ V (G) \ S is adjacent to at least
one vertex v ∈ S. The domination number of a graph G, denoted by γ(G), is given by
γ(G) = min{|S| : S is a dominating set of G}.

A set S ⊆ V (G) is a total dominating set if every vertex in graph G is adjacent to
some vertex of S. The minimum cardinality of a total dominating set in G is the total
domination number of G, denoted by γt(G), and we refer to such a set as γt-set of G.

A set S ⊆ V (G) is a hop dominating set of G if for every v ∈ V (G)\S, there exists
u ∈ S such that dG(u, v) = 2. The minimum cardinality of a hop dominating set of G,
denoted by γh(G), is called the hop domination number of G. Any hop dominating set
with cardinality equal to γh(G) is called a γh-set.

A vertex v in G is a hop neighbor of vertex u in G if dG(u, v) = 2. The set
NG(u, 2) = {v ∈ V (G) : dG(v, u) = 2} is called the open hop neighborhood of u. The
closed hop neighborhood of u in G is given by NG[u, 2] = NG(u, 2) ∪ {u}. The open hop

neighborhood of X ⊆ V (G) is the set NG(X, 2) =
⋃
u∈X

NG(u, 2). The closed hop neighbor-

hood of X in G is the set NG[X, 2] = NG(X, 2) ∪X.
A set S ⊆ V (G) is a total hop dominating set of G if for every v ∈ V (G), there exists

u ∈ S such that dG(u, v) = 2. That is, S is a hop dominating set of G and for all z ∈ S,
NG(z, 2) ∩ S ̸= ∅. The smallest cardinality of a total hop dominating set of G, denoted
by γth(G), is called the total hop domination number of G. Any total hop dominating set
with cardinality equal to γth(G) is called a γth-set.

A set S ⊆ V (G) is a locating set of G if for every two distinct vertices u and v of
V (G)\S, NG(u) ∩ S ̸= NG(v) ∩ S. The locating number of G, denoted by ln(G), is the
smallest cardinality of a locating set of G. A locating set of G of cardinality ln(G) is
referred to as ln-set of G. A set S ⊆ V (G) is a strictly locating set of G if it is a locating
set of G and NG(u)∩S ̸= S for all u ∈ V (G)\S. The strictly locating number of G, denoted
by sln(G), is the smallest cardinality of a strictly locating set of G. A strictly locating set
of G of cardinality sln(G) is referred to as a sln-set of G.

A locating (resp. strictly locating) subset S of V (G) is a 1-movable locating (resp.
1-movable strictly locating) set of G if for every v ∈ S, either S \ {v} is a locating (resp.
strictly locating) set of G or there exists a vertex u ∈ ((V (G) \ S) ∩NG(v)) such that
(S \ {v})∪{u} is a locating (resp. strictly locating) set of G. The minimum cardinality of
a 1-movable locating (resp. 1-movable strictly locating) set of G, denoted by mln(G)(resp.
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msln(G)) is the 1-movable location number (resp. 1-movable strictly location number) of
G. Any 1-movable locating (resp. 1-movable strictly locating) set of cardinality mln(G)
(resp. msln(G)) is referred to as mln-set (resp. msln-set) of G.

A vertex x of a graph G is said to resolve two vertices u and v of G if
dG(x, u) ̸= dG(x, v). For an ordered set W = {x1, ..., xk} ⊆ V (G) and a vertex v in
G, the k − vector

rG(v/W ) = (dG(v, x1), dG(v, x2), · · · , dG(v, xk))

is called the representation of v with respect to W . The set W is a resolving set for G
if and only if no two vertices of G have the same representation with respect to W . The
metric dimension of G, denoted by, dim(G), is the minimum cardinality over all resolving
sets of G. A resolving set of cardinality dim(G) is called basis.

A set S ⊆ V (G) is a resolving hop dominating set of G if S is both a resolving set and
a hop dominating set. The minimum cardinality of a resolving hop dominating set of G,
denoted by γRh(G), is called the resolving hop domination number of G. Any resolving
hop dominating set with cardinality equal to γRh(G) is called a γRh-set.

