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Abstract. This paper presents the application of the Homotopy Analysis Method (HAM) for
solving nonlinear system of Volterra integral equations used to obtain a reasonably approximate
solution. The HAM contains the auxiliary parameter h which provides a simple way to adjust and
control the convergence region of the solution series. The results show that the HAM is a very
effective method as well. The results were compared with the solutions obtained by developing a
homotopy analysis method using the genetic algorithm (HAM-GA), considering the residual error
function as a fitness function of the genetic algorithm.
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1. Introduction

The integral equations can be used to describe a wide variety of problems in science
and engineering, such as the population dynamics, the spread of diseases, some Dirichlet
problems in potential theory, electrostatics, mathematical modeling of radioactive equi-
librium, particle transport problems of astrophysics and reactor theory, radiative energy
and/or heat transfer problems, other general heat transfer problems, oscillation of strings
and membranes, the problem of momentum representation in quantum mechanics, etc.
However, various additional challenging problems in mechanics, astrophysics, chemistry,
and mathematics can also be represented in terms of Volterra integral equations. In
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addition, there are several real-world problems where urges naturally develop. A dif-
ferential equation, an integral equation, an integro-differential equation, or a system of
these equations together can be used to describe problems that either arise naturally
(as in population dynamics or many biological applications) or are brought about by a
control system [9–11]. A numerical method is frequently required because systems of inte-
gral and/or integro-differential equations, particularly nonlinear systems of Volterra inte-
gral equations or with variable coefficients, are typically challenging to solve analytically.
Therefore, there are many research papers to solve such systems using several analytical
methods (see [4, 5, 7, 15, 29]), etc. Many researchers [3, 36, 37] have tried to solve the
Volterra integral equation using different analytical and numerical methods. Recently,
Younis and Al-Hayani [50] have been used Adomian decomposition method (ADM) for
solving fuzzy system of Volterra integro-differential equations. The researchers [39, 40, 46–
49] have been applied different analytical methods such as optimal homotopy asymptotic
method (OHAM), homotopy perturbation method (HPM) and Padé approximation tech-
nique to solve the mathematical models as (porous rotating disk electrodes, ECE reactions
at rotating disk electrodes, magnetohydrodynamic, etc.). So, in this paper, we consider
the nonlinear system of Volterra Integral Equations (NLSVIEs) [2]:

U (x) = F (x) +

∫ g(x)

f(x)
K (x, t)R [U (t)] dt, (1)

where

U (x) = [u1 (x) , u2 (x) , · · · , un (x)]T ,

F (x) = [f1 (x) , f2 (x) , · · · , fn (x)]T , (2)

K (x, t) = [kij (x, t)] , i, j = 1, 2, · · · , n

Consider the i− th equation of Eq 1

ui (x) = fi (x) +

∫ g(x)

f(x)

n∑
j=1

[Ki,j (x, t)R (ui (t))] dt, i = 1, 2, · · · , n (3)

