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Abstract. A subset S of V (G), where G is a simple undirected graph, is hop dominating if
for each v ∈ V (G) \ S, there exists w ∈ S such that dG(v, w) = 2 and it is hop differentiating
if N2

G[u] ∩ S ̸= N2
G[v] ∩ S for any two distinct vertices u, v ∈ V (G). A set S ⊆ V (G) is hop

differentiating hop dominating if it is both hop differentiating and hop dominating in G. The
minimum cardinality of a hop differentiating hop dominating set in G, denoted by γdh(G), is
called the hop differentiating hop domination number of G. In this paper, we investigate some
properties of this newly defined parameter. In particular, we characterize the hop differentiating
hop dominating sets in graphs under some binary operations.
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1. Introduction

Differentiating-domination in a graph, a variation of the standard domination, was
defined by Gimbel et al. in [6]. A differentiating set in a given network can be viewed
as a set of sensitive monitors used to safeguard a given facility, that is, to identify the
exact location of an intruder (e.g. a burglar, a fire, etc.) whenever a problem in a
facility arises. The requirement that the set have to be dominating would mean that
every vertex where there is no monitor on it is connected to at least one monitoring
device. Moreover, finding the differentiating-domination number of a graph is equivalent
to finding the least number of monitors that can do the certain task in a given network.
In other studies, a differentiating dominating set is also referred to as an identifying code
(see [14]). Differentiating-domination and some related concepts had been studied in [3],
[4], [9], [10], [13], [15], [17], and [18].

In 2015, Natarajan et al. (see [16]) introduced hop domination and made an initial
investigation of the concept. The study has led other researchers to investigate it further
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and define some of its variants. In fact, a number of variations of hop domination had
already been investigated (see [1], [2], [7], [8], [11], [12], [19], [20], [21], and [22]).

In this paper, we define and do an initial study of the concept of hop differentiating
hop dominating set in a graph. It must be pointed out that a hop differentiating set
is ‘almost’ a hop dominating set because it may allow at most a vertex outside the set
to be ‘hop undominated’. A result that deals with the concept for disconnected graphs
would show that the condition ‘hop differentiating hop dominating’ cannot always be
replaced by ‘hop differentiating’. This makes ‘hop differentiating hop dominating’ an
interesting concept to consider. This present study is motivated by the introduction of
hop domination and differentiating-domination concepts. The new parameter, just like
differentiating-domination, can also be used to model the problem of determining the
location of monitoring devices so as to identify the exact location of an intruder in a
certain facility.

2. Terminology and Notation

Let G = V (G), E(G)) be an undirected graph. For any two vertices u and v of G,
the distance dG(u, v) is the length of a shortest path joining u and v. Any u-v path of
length dG(u, v) is called a u-v geodesic. The set of neighbors of a vertex u in G, denoted
by NG(u), is called the open neighborhood of u. The closed neighborhood of u is the set

NG[u] = NG(u)∪{u}. The open neighborhood ofX ⊆ V (G) is the setNG(X) =
⋃
u∈X

NG(u).

The closed neighborhood of X is the set NG[X] = NG(X)∪X. The minimum degree of G,
denoted by δ(G), is given by δ(G) = min{degG(u) : u ∈ V (G)}, where degG(u) = |NG(u)|.

A set D ⊆ V (G) is a dominating set (resp. total dominating set) of G if for every
v ∈ V (G) \ D (resp. v ∈ V (G)), there exists u ∈ D such that uv ∈ E(G), that is,
NG[D] = V (G) (resp. NG(D) = V (G)). The domination number (resp. total domination
number) of G, denoted by γ(G) (resp. γt(G)), is the minimum cardinality of a dominating
(resp. total dominating) set in G. Any dominating (resp. total dominating) set in G with
cardinality γ(G) (resp. γt(G)), is called a γ-set (resp. γt-set) in G. If γ(G) = 1 and {v}
is a dominating set in G, then we call v a dominating vertex in G.

A vertex v in G is a hop neighbor of vertex u in G if dG(u, v) = 2. The set N2
G(u) =

{v ∈ V (G) : dG(v, u) = 2} is called the open hop neighborhood of u. The closed hop
neighborhood of u is given by N2

G[u] = N2
G(u) ∪ {u}. The open hop neighborhood of

X ⊆ V (G) is the set N2
G(X) =

⋃
u∈X

N2
G(u). The closed hop neighborhood of X is the set

N2
G[X] = N2

G(X) ∪X.
A set S ⊆ V (G) is a hop dominating set in G if N2

G[S] = V (G), that is, for every
v ∈ V (G)\S, there exists u ∈ S such that dG(u, v) = 2. The minimum cardinality among
all hop dominating sets in G, denoted by γh(G), is called the hop domination number of
G. Any hop dominating set with cardinality equal to γh(G) is called a γh-set.