A set S ⊆ V (G) is a 1-movable resolving hop dominating set of G if S is a resolving
hop dominating set of G and for every v ∈ S, either S \ {v} is a resolving hop dominating
set of G or there exists a vertex u ∈ ((V (G) \ S) ∩NG(v)) such that (S \ {v}) ∪ {u} is a
resolving hop dominating set of G. The 1-movable resolving hop domination number of G,
denoted by γ1mRh(G) is the smallest cardinality of a 1-movable resolving hop dominating
set of G. Any 1-movable resolving hop dominating set of cardinality γ1mRh(G) is referred
to as a γ1mRh-set of G.

2. Preliminary Results

Remark 1. Every 1-movable resolving hop dominating set of G is a resolving hop domi-
nating set. Thus,

2 ≤ γRh(G) ≤ γ1mRh(G).

Remark 2. Every 1-movable resolving hop dominating set of G is a hop dominating set.
Thus,

2 ≤ γh(G) ≤ γ1mRh(G).

Remark 3. Every 1-movable resolving hop dominating set of G is a resolving set. Thus,

1 ≤ dim(G) ≤ γ1mRh(G).

Consider G = P5 where V (G) = {v1, v2, v3, v4, v5} with deg(v1) = deg(v5) = 1 and
NG(v3) = {v2, v4}. Let S1 = {v1}, S2 = {v2, v3} and S3 = V (G). Then, S1 is a resolving
set of G, S2 is a hop dominating set and a resolving set of G and S3 is a 1-movable resolving
hop dominating set of G. It can be verified that dim(G) = 1, γh(G) = 2, γRh(G) = 2 and
γ1mRh(G) = 5. Hence for G = P5, Remarks 1, 2 and 3 holds.
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Proposition 1. Let G be a nontrivial connected graph. Then G admits a 1-movable
resolving hop dominating set if and only if γ(G) ̸= 1.

Proof: Suppose G has a 1-movable resolving hop dominating set S. Suppose further
that γ(G) = 1. Let A = {x ∈ V (G) : {x} is a dominating set of G}. Then A ̸= ∅ since
γ(G) = 1. Since S is a hop dominating set, A ⊆ S. Let x ∈ A. Then S \ {x} and
(S \ {x}) ∪ {y} for each y ∈ V (G) \ S are not hop dominating sets of G. Thus, S is not a
1-movable resolving hop dominating set, a contradiction.

Conversely, suppose that γ(G) ̸= 1. Let S = V (G). Then S is a resolving hop
dominating set of G. For each x ∈ S, S \ {x} is a resolving set of G. Also, since {x}
is not a dominating set, there exists y ∈ (S \ {x}) ∩ NG(x, 2). Hence, S \ {x} is a hop
dominating set of G. Therefore, S \ {x} is a resolving hop dominating set of G for each
x ∈ S. Accordingly, S is a 1-movable resolving hop dominating set of G.

As a consequence of Proposition 1 the next result follows.

Corollary 1. A graph G does not admit a 1-movable resolving hop dominating set if and
only if G = K1 +H for any graph H.

Proposition 2. Let G be a connected graph and S a 1-movable resolving hop dominating
set of G. Then for all z ∈ S, NG(z, 2)∩S ̸= ∅ and for each x ∈ V (G)\S, |NG(x, 2)∩S| ≥ 1
and there exists w ∈ (V (G) \ S) ∩NG(x, 2) ∩NG(v) whenever NG(x, 2) ∩ S = {v}.

Proof: Let S be a 1-movable resolving hop dominating set of G and z ∈ S. Suppose
NG(z, 2) ∩ S = ∅. Then S \ {z} and (S \ {z}) ∪ {u} where u ∈ (V (G) \ S) ∩ NG(z)
are not hop dominating sets of G since z has no hop neighbor in both sets, a contra-
diction. Thus, NG(z, 2) ∩ S ̸= ∅. Now, let x ∈ V (G) \ S. Since S is hop dominating,
NG(x, 2)∩S ̸= ∅. Suppose |NG(x, 2)∩S| = 1. Let v ∈ NG(x, 2)∩S. Then S\{v} is not hop
dominating, since x has no hop neighbor in S \{v}. It follows that (S \{v})∪{w} for some
w ∈ (V (G) \ S) ∩NG(v) is a resolving hop dominating set of G. Hence, x must be a hop
neighbor of w and so w ∈ (V (G) \ S) ∩NG(x, 2) ∩NG(v).