where the unknown functions ui (x) ∈ C [a, b] , x ∈ [a, b], the functions fi (x) ∈ C [a, b] ,
f, g ∈ C [a, b] , a ≤ f (x) ≤ g (x) ≤ b. The non-negative kernel functions
Ki,j (x, t) ∈ C [a, b] × C [a, b] , i = 1, 2, · · · , n and R : C [a, b] → C [a, b], are nonlin-
ear operator. Therefore, R, the operator, is assumed to satisfy the Lipschitz condition,
∥ R(v1) − R(v2) ∥≤ s ∥ v1 − v2 ∥ for every v1, v2 ∈ C [a, b] and some s > 0. As the
norm of the function, we take the supremum norm ∥ v ∥= supx∈Ω |v(x)|, in particular
∥ K ∥= sup(x,t)∈[a,b]×[a,b] |K(x, t)| and ∥ F ∥= supx∈[a,b] |F (x)|
Shijun Liao invented the HAM [24–27, 41] by which many types of equations can be
resolved [24]. The method by Shijun Liao is mainly derived from topology, and can ap-
proach to the exact solution. Some examples of using this method for solving integral
equations well discussed [17–19]. However, the researcher was able to prove the conver-
gence of HAM [31]. This method has been successfully applied to solve many types of
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linear and nonlinear problems [1, 13, 14, 16, 30, 32, 33, 38, 45], In 2020, researchers were
able to solve Two-Dimensional nonlinear Volterra-Fredholm fuzzy integral equations by
HAM [15]. Also, others were able to solve Mixed Volterra-Fredholm integro-differential
equations using same method [16].
In the last years, the researchers [35, 43] have been applied the HAM to solve the math-
ematical models as (porous rotating disk electrodes and ECE reactions at rotating disk
electrodes). Finally, Liao [28] published an explanation of how to avoid “small denomina-
tor problems” by the HAM.
The main objective of the present study is to improve the results obtained from HAM
application to the system of Volterra integral equations using the genetic algorithm by
considering the residual error function as a fitness function and finding the best values for
the constants. In particular, this study demonstrates that for reasonable assumptions, the
analyzed equations have both existent and unique solutions. Also, a comparison of the
solutions with that obtained by developing a HAM using the genetic algorithm was per-
formed considering the residual error function as a fitness function of the genetic algorithm,
as shown in section 4 and listed in several examples.

2. Fundamental of the HAM

The HAM is applied for solving the operator equations

N [u (x)] = 0, x ∈ Ω (4)

where N refers to general operator (liner or non-linear), while u (x) is an unknown function.
First, we define the homotopy operator H as follows:

H (ϕ, q) = (1 − q)L [ϕ (x; q) − u0 (x)] − qhN [ϕ (x; q)] , (5)

where q ∈ [0, 1]is an embedding parameter, h is a non-zero auxiliary function (denotes the
convergence control parameter [23, 26, 27, 44]), L is an auxiliary linear operator which
has the property L (0) = 0, u0 (x) is an initial guess of u (x) and ϕ (x; q) is an unknown
function. The zero-order deformation equation of the operator H (ϕ, q) = 0 is considered
as follow:

(1 − q)L [ϕ (x; q) − u0 (x)] = qhN [ϕ (x; q)] , (6)

Obviously, when q=0 we have L [ϕ (x; q) − u0 (x)] = 0, that implies ϕ (x; 0) = u0 (x).
While, when q = 1, we have N [ϕ (x; q)] = 0, which leads to ϕ (x; 1) = u (x), where u (x)
is the solution of Equation 4. in this case, the variation of parameter q from zero to one
coincides with the variation of problem from the initial guess u0 (x) to the non-trivial
solution u (x). Using the Maclaurin series for expanding the function ϕ (x; q) with respect
the parameter q, we get:

ϕ (x; q) = ϕ (x; q) +
∞∑

m=1

1

m!

∂mϕ (x; q)

∂qm

∣∣∣∣
q=0

, (7)
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By considering

um =
1

m!

∂mϕ (x; q)

∂qm

∣∣∣∣
q=0

, m = 1, 2, 3, · · · (8)

Equation 7 can be formulated as follow:

ϕ (x; q) = u0 (x) +
∞∑

m=1

um (x) qm, (9)

If the series in Equation 9 converge at q = 1 then we obtain the solution

u (x) =

∞∑
m=0

um (x). (10)

we differentiate both sides of Equation 10 m times with respect to the embedding
parameter q in order to determine functions um. Then, we divide the received finding by
m!and then setting q = 0. In this way, we deduce the so-called mth order deformation
equation (m > 0):

L [um (x) −Xmum−1 (x)] = hRm (um−1) (11)

where
u⃗m−1 = {u0 (x) , u1 (x) , · · · , um−1 (x)} .

and

Xm =

{
0, m ≤ 1

1, m > 1
, (12)

and

Rm (u⃗m−1 (x)) =
1

(m− 1)!