A set S ⊆ V (G) is differentiating in G if for any two distinct vertices v, w ∈ V (G),
NG[v] ∩ S ̸= NG[w] ∩ S. A differentiating set S is differentiating-dominating in G if
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NG(v) ∩ S ̸= ∅ for each v ∈ V (G) \ S. The smallest cardinality of a differentiating
(resp. differentiating-dominating) set in G is denoted by dn(G) (resp. γD(G)). Any
differentiating (resp. differentiating-dominating) set in G with cardinality dn(G) (resp.
γD(G)) is called a dn-set (resp. γD-set). A set S ⊆ V (G) is hop differentiating in G if
N2

G[u]∩S ̸= N2
G[v]∩S for every two distinct vertices u and v of V (G). A hop differentiating

set in G which is also hop dominating is called a hop differentiating hop dominating
set. The minimum cardinality of a hop differentiating (resp. hop differentiating hop
dominating) set in G, denoted by hdn(G) (resp. γdh(G)), is called the hop differentiating
number (resp. hop differentiating hop domination number) of G. Any hop differentiating
(resp. hop differentiating hop dominating) set in G with cardinality hdn(G) (resp. γdh(G))
is called an hdn-set (resp. γdh-set). Suppose G is a non-trivial connected graph and
suppose that there exist distinct vertices u and v of G such that N2

G[u] = N2
G[v]. Then

N2
G[u] ∩ S = N2

G[v] ∩ S for any set S ⊆ V (G). This implies that G does not admit a hop
differentiating set.

A connected graph G is point determining if distinct vertices have distinct open neigh-
borhoods, that is, NG(a) ̸= NG(b) for distinct vertices a, b ∈ V (G). Graph G is said
to be point distinguishing if distinct vertices have distinct closed neighborhoods, that is,
NG[a] ̸= NG[b] whenever a, b ∈ V (G) and a ̸= b (see [5] and [23]). Graph G is distance-
two point determining (resp. distance-two point distinguishing) if N2

G(x) ̸= N2
G(y) (resp.

N2
G[x] ̸= N2

G[y]) for any distinct vertices x, y ∈ V (G). It is totally distance-two point
determining if N2

G(x) ̸= N2
G(y) and N2

G[x] ̸= N2
G[y] for any distinct vertices x, y ∈ V (G).

G is complement point distinguishing if V (G) \ NG(x) ̸= V (G) \ NG(y) for any distinct
vertices x, y ∈ V (G). In other words, G is complement point distinguishing if G is point
distinguishing.

A set S ⊆ V (G) is pointwise non-dominating if for every v ∈ V (G) \ S, there exists
u ∈ S such that v /∈ NG(u), i.e., [V (G) \ NG(v)] ∩ S ̸= ∅. The minimum cardinality
of a pointwise non-dominating set in G, denoted by pnd(G), is called a pointwise non-
domination number of G. Let G be a complement point distinguishing graph. A set
S ⊆ V (G) is complement differentiating in G (or differentiating in G) if for any two distinct
vertices v, w ∈ V (G), NG[v]∩S = [V (G)\NG(v)]∩S ̸= [V (G)\NG(w)]∩S = NG[w]∩S. A
complement differentiating set S in G is called complement differentiating-dominating (or
complement differentiating and pointwise non-dominating or differentiating-dominating in
G) if for each v ∈ V (G)\S, [V (G)\NG[v]]∩S = NG(v)∩S ̸= ∅. The smallest cardinality
of a complement differentiating (resp. complement differentiating-dominating) set in G is
denoted by cdn(G) (resp. cdpnd(G)). Any complement-differentiating (resp. complement
differentiating-dominating) set in G with cardinality cdn(G) (resp. cdpnd(G)) is called a
cdn-set (resp. a cdpnd-set) in G. Clearly, cdn(G) = dn(G) and cdpnd(G) = γD(G).