As a consequence of Proposition 2, the next corollary follows.

Corollary 2. Every 1-movable resolving hop dominating set is a total hop dominating set.
Moreover, γth(G) ≤ γ1mRh(G).

3. On 1-Movable Resolving Hop Domination in the Join of Graphs

Let A and B be sets which are not necessarily disjoint. The disjoint union of A

and B, denoted by A
•
∪ B, is the set obtained by taking the union of A and B treating

each element in A as distinct from each element in B. The union G1 ∪ G2 of graphs
G1 and G2 with disjoint vertex-sets V (G1) and V (G2), respectively, is the graph G with

V (G) = V (G1)
•
∪ V (G2) and E(G) = E(G1)

•
∪ E(G2). The join of two graphs G and H,

denoted by G+H, is the graph with vertex-set V (G+H) = V (G)
•
∪ V (H) and edge-set

E(G+H) = E(G)
•
∪ E(H) ∪ {uv : u ∈ V (G), v ∈ V (H)}.
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Theorem 1. [10] Let G and H be nontrivial connected graphs. A set
W ⊆ V (G+H) is a resolving hop dominating set of G+H if and only if W = WG ∪WH

where WG and WH are strictly locating sets of G and H, respectively.

As an illustration, consider the graph P3 + P3 in Figure 1. It is easy to verify that
sln(P3) = 2, and by Theorem 1, the set of shaded vertices is a resolving hop dominating
set of P3 + P3. It follows that γRh(P3 + P3) = 4.

P3 + P3:

Figure 1: Graph P3 + P3 with γRh(P3 + P3) = 4

Theorem 2. Let G and H be connected graphs with γ(G) ̸= 1 and
γ(H) ̸= 1. A set W ⊆ V (G +H) is a 1-movable resolving hop dominating set of G +H
if and only if W = WG ∪WH where WG ⊆ V (G) and WH ⊆ V (H) are 1-movable strictly
locating sets of G and H, respectively, and one of the following statements holds:

(i) For each u ∈ WG, WG \ {u} and WH ∪ {v} are strictly locating sets of G and H,
respectively, for some v ∈ V (H) \WH ;

(ii) For each q ∈ WH , WH \ {q} and WG ∪ {b} are strictly locating sets of H and G,
respectively, for some b ∈ V (G) \WG.

Proof: Suppose that W ⊆ V (G + H) is a 1-movable resolving hop dominating set
of G +H. Then W is resolving hop dominating. By Theorem 1, W = WG ∪WH where
WG ⊆ V (G) andWH ⊆ V (H) are strictly locating sets ofG andH, respectively. Moreover,
since G and H are connected graphs with γ(G) ̸= 1 and γ(H) ̸= 1,
WG ̸= ∅ and WH ̸= ∅. Let x ∈ WG. By assumption, W \ {x} = (WG \ {x}) ∪ WH or
(W \ {x}) ∪ {w} = [(WG \ {x} ∪ {w})] ∪ WH for some w ∈ NG(x) ∩ (V (G) \ WG) or
(W \ {x}) ∪ {z} = (WG \ {x}) ∪ (WH ∪ {z}) for some z ∈ V (H) \WH is a resolving hop
dominating set of G+H. Thus, by Theorem 1, WG \ {x} or (WG \ {x})∪{w} is a strictly
locating set of G. This implies that WG is a 1-movable-strictly locating set of G. Similarly,
WH is a 1-movable strictly locating set of H.

