Hop Differentiating Hop Dominating Sets in Graphs
DOI:
https://doi.org/10.29020/nybg.ejpam.v16i1.4673Keywords:
Hop domination, Join, corona and lexicographic productAbstract
A subset S of V (G), where G is a simple undirected graph, is hop dominating if for each v ∈ V (G) \ S, there exists w ∈ S such that dG(v, w) = 2 and it is hop differentiating if N2 G[u] ∩ S ̸= N2 G[v] ∩ S for any two distinct vertices u, v ∈ V (G). A set S ⊆ V (G) is hop differentiating hop dominating if it is both hop differentiating and hop dominating in G. The minimum cardinality of a hop differentiating hop dominating set in G, denoted by γdh(G), is called the hop differentiating hop domination number of G. In this paper, we investigate some properties of this newly defined parameter. In particular, we characterize the hop differentiating hop dominating sets in graphs under some binary operations.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 European Journal of Pure and Applied Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.