Let G and H be any two graphs. The join G + H is the graph with vertex set
V (G+H) = V (G)∪ V (H) and edge set E(G+H) = E(G)∪E(H)∪ {uv : u ∈ V (G), v ∈
V (H)}. The corona G ◦ H is the graph obtained by taking one copy of G and |V (G)|
copies of H, and then joining the ith vertex of G to every vertex of the ith copy of H.
We denote by Hv the copy of H in G ◦ H corresponding to the vertex v ∈ G and write
v + Hv for ⟨{v}⟩ + Hv. The lexicographic product G[H] is the graph with vertex set
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V (G[H]) = V (G) × V (H) and (v, a)(u, b) ∈ E(G[H]) if and only if either uv ∈ E(G)
or u = v and ab ∈ E(H). Any non-empty set C ⊆ V (G) × V (H) can be expressed

as C =
⋃
x∈S

[{x} × Tx], where S ⊆ V (G) and Tx ⊆ V (H) for each x ∈ S. Specifically,

Tx = {a ∈ V (H) : (x, a) ∈ C} for each x ∈ S.

3. Results

Throughout, a graph is understood to be distance-two point distinguishing whenever
a hop differentiating set is assumed (or mentioned) in it.

Lemma 1. Let G be a graph on n vertices. Then

γdh(G) ≥ ⌈ lnn+ ln2

ln2
⌉.

Proof. Let S be a hop differentiating hop dominating set of G. Since S is a hop domi-
nating set, N2

G[v]∩S ̸= ∅ for every v ∈ V (G). Moreover, because it is hop differentiating,
it follows that 2|S| > n. Hence, |S| ≥ ⌈ lnn+ln2

ln2 ⌉. In particular, if S is a γdh-set of G, then

γdh(G) ≥ ⌈ lnn+ln2
ln2 ⌉.

Theorem 1. Let G1, G2, . . . , Gk be the distinct (distance-two point distinguishing) com-
ponents of G, where k ≥ 2. Then S is a hop differentiating hop dominating set in G if
and only if Sj = S ∩ V (Gj) is a hop differentiating hop dominating set in Gj for each
j ∈ {1, 2, . . . , k}.

Proof. Suppose S is a hop differentiating hop dominating set in G and let j ∈
{1, 2, . . . , k}. Let v ∈ V (Gj) \ Sj . Since v /∈ S and S is a hop dominating set, there
exists w ∈ S such that v ∈ N2

G(w). This implies that w ∈ Sj and v ∈ N2
Gj

(w). This shows

that Sj is a hop dominating set in Gj . Next, let a, b ∈ V (Gj) where a ̸= b. Since S is a
hop differentiating set

N2
Gj

[a] ∩ Sj = N2
G[a] ∩ S ̸= N2

G[b] ∩ S = N2
Gj

[b] ∩ Sj .

Thus, Sj is a hop differentiating hop dominating set in Gj for each j ∈ {1, 2, . . . , k}.
For the converse, suppose that Sj = S∩V (Gj) is a hop differentiating hop dominating

set in Gj for each j ∈ {1, 2, . . . , k}. Then clearly, S is a hop dominating set in G. Let
v, w ∈ V (G) with v ̸= w and let Gi and Gj be the components of G with v ∈ V (Gi) and
w ∈ V (Gj). If i ̸= j, then

N2
G[v] ∩ S = N2

Gi
[v] ∩ Si ̸= N2

Gj
[w] ∩ Sj = N2

G[w] ∩ S.

If i = j, then
N2

G[v] ∩ S = N2
Gi
[v] ∩ Si ̸= N2

Gi
[w] ∩ Si = N2

G[w] ∩ S
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since Si is a hop differentiating set in Gi. Therefore, S is a hop differentiating hop
dominating set in G.

It is worth mentioning that Theorem 1 does not hold if ‘hop differentiating hop dom-
inating’ is replaced by ‘hop differentiating’. Indeed, if there are two distinct hop differ-
entiating sets Sj and Sk which have each a single vertex in V (Gj) \ Sj and V (Gk) \ Sk,
respectively, such that these vertices are not hop-dominated in the respective components,
then the set S cannot be a hop differentiating set in G.

The next result follows from Theorem 1.

Corollary 1. Let G1, G2, . . . , Gk be the distinct components of G. Then γdh(G) =∑k
j=1 γdh(Gj).

Corollary 2. Let G1, G2, . . . , Gk be the distinct components of G. If each of these com-
ponents is complete, then γdh(G) = |V (G)|. In particular, γdh(Kn) = γdh(Kn) = n for all
n ≥ 1.

Proposition 1. Let G be a graph on n ≥ 3 vertices. Then 3 ≤ γdh(G) ≤ n. Moreover,
the following hold:

(i) If n = 3 and γdh(G) = 3, then G ∈ {K3,K3,K1 ∪K2}.

(ii) If n = 4, then γdh(G) = 3 if and only if G is a graph obtained from K3 by attaching
a pendant vertex to one of the vertices of K3.