Now, let u ∈ WG. Since W is a 1-movable resolving hop dominating set,
W \ {u} = (WG \ {u}) ∪ WH or (W \ {u}) ∪ {r} = [(WG \ {u}) ∪ {r}] ∪ WH for some
r ∈ NG(u) ∩ (V (G) \ WG) or (W \ {u}) ∪ {v} = (WG \ {u}) ∪ (WH ∪ {v}) for some
v ∈ V (H) \WH is a resolving hop dominating set of G +H. It follows from Theorem 1
that WG \ {u} and WH ∪{v} are strictly locating sets of G and H, respectively. Thus, (i)
holds. Similarly, (ii) holds.

For the converse, suppose that WG and WH are 1-movable strictly locating sets of
G and H, respectively. Suppose (i) holds. Then W = WG ∪ WH is a resolving hop
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dominating set of G+H by Theorem 1. Let u ∈ W . If u ∈ WG, then by assumption and
Theorem 1, W \ {u} = (WG \ {u}) ∪WH or (W \ {u}) ∪ {w} = [(WG \ {u}) ∪ {w}] ∪WH

for some w ∈ NG(u)∩ (V (G) \WG) or W \ {u}∪ {z} = (WG \ {u})∪ (WH ∪{z}) for some
z ∈ V (H \WH) is a resolving hop dominating set of G+H. Now, suppose that u ∈ WH .
Since WG and WH are 1-movable strictly locating sets of G and H, respectively, it follows
from Theorem 1 thatW\{u} = (WH\{u})∪WG or (W\{u})∪{y} = [(WH\{u})∪{y}]∪WG

for some y ∈ NH(u)∩ (V (H)\WH) is a resolving hop dominating set of G+H. Therefore,
W is a 1-movable resolving hop dominating set of G + H. Similarly, W is a 1-movable
resolving hop dominating set of G+H if (ii) holds.

Corollary 3. Let G and H be nontrivial connected graphs with γ(G) ̸= 1 and γ(H) ̸= 1.
If G and H have 1-movable strictly locating sets, then

γ1mRh(G+H) ≤ msln(G) +msln(H).

Proof: Suppose G and H have 1-movable strictly locating sets. Let WG and WH be
msln-sets of G and H, respectively. Then W = WG ∪ WH is a 1-movable resolving hop
dominating set of G+H by Theorem 2. Thus,

γ1mRh(G+H) ≤ |W | = |WG|+ |WH | = msln(G) +msln(H).

4. On 1-Movable Resolving Hop Domination in the Corona of Graphs

The corona of two graphs G and H, denoted by G◦H, is the graph obtained by taking
one copy of G of order n and n copies of H, and then joining every vertex of the ith copy
of H to the ith vertex of G. For v ∈ V (G), denote by Hv the copy of H whose vertices
are attached one by one to the vertex v. Subsequently, denote by v+Hv the subgraph of
the corona G ◦H corresponding to the join ⟨{v}⟩+Hv, v ∈ V (G).

Theorem 3. [10] Let G and H be nontrivial connected graphs. Then
W ⊆ V (G ◦ H) is a resolving hop dominating set of G ◦ H if and only if
W ∩ V (Hv) ̸= ∅ for every v ∈ V (G) and W = A ∪B ∪D where A ⊆ V (G),

B = ∪ {Bv : v ∈ V (G) ∩NG(A) and Bv is a locating set of Hv} and
D = ∪ {Du : u ∈ V (G) \NG(A) and Du is a strictly locating set of Hu} .

As an illustration, consider the graph P3 ◦P4 in Figure 2 and let G = P3 and H = P4.
It can be easily verified that ln(P4) = sln(P4) = 2 and by Theorem 3, the set of shaded
vertices is a resolving hop dominating set of P3◦P4. It can be verified that γRh(P3◦P4) = 6.
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Figure 2: Graph P3 ◦ P4 with γRh(P3 ◦ P4) = 6

Theorem 4. Let G and H be nontrivial connected graphs. Then
W ⊆ V (G ◦ H) is a 1-movable resolving hop dominating set of G ◦ H if and only if
W ∩ V (Hv) ̸= ∅ for every v ∈ V (G) and

W = A ∪

 ⋃
v∈NG(A)

Bv

 ∪

 ⋃
u∈V (G)\NG(A)

Du


where A ⊆ V (G), Bv ⊆ V (Hv) for all v ∈ V (G) ∩ NG(A) and Du ⊆ V (Hu) for all
u ∈ V (G) \NG(A) are 1-movable locating and 1-movable strictly locating sets of Hv and
Hu, respectively.