(
∂m−1

∂qm−1
N
( ∞∑

i=0

ui (x) qi

))∣∣∣∣∣
q=0

, (13)

In case of inability to find the sum of the series in Equation 10, the partial sum was
determined of this series.

ûn (x) =
n∑

m=0

um (x) , (14)

is the approximate solution of the considered equation.
Choosing convenient amount of the parameter h has a great influence on the region of
convergence of the series in Equation 10 and the convergence rate as well [27, 34, 42].
One of the methods for selecting the value of convergence control parameter is Genetic
Algorithm (GA).
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3. Description of the Method

Consider the operators L and N are defined as follows

L (ui) = ui, N (ui) = ui(x) − fi (x) −
∫ g(x)
f(x)

[∑n
j=1Kij (x, t)R(ui (t))

]
dt, i = 1, 2, · · · , n,

(15)
Let ui,0 ∈ C [a, b], i = 1, 2, · · · , n. In this case, by considering the HAM, we obtain the
following formula for function ui,m, i = 1, 2, · · · , n, m ≥ 1:

ui,m = χmui,m−1 (x) + hRm (u⃗i,m−1(x)) (16)

where χm and Rm are defined as in Equations 12 and 13 respectively.
Using the definitions of the respective operators, we obtain

Ri,m (u⃗i,m−1, x)) =
1

(m− 1)!

∂m−1

∂qm−1N
( ∞∑

k=0

ui,k(x)qk

)∣∣∣∣∣
q=0

, (17)

=
1

(m− 1)!

∂m−1

∂qm−1

 ∞∑
k=1

ui,k(x)qk − fi (x) −
∫ g(x)

f(x)

 n∑
j=1

Kij (x, t)R

( ∞∑
k=1

uj,k(t)qk

)
q=0

,

=
1

(m− 1)!

∂m−1

∂qm−1

 ∞∑
k=1

ui,k(x)qk − fi (x) −
∞∑
k=1

∫ g(x)

f(x)

n∑
j=1

Kij (x, t)R (ui,k(t)) qkdt


q=0

,

=
1

(m− 1)!

(
(m− 1)!ui,m−1 (x) − (1 − χm)fi (x) −

∫ g(x)

f(x)

n∑
j=1

[
Kij(x, t)(m− 1)!R (ui,m−1(t))

] ,

= ui,m−1 (x) − 1 − χm

(m− 1)!
fi (x) −

∫ g(x)

f(x)

 n∑
j=1

Kij (x, t)R (ui,m−1 (t))

 dt.

Utilizing the above relation and Equation 3 we get the following formula:

u1,i = h

u0,i − fi (x) −
∫ g(x)

f(x)

 n∑
j=1

Ki,j (x, t)R(u0,i (t))

 dt

 .

And form m ≥ 2:
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ui,m (x) = (1 + h)ui,m−1 (x)

− h

(m− 1)!

∫ g(x)

f(x)

 n∑
j=1

Ki,j (x, t)

(
∂m−1

∂qm−1R

( ∞∑
i=0

ui,m−1 (t) qi

)) dt. (18)

In literature, one can find the expression ∂m−1

∂qm−1R
(∑∞

i=0 ui,m−1 (t) qi
)
, calculated for vari-

ous nonlinear operators R. Most of these results were collected in monograph [27]. Now,
we turn to prove under proper assumptions Equation 6 which has a unique solution.

Theorem 1. Consider the system of VIEs as in Equation 3, such that ∥ Kij(x, t) ∥= Mi,
and ∥ M ∥= max |Mi| , i, j = 1, 2, · · · , n. If the following condition is satisfied

sn ∥ M ∥ (b− a) < 1. (19)

Then Equation 3 possess at most one solution.
Proof. Suppose that there exit two solutions ui,1 and ui,2, we have

∥ ui,1 − ui,2 ∥=

∥∥∥∥∥
∫ g(x)

f(x)

 n∑
j=1

Kij(x, t)(R
(
uj,1 (t)

)
−R
(
uj,2 (t)

)
)

 dt

∥∥∥∥∥
≤∥ M ∥

∫ g(x)

f(x)

n∑
j=1

∥ R (ui,1) −R(ui,2) ∥ dt,

≤∥ M ∥
∫ g(x)

f(x)

n∑
j=1

∥ R (ui,1) −R(ui,2) ∥ dt ≤ sn ∥ M ∥ (b− a) < 1 ∥ ui,1 − ui,2 ∥ .