Proof. Suppose S is a γdh-set of G. Clearly, γdh(G) ≤ n. Now, by Lemma 1,

γdh(G) ≥ ⌈ lnn+ ln2

ln2
⌉ ≥ ⌈ ln3 + ln2

ln2
⌉ = 3.

Next, suppose n = 3 and γdh(G) = 3. By Corollary 2, G ∈ {K3,K3,K1∪K2}, showing
that (i) holds.

Suppose now that n = 4 and γdh(G) = 3. Let S = {a, b, c} be a γdh-set of G and let
v ∈ V (G) \ S. Since

γdh(K1 ∪K3) = γdh(K2 ∪K2) = γdh(K2 ∪K2) = γdh(K4) = γdh(K4) = 4

by Corollary 2, and because G is distance-two point distinguishing,

G /∈ {K1 ∪K3,K2 ∪K2,K2 ∪K2,K4,K1 ∪ P3,K4, P4, C4,K1,3, H},

where H is obtained from C4 by adding an edge connecting the non-adjacent vertices of
C4. Since there are only eleven (11) non-isomorphic graphs of order four (4), it follows
that G is a graph obtained from K3 by attaching a pendant vertex to one of the vertices
of K3.

For the converse, suppose that G is a graph obtained from K3 by attaching a pendant
vertex to one of the vertices of K3. Let V (G) = {a, b, c, v} such that ⟨{a, b, c}⟩ = K3 and
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Figure 1: Graph G on 4 vertices and γdh(G) = 3

va ∈ E(G) (see Figure 1). Let S = {a, b, c}. Since dG(v, b) = 2, S is a hop dominating
set in G. Moreover, since N2

G[v] ∩ S = {b, c}, N2
G[a] ∩ S = {a}, N2

G[b] ∩ S = {b}, and
N2

G[c] ∩ S = {c} are all distinct, S is a hop differentiating set. Thus, by the first part,
γdh(G) = 3. This completes the proof of (ii).

The next result is found in [11].

Theorem 2. Let G and H be any two graphs. A set S ⊆ V (G+H) is hop dominating in
G+H if and only if S = SG ∪ SH , where SG and SH are pointwise non-dominating in G
and H, respectively.

Theorem 3. Let G and H be any two (complement distance-two point distinguishing)
graphs. Then S ⊆ V (G + H) is hop differentiating hop dominating in G + H if and
only if S = SG ∪ SH , where SG and SH are complement differentiating and pointwise
non-dominating sets in G and H (differentiating-dominating in G and H), respectively.

Proof. Suppose that S is a hop differentiating hop dominating set in G + H. Let
SG = V (G) ∩ S and SH = V (H) ∩ S. Since S is a hop dominating set in G+H, SG ̸= ∅
and SH ̸= ∅. By Theorem 2, SG and SH are pointwise non-dominating sets in G and H,
respectively. If SG = V (G), then it is complement differentiating in G. Next, let x, y ∈
V (G) where x ̸= y. Since S is a hop differentiating set, [V (G) \NG(x)]∩SG = N2

G+H [x]∩
S ̸= N2

G+H [y] ∩ S = [V (G) \NG(y)] ∩ SG, showing that SG is complement differentiating
in G. Thus, SG is a complement differentiating and pointwise non-dominating set in G.
Similarly, SH is a complement differentiating and pointwise non-dominating set in H.

For the converse, suppose that S = SG ∪ SH where SG and SH are complement
differentiating and pointwise non-dominating sets in G and H, respectively. Then S is a
hop dominating set in G + H by Theorem 2. Next, let a, b ∈ V (G + H) where a ̸= b.
Suppose that a, b ∈ V (G). Since SG is complement differentiating in G, N2

G+H [a] ∩ S =
[V (G) \ NG(a)] ∩ SG ̸= [V (G) \ NG(b)] ∩ SG = N2

G+H [b] ∩ S. Similarly, N2
G+H [a] ∩ S =

[V (H) \NH(a)]∩SH ̸= [V (H) \NH(b)]∩SH = N2
G+H [b]∩S if a, b ∈ V (H). Suppose now

that a ∈ V (G) and b ∈ V (H). If a ∈ SG, then a ∈ (N2
G+H [a]∩S)\(N2

G+H [b]∩S). If a /∈ SG,
then there exists d ∈ SG \ NG(a) because SG is pointwise non-dominating in G. Hence,
d ∈ (N2

G+H [a] ∩ S) \ (N2
G+H [b] ∩ S). In either case, we have N2

G+H [a] ∩ S ̸= N2
G+H [b] ∩ S.