Proof: Suppose that W ⊆ V (G ◦ H) is a 1-movable resolving hop dominating set of
G ◦H. Then W is a resolving hop dominating set. By Theorem 3, W ∩ V (Hv) ̸= ∅ and
W ∩V (Hv) is a locating set of Hv for all v ∈ V (G). Let A = W ∩V (G), Bv = W ∩V (Hv)
for all v ∈ V (G) ∩NG(A) and Du = W ∩ V (Hu) for all u ∈ V (G) \NG(A). By Theorem
3, Bv is a locating set of Hv and Du is a strictly locating set of Hu. Let x ∈ Bv. Since
W is a 1-movable resolving hop dominating set and x ∈ W , either W \ {x} is a resolving
hop dominating set of G ◦ H or there exists y ∈ (V (G ◦ H) \ W ) ∩ NG◦H(x) such that
(W \ {x}) ∪ {y} is a resolving hop dominating set of G ◦H. Note that

W \ {x} = (Bv \ {x}) ∪

 ⋃
u∈V (G)\{v}

D∗
u

 ∪A

and (W\{x})∪{y} is equal to ((Bv \ {x}) ∪ {y})∪

 ⋃
u∈V (G)\{v}

D∗
u

∪A if y ∈ V (Hv)\Bv or

equal to (Bv \ {x}) ∪

 ⋃
u∈V (G)\{v}

D∗
u

 ∪ (A ∪ {y}) if

y = v ∈ V (G) \ A. Hence, either Bv \ {x} is a locating set of Hv or
(Bv \ {x}) ∪ {y} for some y ∈ (V (Hv) \ Bv) ∩ NHv(x) is a locating set of Hv. Thus,
Bv is a movable locating set of Hv. The proof that Du is a 1-movable strictly locating set
of Hu is similar.

For the converse, suppose that W is a set described above. Then by Theorem 3, W is
a resolving hop dominating set. Let x ∈ W and let v ∈ V (G) such that x ∈ V (⟨v⟩+Hv).
Suppose that x ̸= v. Consider the following cases.
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Case 1. v ∈ V (G) ∩NG(A)

Then x ∈ Bv and W \ {x} = (Bv \ {x}) ∪

 ⋃
u∈V (G)\{v}

Du

 ∪ A or

(W \ {x}) ∪ {y} for some y ∈ (V (G ◦ H) \ W ) ∩ NG◦H(x) is a resolving hop dominat-
ing set by Theorem 3.
Case 2. v ∈ V (G) \NG(A)

Then x ∈ Dv and W \ {x} = (Dv \ {x}) ∪

 ⋃
u∈V (G)\{v}

Bu

 ∪ A or

(W \ {x}) ∪ {y} is a resolving hop dominating set by Theorem 3.
Therefore W is a 1-movable resolving hop dominating set of G ◦H.

Corollary 4. Let G and H be nontrivial connected graphs where
|V (G)| = p. Then

γ1mrRh(G ◦H) ≤ min {p(msln(H)), γt(G) + p(mln(H))} .

Proof: Let W ⊆ V (G ◦ H) be a 1-movable resolving hop dominating set of G ◦ H.
Then W ∩ V (Hv) ̸= ∅ and W ∩ V (Hv) is a 1-movable locating set for each v ∈ V (G) and

W = A ∪

 ⋃
v∈NG(A)

Bv

 ∪

 ⋃
u∈V (G)\NG(A)

Du


where A ⊆ V (G) and Bv and Du satisfy the given properties in Theorem 4. Consider the
following cases for set A.
Case 1. A = ∅

Then NG(A) = ∅. Let Du = W ∩ V (Hu) be an msln-set of Hu for each u ∈ V (G).