Hence, we obtain (
1 − sn ∥ M ∥ (b− a)

)
≤ 1. (20)

So, if the condition 19 is satisfied, then the quality ui,1 = ui,2, i = 1, 2, · · · , n must be
true. we now proceed to prove the theorem to ensure that the sum of the given series is
the solution to the equation discussed.

Theorem 2. Let the functionsui,m, i = 1, 2, · · · , nm ≥ 1, be defined in Equations 17 and
18. then, if (s < 1) and the series

ui (x) =

∞∑
m=0

ui,m (x) , i = 1, 2, · · · , n, (21)

is convergent, then the sum of this series is the solution of Equation 3.
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Proof. Let the series in Equation 10 is convergent. Then, from the necessary condition
for the convergent series, we conclude that for any x ∈ [a, b]:

lim
m→∞

ui,m (x) = 0, i = 1, 2, · · · , n.

Now, let Ti,m has the form:

Ti,m =
1

m!

(
∂m

∂qm
R

( ∞∑
k=0

ui,k(x)qk

))∣∣∣∣∣
q=0

, i = 1, 2, · · · , n.

If R is the contraction mapping and (s < 1), the series in Equation 21 converges to
ui (x), then the series

∑∞
m=0 Ti,m converges to R(ui (x)) (see [12]). Utilizing the definition

of the operator L we can write

n∑
m=1

L (ui,m (x) − χmui,m−1 (x)) =

n∑
m=1

(ui,m (x) − χmui,m−1 (x)) ,

= ui,1 (x) + (ui,2 (x) − ui,1 (x)) + (ui,3 (x) − ui,2 (x)) + · · · + (ui,n (x) − ui,n−1 (x))
= ui,n (x) .
Hence

∞∑
m=1

L (ui,m (x) − χmui,m−1 (x)) = lim
n→∞

ui,n (x) = 0

From Equation 11 we get

h
∞∑

m=1

Ri,m (u⃗i,m−1, x) =
∞∑

m=1

L (ui,m (x) − χmui,m−1 (x)) , i = 1, 2, · · · , n.

and since h ̸= 0 thus we have

∞∑
m=1

Ri,m (u⃗i,m−1, x) = 0, i = 1, 2, · · · , n.

As a result of some transformations, we successively get

0 =
∞∑

m=1

Ri,m (u⃗i,m−1, x),

=
∞∑

m=1

(
1

(m− 1)!
∂m−1

∂qm−1

∞∑
k=1

ui,k (x) qk − fi(x)

−
∫ g(x)

f(x)

 n∑
j=1

Ki,j (x, t)R

( ∞∑
k=1

ui,k(t)qk

) dt

∣∣∣∣∣
q=0

)
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=

∞∑
m=1

(
ui,m−1 (x) − 1 − χm

(m− 1)!
fi (x) −

∫ g(x)

f(x) n∑
j=1

Kij(x, t)

[
1

(m− 1)!

∂m−1

∂qm−1R

( ∞∑
k=1

ui,k(t)qk

)] ∣∣∣∣∣
q=0

dt

)

=
∞∑

m=1

ui,m−1 (x) − 1 − χm

(m− 1)!
fi (x) −

∫ g(x)

f(x)

 n∑
j=1

Kij(x, t)Ti,m−1(t)

∣∣∣∣∣∣
q=0

dt

 ,

=

∞∑
m=1

ui,m−1 (x) − fi (x) −
∫ g(x)

f(x)

 n∑
j=1

Kij(x, t)

∞∑
m=1

Ti,m−1(t)

 dt,

= ui (x) − fi (x) −
∫ g(x)

f(x)

 n∑
j=1

Kij (x, t)R (ui (t))

 dt.