Therefore, S is a hop differentiating hop dominating set in G+H.
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Corollary 3. Let G be a graph and let n be a positive integer. Then S ⊆ V (Kn +G) is a
hop differentiating hop dominating set in Kn + G if and only if S = V (Kn) ∪ SG, where
SG is complement differentiating and pointwise non-dominating set in G.

Proof. The only pointwise non-dominating set in Kn is V (Kn). Thus, by Theorem 3,
the result follows.

The next results follow directly from Theorem 3 and Corollary 3.

Corollary 4. Let G and H be any two graphs. Then

γdh(G+H) = cdpnd(G) + cdpnd(H) = γD(G) + γD(H).

Corollary 5. Let G be a graph and let n be a positive integer. Then γdh(Kn + G) =
n+ cdpnd(G) = n+ γD(G).

The next result is a restatement of the one in [11].

Theorem 4. Let G and H be any two graphs. A set C ⊆ V (G) is a hop dominating set
in G ◦H if and only if C = A∪ (∪v∈V (G)Cv), where A ⊆ V (G) and Cv ⊆ V (Hv) for each
v ∈ V (G), and satisfies the following conditions:

(i) For each w ∈ V (G) \ A, there exists x ∈ A with dG(w, x) = 2 or there exists
y ∈ NG(w) with Cy ̸= ∅.

(ii) Cw is a pointwise non-dominating set in Hw for each w ∈ V (G) \NG(A).

Theorem 5. Let G and H be non-trivial connected graphs such that H is complement
point distinguishing. Then S ⊆ V (G ◦H) is hop differentiating hop dominating in G ◦H
if and only if S = A ∪ [∪v∈V (G)Dv] and satisfies the following conditions:

(i) Dw is a pointwise non-dominating set in Hw for each w ∈ V (G) \NG(A).

(ii) Dv is complement differentiating in Hv for each v ∈ V (G).

(iii) For any two distinct vertices v, w ∈ V (G), NG(v) ̸= NG(w) or N
2
G[v]∩A ̸= N2

G[w]∩A.

(iv) Dw is a total dominating set in Hw whenever NG(v) = {w} for some v ∈ V (G).

(v) If Dv and Dw, where v ̸= w, are not pointwise non-dominating in Hv and Hw,
respectively, then NG(v) ∩A ̸= NG(w) ∩A.

Proof. Suppose S is a hop differentiating hop dominating set inG◦H. LetA = S∩V (G)
and let Dv = S ∩ V (Hv) for each v ∈ V (G). Then S = A∪ [∪v∈V (G)Dv] and, by Theorem
4, (i) holds. Let v ∈ V (G) and let a, b ∈ V (Hv) with a ̸= b. Since S is a hop differentiating
set,

([V (Hv) \NHv(a)] ∩Dv) ∪ [NG(v) ∩A] = N2
G◦H [a] ∩ S

̸= N2
G◦H [b] ∩ S = ([V (Hv) \NHv(b)] ∩Dv) ∪ [NG(v) ∩A].
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Hence,
[V (Hv) \NHv(a)] ∩Dv ̸= [V (Hv) \NHv(b)] ∩Dv,

showing that Dv is a complement differentiating set in Hv. Thus, (ii) holds. Next, let
v, w ∈ V (G) with v ̸= w. Since S is a hop differentiating set,

[N2
G[v] ∩A] ∪ [∪x∈NG(v)Dx] = N2

G◦H [v] ∩ S

̸= N2
G◦H [w] ∩ S

= [N2
G[w] ∩A] ∪ [∪y∈NG(w)Dy].

This implies that N2
G[v] ∩ A ̸= N2

G[w] ∩ A or NG(v) ̸= NG(w), showing that (iii) holds.
To show (iv), let w ∈ V (G) such that NG(v) = {w} for some v ∈ V (G). Suppose Dw is
not a total dominating set in Hw. Then there exists p ∈ V (Hw) such that p /∈ NHw(Dw).
It follows that

N2
G◦H [p]∩S = (NG(w)∩A)∪[(V (Hw)\NHw(p))∩Dw] = (NG(w)∩A)∪Dw = N2

G◦H [v]∩S,

a contradiction to the assumption that S is a hop differentiating set. Therefore, Dw is a
total dominating set in Hw, showing that (iv) holds. Finally, suppose Dv and Dw, where
v ̸= w, are not pointwise non-dominating sets in Hv. Then there exist p ∈ V (Hv)\Dv and
q ∈ V (Hw) \Dw such that (V (Hv) \NHv(p))∩Dv = ∅ and (V (Hw) \NHw(q))∩Dw = ∅.
Since S is hop differentiating, NG(v) ∩A ̸= NG(w) ∩A. This shows that (v) holds.