Thus, W =

 ⋃
u∈V (G)

Du

 is a 1-movable resolving hop dominating set ofG◦H by Theorem

4. Implying that,

γ1mRh(G ◦H) ≤ |W | = |V (G)||Du| ≤ p(msln(H)).

Case 2. A is a γt-set of G
Then NG(A) = V (G). Let Bv = W ∩ V (Hv) be an mln-set of Hv for each v ∈ V (G).

Hence, W = A ∪

 ⋃
v∈V (G)

Bv

 is a 1-movable resolving hop dominating set of G ◦H by

Theorem 4. It follows that

γ1mRh(G ◦H) ≤ |W | = |A|+ |V (G)||Bv| = γt(G) + p(mln(H)).

Therefore,

γ1mrRh(G ◦H) ≤ min {p(msln(H)), γt(G) + p(mln(H))} .
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5. On 1-Movable Resolving Hop Domination in the Lexicographic
Product of Graphs

The lexicographic product of two graphs G and H, denoted by G[H], is the graph
with vertex-set V (G[H]) = V (G) × V (H) such that (u1, u2)(v1, v2) ∈ E(G[H]) if either
u1v1 ∈ E(G) or u1 = v1 and u2v2 ∈ E(H).

Theorem 5. [10] Let G and H be nontrivial connected graphs with

△(H) ≤ |V (H)| − 2. Then W =
⋃
x∈S

[{x} × Tx], where S ⊆ V (G) and Tx ⊆ V (H)

for each x ∈ S, is a resolving hop dominating set of G[H] if and only if

(i) S = V (G);

(ii) Tx is a locating set for every x ∈ V (G);

(iii) Tx or Ty is a strictly locating set of H whenever x and y are adjacent vertices of G
with NG[x] = NG[y];

(iv) Tx or Ty is a (locating) dominating set of H whenever x and y are nonadjacent
vertices of G with NG(x) = NG(y); and

(v) Tx is a strictly locating set of H for each x ∈ S \NG(S, 2).

The set of shaded vertices in the lexicographic product P3[P4] in Figure 3 where G = P3

and H = P4 satisfies the conditions in Theorem 5 and thus it is a resolving hop dominating
set of G[H]. In fact, the set of vertices that are not shaded is also a resolving hop
dominating set of G[H].

Figure 3: Resolving hop dominating sets of P3[P4]

Theorem 6. Let G and H be nontrivial connected graphs with

△(H) ≤ |V (H)| − 2. Then W =
⋃
x∈S

({x} × Tx) where S ⊆ V (G) and Tx ⊆ V (H) for

each x ∈ S, is a 1-movable resolving hop dominating set of G[H] if and only if the follow-
ing conditions hold:

(i) S = V (G).

(ii) Tx is a 1-movable locating set for each x ∈ S.
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(iii) Tx \ {a} or Ty is a strictly locating set of H whenever x and y are adjacent vertices
of G with NG[x] = NG[y] and for each a ∈ Tx.

(iv) Tx \ {a} or Tx \ {a} ∪ {b} or Ty is a (locating) dominating set of H whenever x and
y are nonadjacent vertices of G with NG(x) = NG(y) and for each a ∈ Tx and for
some b ∈ NH(a).

(v) Tx \ {a} or Tx \ {a} ∪ {b} is a strictly locating set of H for each
x ∈ S \NG(S, 2) and for each a ∈ Tx and for some b ∈ NH(a).

Proof: Suppose W is a 1-movable resolving hop dominating set of G[H]. Then by
Theorem 5, S = V (G) and Tx is a locating set of H for each x ∈ V (G). Let a ∈ Tx. Then
(x, a) ∈ W . Since W is a 1-movable resolving hop dominating set, either

W \ {(x, a)} =

 ⋃
v∈S\{x}

({v} × Tv)

 ∪ [{x} × (Tx \ {a})]

or

(W \ {(x, a)}) ∪ {(x, b)} =

 ⋃
z∈S\{x}

({z} × Tz)

 ∪ [{x} × (Tx \ {a} ∪ {b})]

for some b ∈ NH(a) ∩ (V (H) \ Tx) or

(W \ {(x, a)}) ∪ {(y, u)} =

 ⋃
p∈S\{(x,y)}

({p} × Tp)

 ∪ [{x} × (Tx \ {a})]

∪ [{y} × (Ty ∪ {u})]

for some y ∈ V (G) ∩ NG(x) and u ∈ V (H) \ Ty is a resolving hop dominating set of
G[H].