4. Genetic Algorithm (GA)

The genetic algorithm is a random search technique used to optimize difficult problems
and solve nonlinear systems of equations. Instead of employing deterministic principles,
GA makes the use of probabilistic transition rules and manages a population of alternative
solutions known as individuals or iteratively evolving chromosomes [22]. The iterations of
algorithm are known as ”generations”. A fitness function and genetic operators like repro-
duction, crossover, and mutation are used to mimic how solutions evolve [21]. The initial
population of a genetic algorithm, as shown in Figure 1, is often random. A chromosome,
which is a binary string or a real-valued number, is typically used to represent this popu-
lation (mating pool). The objective function, which provides each person a corresponding
number called its fitness, measures and evaluates the individual performance. The ob-
jective function, which provides each person a corresponding number called its fitness,
measures and evaluates the individual performance. Each chromosome’s fitness is evalu-
ated, as well as a survival of the fittest approach is used. The fitness of each chromosome
is evaluated in this work using the residual error value. A genetic algorithm primarily
performs three operations: reproduction, crossover, and mutation. Figure 1 describes the
GA operation sequences in detail.

4.1. Basic Steps of Genetic Algorithm [20]

Step 1: Use a population of random solutions to initialize the parameter, including
crossover rate, mutation rate, number of clusters, and generations. Discover the coding
mode.
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Figure 1: Flowchart of genetic algorithm.

Step 2: Calculate and assess the fitness function’s value.
Step 3: Continue with the crossover and mutation process to create the new cluster.
Step 4: Repetition of Step 2 is necessary to get the best result.
Here, we use the genetic algorithm to improve the results of using the HAM in the following
ways:

Algorithm 1 Genetic Algorithm for the best parameters h and λ1, λ2 in system of volterra
integral equations

Input:
Set number of variables (var) ,
Set upper and lower limit for each variable (ub, lb),
Set size of population (a),
Set rate of crossover (rc),
Set rate of mutation (rm),
Set number of iterations (Maxiteration),
Set fitness function name

Output:
solution λ1, λ2 and h
Initialization

1: Generate individual feasible solutions randomly with limit boundary
2: Save them in the population p;
3: Find fitness value for each population F

Loop until the terminal condition

4: for i = 1 to Max iteration do , Elitism based selection using Rank selection
5: fitness = Sort individual descending to find minimum fitness value.
6: Select the best rc solutions in pop1 and save them in popt according to fitness;
7: end for
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Crossover

8: number of crossover nc = (α− ne)/2
9: for j = 1 to nc do

10: randomly select two solutions XA and XB from Popi;
11: generate XC and XD by Arithmetic crossover to XA and XB;
12: save XC and XD to Popt;
13: end for

Mutation

14: for j = 1 to ne do
15: select a solution Xj from Popt;
16: mutate Random Resetting of XJ under the rate rm and generate a new solution

X ′
j ;

17: if thenX ′
j is unfeasible

18: update X ′
j with a feasible solution by repairing X ′

j ;
19: end if
20: update Xj with X ′

j in Popt;
21: end for

Updating

22: update popi + 1= Popi + popt;

Returning the best solution

23: return the best solution X in Pop

5. Applications and numerical results

In this section, the HAM applied to obtain an approximate-exact solution for NLSVIEs
is displayed in the following three problems. To show the high accuracy of the solution
results compared with the exact solution, the maximum absolute errors (MAE) are defined
as:

∥ · ∥∞=∥ yExact (xi) − ϕn (xi) ∥∞
Moreover, giving the maximum residual error (MRE), the computations associated with
the problems were performed using the Maple 18 package with a precision of 20 digits.