For the converse, suppose that S is as described and satisfies properties (i)-(v). Let
v ∈ V (G) \ A and choose any u ∈ NG(v). By (ii), Du is complement differentiating
and so Du ̸= ∅. Thus, S satisfies (i) and (ii) of Theorem 4, showing that it is a hop
dominating set in G ◦H. Now let a, b ∈ V (G ◦H) with a ̸= b and let v, w ∈ V (G) such
that a ∈ V (v +Hv) and b ∈ V (w +Hw). Consider the following cases:
Case 1: v = w

Suppose a, b ∈ V (Hv). Since Dv is a complement differentiating set in Hv (by (ii)),
N2

G◦H [a] ∩ S ̸= N2
G◦H [b] ∩ S. Suppose a = v and b ∈ V (Hv). Pick any z ∈ NG(v). Since

Dz ⊆ N2
G◦H [a] \N2

G◦H [b], it follows that N2
G◦H [a] ∩ S ̸= N2

G◦H [b] ∩ S.
Case 2: v ̸= w

Suppose a = v and b = w. Then v, w ∈ V (G). By property (iii), NG(v) ̸= NG(w) or
N2

G[v] ∩ A ̸= N2
G[w] ∩ A. If N2

G[v] ∩ A ̸= N2
G[w] ∩ A, then N2

G◦H [a] ∩ S ̸= N2
G◦H [b] ∩ S.

Suppose NG(v) ̸= NG(w). We may assume that there exists p ∈ NG(v) \ NG(w). Then
Dp ⊆ N2

G◦H [a] \N2
G◦H [b]. Hence, N2

G◦H [a] ∩ S ̸= N2
G◦H [b] ∩ S.

Next, suppose that a = v and b ∈ V (Hw) (or b = w and a ∈ V (Hv)). If |NG(v)| > 1
or vw /∈ E(G), pick any z ∈ NG(v) \ {w}. Then Dz ⊆ N2

G◦H [a] \ N2
G◦H [b]. It follows

that N2
G◦H [a] ∩ S ̸= N2

G◦H [b] ∩ S. Suppose that NG(v) = {w}. By (iv), Dw is a total
dominating set of Hw. Hence, (V (Hw) \ NHw(b)) ∩ Dw ̸= Dw. This would imply that
N2

G◦H [a] ∩ S ̸= N2
G◦H [b] ∩ S. Finally, suppose that a ∈ V (Hv) and b ∈ V (Hw). If

[V (Hv)\NHw(a)]∩Dv ̸= ∅ or [V (Hw)\NHw(b)]∩Dw ̸= ∅, thenN2
G◦H [a]∩S ̸= N2

G◦H [b]∩S.
Suppose both sets are empty. Then NG(v) ∩ A ̸= NG(w) ∩ A by (v). It follows that
N2

G◦H [a] ∩ S ̸= N2
G◦H [b] ∩ S.
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Accordingly, S is a hop differentiating hop dominating set of G ◦H.

Corollary 6. Let G and H be non-trivial connected graphs such that δ(G) ≥ 2 and G and
H are point determining and complement point distinguishing, respectively. Then

γdh(G ◦H) ≤ cdpnd(H)|V (G)|.

Proof. Let A = ∅ and let Dv be a cdpnd-set of H for each v ∈ V (G). Then S =
A ∪ [∪v∈V (G)Dv] = ∪v∈V (G)Dv is a hop differentiating hop dominating set in G ◦ H by
Theorem 5. Thus,

γdh(G ◦H) ≤ |C| = cdpnd(H)|V (G)|.

This proves the assertion.

We note that the bound given in Corollary 6 is tight. Indeed, if G = H = K2, then
cdpnd(H) = 2 and γdh(G ◦H) = 4 = cdpnd(H)|V (G)|.

The next result is found in [11].

Theorem 6. Let G and H be connected non-trivial graphs. A subset C =
⋃

x∈S [{x}×Tx]
of V (G[H] is a hop dominating set in G[H] if and only if the following conditions hold.

(i) S is a hop dominating set in G.

(ii) Tx is a pointwise non-dominating set in H for each x ∈ S \N2
G(S).