By Theorem 5, Tx \ {a} or (Tx \ {a}) ∪ {b} is a locating set of H for each a ∈ Tx and
for some b ∈ NH(a) ∩ (V (H) \ Tx). Hence, Tx is a 1-movable locating set of H for each
x ∈ V (G) or Tx \ {a} is locating and (ii) holds. Suppose (iii) does not hold. Then there
exist p ∈ V (H) \ (Tx \ {a}) and q ∈ V (H) \ Ty such that NH(p) ∩ (Tx \ {a}) = Tx \ {a}
and NH(q)∩Ty = Ty for some adjacent vertices x and y of G with NG[x] = NG[y] and for
some a ∈ Tx. Hence, both W \ {(x, a)} and (W \ {(x, a)})∪{(y, b)} are not resolving sets,
a contradiction. Thus, (iii) holds.

Statement (iv) is proved similarly. If (v) does not hold, then W \ {(x, a)} and
(W \ {(x, a)} ∪ {(y, b)}) are not hop dominating sets of G[H] for all
y ∈ NG(x) and b ∈ V (H) \ Tx or x = y and b ∈ NH(a). This is a contradiction to
W being a 1-movable resolving hop dominating set of G[H]. Hence, (v) holds.

For the converse, suppose that W satisfies properties (i) to (v). By Theorem 5, W is
a resolving hop dominating set of G[H]. Let x ∈ V (G) and a ∈ Tx. Then (x, a) ∈ W and

W \ {(x, a)} =

 ⋃
v∈S\{x}

({v} × Tv)

 ∪ [{x} × (Tx \ {a})]
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and for some b ∈ NH(a) ∩ (V (H) \ Tx),

(W \ {(x, a)}) ∪ {(x, b)} =

 ⋃
z∈S\{x}

({z} × Tz)

 ∪ [{x} × ((Tx \ {a}) ∪ {b})]

and

(W \ {(x, a)}) ∪ {(y, q)} =

 ⋃
p∈S\{(x,y)}

({p} × Tp)

 ∪ [{x} × (Tx \ {a})]

∪ [{y} × (Ty ∪ {q})]

for some y ∈ V (G) ∩NG(x) and q ∈ V (H) \ Ty.
By (i) to (v) and Theorem 5, for every (x, a) ∈ W either W \{(x, a)} is a resolving hop

dominating set of G[H] or there exists
(y, b) ∈ NG[H]((x, a)) ∩ (V (G[H]) \ W ) such that (W \ {(x, a)}) ∪ {(y, b)} is a resolv-
ing hop dominating set of G[H]. Therefore, W is a 1-movable resolving hop dominating
set of G[H].

Corollary 5. Let G be a nontrivial connected totally point determining graph with γ(G) ̸=
1 and H be a nontrivial connected graph with
△(H) ≤ |V (H)| − 2. Then

γ1mRh(G[H]) = |V (G)|mln(H).

Proof: Let S = V (G) and let Rx be an mln-set of H for each x ∈ S. Since γG ̸= 1,

x ∈ NG(S, 2) for each x ∈ S. By Theorem 6, W =
⋃
x∈S

[{x} ×Rx] is a 1-movable resolving

hop dominating set of G[H]. Thus,

γ1mRh(G[H]) ≤ |W | = |V (G)||Rx| = |V (G)|mln(H).

Now, if W0 =
⋃
x∈S0

({x} × Tx) is a γ1mRh-set of G[H] then S0 = V (G) and Tx is a

1-movable locating set of H for each x ∈ V (G) by Theorem 6. Hence,

γ1mRh(G[H]) = |W0| = |V (G)||Tx| ≥ |V (G)|mln(H).

Therefore, γ1mRh(G[H]) = |V (G)|mln(H).
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