Problem 1. Let us consider the following NLSVIEs [6]

{
u1 (x) = f1 (x) + λ1

∫ x
0

(
u21 (t) + u32(t)

)
dt,

u2 (x) = f2 (x) + λ2

∫ x
0

(
u31 (t) − u22(t)

)
dt,

(22)

where {
f1 (x) =

(
− 1

10x
10 − 1

5x
5
)
λ1 + x2

f2 (x) = x3,
(23)
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with the exact solutions

uExact1 (x) = x2, uExact2 (x) = x3. (24)

To solve 22 and 23 by means of the standard HAM, we choose the initial approximation

u1,0 (x) = f1 (x) , u2,0 (x) = f2 (x) , (25)

and the linear operator

L [ϕ1 (x, q)] = ϕ1 (x, q) , L [ϕ2 (x, q)] = ϕ2 (x, q) . (26)

Furthermore, the system 22 suggests that we define the non-linear operator as{
N1 [ϕ1 (x, q) , ϕ2 (x, q)] = ϕ1 (x, q) − f1 (x) − λ1

∫ x
0

(
ϕ2
1 (t, q) + ϕ3

2 (t, q)
)
dt,

N2 [ϕ1 (x, q) , ϕ2 (x, q)] = ϕ2 (x, q) − f2 (x) − λ2

∫ x
0

(
ϕ3
1 (t, q) − ϕ2

2 (t, q)
)
dt,

(27)

Using the above definition, we construct the zeroth-order deformation equation as in 6
and 7 and the mth-order deformation equation for m ≥ 1 which is{

L [u1,m (x) − χmu1,m−1 (x)] = h [R1,m (u⃗1,m−1) , R2,m (u⃗2,m−1)] ,

L [u2,m (x) − χmu2,m−1 (x)] = h [R1,m (u⃗1,m−1) , R2,m (u⃗2,m−1)] ,
(28)

where{
R1,m (u⃗1,m−1, u⃗2,m−1) = u1,m−1 (x) − f1 (x) − λ1

∫ x
0

(
u21,m−1 (t) + u32,m−1 (t)

)
dt,

R2,m (u⃗1,m−1, u⃗2,m−1) = u2,m−1 (x) − f2 (x) − λ2

∫ x
0

(
u31,m−1 (t) − u22,m−1 (t)

)
dt,

(29)
Now, for m ≥ 1, the solutions of the mth-order deformation Equation 29 are{

u1,m (x) = χmu1,m−1 (x) + h [R1,m (u⃗1,m−1) , R2,m (u⃗2,m−1)] ,

u2,m (x) = χmu2,m−1 (x) + h [R1,m (u⃗1,m−1) , R2,m (u⃗2,m−1)] ,
(30)

Now, we successively obtain

u1,1 (x) = − 1

2100
hλ3

1x
21 − 1

400
hλ3

1x
16 +

1

65
hλ2

1x
13

− 1

275
hλ3

1x
11 +

1

20
hλ2

1x
8 − 1

5
hλ1x

5 − 1

10
hλ1x

10

u2,1 (x) =
1

31000
hλ3

1λ2x
31 +

3

13000
hλ3

1λ2x
26 − 3

2300
hλ2

1λ2x
23

+
1

1750
hλ3

1λ2x
21 − 1

150
hλ2

1λ2x
18 +

1

50
hλ1λ2x

15

+
1

2000
hλ3

1λ2x
16 − 3

325
hλ2

1λ2x
13 +

3

50
hλ1λ2x

10



Rasha F. Ahmed, W. Al-Hayani, A. Y. Al-Bayati / Eur. J. Pure Appl. Math, 16 (2) (2023), 864-892 875

...
Thus, the approximate solution in a series form is given by

u1 (x) = u1,0 (x) +
6∑

i=1

u1,i(x), u2 (x) = u2,0 (x) +
6∑

i=1

u2,i(x),

This series has the closed form as m → ∞

u1 (x) = x2, u2 (x) = x3.

which are the exact solutions of the Problem 1.
Tables 1 and 2 show a comparison of the numerical results with the errors applying the
standard HAM (m = 6) and the numerical results applying the HAM developed by genetic
algorithm HAM-GA with the exact solutions 24 within the interval 0 ≤ x ≤ 1 for various
values of λ1, λ2and h. Tables 3 and 4, we list the MAE and the MRE by the HAM and
HAM-GA on the interval [0, 1] for various values of λ1, λ2 and h. Table 5 gives the errors
on the interval h-curves [−1.2,−0.8] when λ1 = λ2 = 1.