Theorem 7. Let G and H be non-trivial connected graphs such that G and H are, re-
spectively, distance-two point distinguishing and complement point distinguishing. Then
C =

⋃
x∈S [{x} × Tx], where S ⊆ V (G) and Tx ⊆ V (H) for each x ∈ S, is a hop differen-

tiating hop dominating set in G[H] if and only if the following conditions hold:

(i) S = V (G)

(ii) Tx is a pointwise non-dominating set in H for each x ∈ S \N2
G(S).

(iii) Tx is a complement differentiating set in H for all x ∈ S.

(iv) If N2
G(x) = N2

G(y) for distinct vertices x and y, then Tx or Ty is pointwise non-
dominating in H.

Proof. Suppose C is a hop differentiating hop dominating set in G[H]. Then, by
Theorem 6, (ii) holds. Suppose there exists z ∈ V (G) \ S. Pick distinct vertices a, b ∈
V (H). Then (z, a), (z, b) ∈ V (G[H]) \ C and so

N2
G[H][(z, a)] ∩ C =

⋃
x∈N2

G(z)∩S

[{x} × Tx] = N2
G[H][(z, b)] ∩ C.
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This implies that C is not a hop differentiating set, contrary to our assumption. Thus,
S = V (G), showing that (i) holds. Now let x ∈ S and p, q ∈ V (H) with p ̸= q. Then
(x, p), (x, q) ∈ V (G[H]) and

N2
G[H][(x, p)] ∩ C = [{x} × [(V (H) \NH(p)) ∩ Tx]] ∪ [∪w∈N2

G(x)∩S({w} × Tw)]

and

N2
G[H][(x, q)] ∩ C = [{x} × [(V (H) \NH(q)) ∩ Tx]] ∪ [∪w∈N2

G(x)∩S({w} × Tw)].

Since C is a hop differentiating set,

(V (H) \NH(p)) ∩ Tx ̸= (V (H) \NH(q)) ∩ Tx.

Hence, Tx is a complement-differentiating set inH, showing that (iii) holds. Next, suppose
that x and y are distinct vertices of G with N2

G(x) = N2
G(y). Suppose Tx and Ty are not

pointwise non-dominating sets. Then there exist p ∈ V (H) \ Tx and q ∈ V (H) \ Ty such
that [V (H) \ NH(p)] ∩ Tx = ∅ and [V (H) \ NH(q)] ∩ Ty = ∅. Since N2

G(x) = N2
G(y), it

follows that N2
G[H][(x, p)] ∩ C = N2

G[H][(y, q)] ∩ C, contradicting the assumption that C

is a hop differentiating set in G[H]. Thus, Tx or Ty is pointwise non-dominating in H,
showing that (iv) holds.

For the converse, suppose that C satisfies properties (i)-(iv). Since (i) and (ii) hold,
C is a hop dominating set by Theorem 6. Next, let (v, q), (w, s) ∈ V (G[H]) with (v, q) ̸=
(w, s). Then

N2
G[H][(v, q)] ∩ C = [{v} × [(V (H) \NH(q)) ∩ Tv] ∪ [

⋃
z∈N2

G(v)

[{z} × Tz],

and
N2

G[H][(w, s)] ∩ C = [{w} × (V (H) \NH(s)) ∩ Tw] ∪ [
⋃

y∈N2
G(w)

[{y} × Ty].

Consider the following cases:
Case 1: v = w

Then q, s ∈ V (H) with q ̸= s. By (iii), Tv is a complement-differentiating set; hence,
[V (H)\NH(q)]∩Tv ̸= [V (H)\NH(s)]∩Tv. It follows that N

2
G[H][(v, q)]∩C ̸= N2

G[H][(v, s)]∩
C.
Case 2: v ̸= w

Suppose first that dG(v, w) ̸= 2. If N2
G(v) ̸= N2

G(w), then clearly, N2
G[H][(v, q)] ∩ C ̸=

N2
G[H][(w, s)]∩C. If N2

G(v) = N2
G(w), then Tv or Tw is pointwise non-dominating in H by

(iv). Hence, N2
G[H][(v, q)]∩C ̸= N2

G[H][(w, s)]∩C. Next, suppose that dG(v, w) = 2. Since

G is distance-two point distinguishing, N2
G[v] ̸= N2

G[w]. It follows that N
2
G[H][(v, q)]∩C ̸=

N2
G[H][(w, s)] ∩ C.

Accordingly, C is a hop differentiating hop dominating set in G[H].
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Corollary 7. Let G and H be non-trivial connected graphs such that G and H are,
respectively, distance-two point distinguishing and complement point distinguishing. Then

γdh(G[H]) ≤ |V (G)|cdpnd(H) = |V (G)|γD(H).