Table 1: Numerical results when λ1 = λ2 = 1, for (Problem 1)

x i uExacti (x) HAM h=-1 AE
HAM-GA
h=-0.98213

AE

0.1 1 0.010 0.0100000000 2.113E-24 0.0099999999 3.899E-15
2 0.001 0.0010000000 5.828E-26 0.0009999999 3.113E-18

0.3 1 0.090 0.0899999999 7.314E-15 0.0899999999 4.325E-12
2 0.027 0.0269999999 1.689E-15 0.0269999999 4.316E-13

0.5 1 0.250 0.2499999997 2.022E-10 0.2499999982 1.763E-09
2 0.125 0.1249999998 1.166E-10 0.1249999992 7.596E-10

0.7 1 0.490 0.4899997951 2.048E-07 0.4899995366 4.633E-07
2 0.343 0.3429998134 1.865E-07 0.3429996197 3.802E-07

0.9 1 0.810 0.8099446465 5.535E-05 0.8099235084 7.649E-05
2 0.729 0.7289423171 5.768E-05 0.7289244930 7.550E-05

Table 2: Numerical results when λ1 = 0.5, λ2 = 1.33838729 for (Problem 1)

x i uExacti (x) HAM h=-1 AE HAM-GA h=-0.98213 AE

0.1 1 0.010 0.010000000 3.302E-26 0.009999999 1.884E-15
2 0.001 0.001000000 2.305E-27 0.000999999 2.043E-18

0.3 1 0.090 0.089999999 1.152E-16 0.089999999 1.040E-12
2 0.027 0.026999999 5.883E-17 0.026999999 1.718E-13

0.5 1 0.250 0.249999999 3.432E-12 0.249999999 1.340E-10
2 0.125 0.124999999 3.983E-12 0.124999999 9.760E-11

0.7 1 0.490 0.489999995 4.232E-09 0.489999979 2.034E-08
2 0.343 0.342999990 9.081E-09 0.342999975 2.470E-08

0.9 1 0.810 0.809999004 9.954E-07 0.809996725 3.274E-06
2 0.729 0.728994536 5.463E-06 0.728993970 6.029E-06
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Table 3: MAE and MRE of HAM and HAM-GA for (Problem 1)

HAM λ1 = λ2 = 1h = −1 HAM-GA λ1 = λ2 = 1, h = −0.98213
m i MAE MRE MAE MRE
2 1 5.877E-02 1.308E-02 6.308E-02 1.434E-02

2 6.413E-02 1.935E-02 6.298E-02 1.858E-02
3 1 2.574E-02 6.445E-03 2.698E-02 6.684E-03

2 1.335E-02 3.409E-03 1.513E-02 3.957E-03
4 1 5.897E-03 1.379E-03 6.974E-03 1.651E-03

2 6.426E-03 1.897E-03 6.839E-03 1.990E-03
5 1 2.390E-03 6.002E-04 2.672E-03 6.635E-04

2 1.947E-03 5.564E-04 2.273E-03 6.527E-04
6 1 6.738E-04 1.679E-04 8.337E-04 2.078E-04

2 7.095E-04 2.088E-04 8.304E-04 2.429E-04

Table 4: MAE and MRE of HAM-GA for (Problem 1)