If, in addition, G is also distance-two point determining and γ(G) ̸= 1, then

γdh(G[H]) = |V (G)|cdn(H) = |V (G)|dn(H).

Proof. Let S = V (G) and let Tx be a cdpnd-set in H for each x ∈ V (G). By Theorem
7, C =

⋃
x∈S [{x}×Tx] is a hop differentiating hop dominating set in G[H]. It follows that

γdh(G[H]) ≤ |C| = |V (G)|cdpnd(H).
Next, suppose that γ(G) ̸= 1. Let S′ = V (G) and let Rx be a cdn-set in H for

each x ∈ S′. Since γ(G) ̸= 1, x ∈ N2
G(S

′) for each x ∈ S′. Thus, by Theorem 7,
C =

⋃
x∈S′ [{x} ×Rx] is a hop differentiating hop dominating set in G[H]. It follows that

γdh(G[H]) ≤ |C| = |V (G)|cdn(H). Now, if C0 =
⋃

x∈S0
[{x} × Tx] is a γdh-set in G[H],

then S0 = V (G) and Tx is a complement-differentiating set in H for each x ∈ V (G),
by Theorem 7. Hence, γdh(G[H]) = |C0| =

∑
x∈S0

|Tx| ≥ |V (G)|cdn(H). Therefore,
γlh(G[H]) = |V (G)|cdn(H).

Corollary 8. Let G and H be non-trivial connected graphs such that G and H are,
respectively, totally distance-two point determining and complement point distinguishing.
If γ(G) = 1, then γdh(G[H]) = cdpnd(H) + (|V (G)| − 1)cdn(H).

Proof. Let DG = {v ∈ V (G) : {v} is a dominating set of G}. Since G is distance-two
point distinguishing, it follows that |DG| = 1. Set S = V (G). Let Tv be a cdpnd-set in
H for v ∈ DG and let Tx be a cdn-set in H for each x ∈ V (G) \ {v}. Then, by Theorem
7, C = [

⋃
x∈S\{v}({x} × Tx)] ∪ ({v} × Tv) is a hop differentiating hop dominating set in

G[H]. Hence,
γdh(G[H]) ≤ |C| = cdpnd(H) + (|V (G)| − 1)cdn(H).

Suppose now that C∗ = [
⋃

x∈S∗({x}×Rx)] is a γdh-set in G[H] and let DG = {v}. By
Theorem 7, S∗ = V (G), Rv is complement-differentiating and pointwise non-dominating
and Rx is complement-differentiating in H for each x ∈ V (G) \ {v}. Thus,

γdh(G[H]) = |C∗| = |Rv|+
∑

x∈S∗\{v}

|Rx| ≥ cdpnd(H) + (|V (G)| − 1)cdn(H).

Therefore, γdh(G[H]) = cdpnd(H) + (|V (G)| − 1)cdn(H) as asserted.

Corollary 9. Let G be a non-trivial connected totally distance-two point determining
graph and let p ≥ 2 be a positive integer. Then

γdh(G[Kp]) =

{
(p− 1)|V (G)| if γ(G) ̸= 1

(p− 1)|V (G)|+ 1 if γ(G) = 1.
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Proof. Suppose first that γ(G) ̸= 1. By Corollary 7 and the fact that cdn(Kp) =
dn(Kp) = p− 1, it follows that γdh(G[Kp]) = (p− 1)|V (G)|.

Next, suppose that γ(G) = 1. By Corollary 8 and the fact that cdpnd(Kp) = γD(Kp) =
p, we have γdh(G[Kp]) = p+ (p− 1)(|V (G)| − 1) = (p− 1)|V (G)|+ 1.

Corollary 10. Let H be a non-trivial connected complement point distinguishing graph
and let p ≥ 2 be a positive integer. Then γdh(Kp[H]) = p[cdpnd(H)].

Proof. Let G = Kp. Then v is a dominating vertex of G for each v ∈ V (G). Thus, if
C0 =

⋃
z∈S0

[{z} × Tz] is a γdh-set of G[H], then S0 = V (G) and each Tz is a cdpnd-set of
H by Theorem 7. Consequently, γdh(Kp[H]) = p[cdpnd(H)].

4. Conclusion

Hop differentiating hop domination is introduced and studied for some graphs. In
particular, characterizations of the hop differentiating hop dominating sets in the join,
corona, and lexicographic product of two graphs are given. These characterizations are
used to obtain either an upper bound or the exact value of the hop differentiating hop
domination number of the graph. The concept can be studied further for other interesting
graphs and the complexity of the hop differentiating hop dominating decision problem can
likewise be investigated.
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