HAM-GA λ1 = 0.5,
λ2 = 1.33838, h = −1

HAM-GA λ1 = 0.5,
λ2 = 1.33838, h = −0.98213

m i MAE MRE MAE MRE
2 1 1.551E-02 3.520E-03 1.792E-02 4.297E-03

2 4.800E-02 1.655E-02 4.714E-02 1.596E-02
3 1 6.088E-03 1.764E-03 6.465E-03 1.833E-03

2 1.283E-04 3.189E-04 1.772E-03 3.028E-04
4 1 3.162E-04 5.617E-05 6.297E-04 1.475E-04

2 2.101E-03 6.938E-04 2.040E-03 6.561E-04
5 1 3.177E-04 9.251E-05 3.286E-04 9.307E-05

2 1.741E-06 1.322E-05 1.426E-04 3.460E-05
6 4.388E-06 2.567E-07 3.172E-05 7.968E-06

9.404E-05 3.052E-05 9.224E-05 2.888E-05
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Table 5: Errors on the interval h-curves for (Problem 1) when λ1 = λ2 = 1

x i h=-1.2 h=-0.98213 h=-1 h=-0.8
-0.9 1 2.260E-03 1.646E-05 3.642E-05 5.252E-06

2 3.258E-03 5.517E-05 9.355E-05 2.752E-06
-0.7 1 9.179E-05 5.215E-08 2.007E-07 1.512E-06

2 7.466E-05 9.922E-08 3.115E-07 2.430E-06
-0.5 1 4.730E-06 2.689E-12 2.133E-10 1.005E-06

2 1.023E-06 3.624E-12 1.693E-10 2.430E-07
-0.3 1 1.895E-07 9.567E-14 7.451E-15 1.354E-07

2 3.866E-09 4.992E-14 2.062E-15 2.089E-09
-0.1 1 6.448E-10 3.398E-15 2.115E-24 6.368E-10

2 5.785E-14 2.886E-18 6.186E-26 3.829E-14
0.1 1 6.352E-10 3.899E-15 2.113E-24 6.432E-10

2 5.736E-14 3.113E-18 5.828E-26 3.849E-14
0.3 1 1.267E-10 4.325E-12 7.314E-15 1.778E-07

2 3.074E-09 4.316E-13 1.689E-15 2.412E-09
0.5 1 7.503E-07 1.763E-09 2.022E-10 3.644E-06

2 3.825E-07 7.596E-10 1.166E-10 4.909E-07
0.7 1 2.699E-06 4.633E-07 2.048E-07 5.064E-05

2 9.241E-06 3.802E-07 1.865E-07 2.237E-05
0.9 1 1.872E-04 7.649E-05 5.535E-05 8.640E-04

2 2.275E-04 7.550E-05 5.768E-05 6.502E-04

In Figures 2 and 3, an illustration shows how well the exact solution matches with the
approximate solution using the genetic algorithm h=-0.98213 with λ1 = λ2 = 1. In Figures
4 and 5 present the h-curves for (Problem 1) when λ1 = λ2 = 1. We present the error
residual ER (ui (x)) , i = 1, 2 of HAM-GA when λ1 = 0.5, λ2 = 1.33838, h = −0.98213
in Figures 6 and 7. The CPU time = 1.188 Seconds.

Figure 2: Line : uExact1 (x) , o : HAM −GA1(x) Figure 3: Line : uExact2 (x) , o : HAM −GA2(x)
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Figure 4: h-curve for u′
1 (0.4, h) Figure 5: h-curve for u′

2 (0.4, h)

Figure 6: ER (u1 (x)) of HAM-GA Figure 7: ER (u2 (x)) of HAM-GA

Problem 2. Let us consider the following NLSVIEs [8]

{
u1 (x) = f1 (x) + λ1

∫ x
0

(
u21 (t) + u22(t)

)
dt,

u2 (x) = f2 (x) + λ2

∫ x
0 u1(t)u2(t)dt,,

(31)
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where {
f1 (x) = sin (x) − λ1x,

f2 (x) = cos (x) − 1
2λ2sin

2(x),
(32)

with the exact solutions

uExact1 (x) = sin (x), uExact2 (x) = cos (x), (33)

To solve 31 and 32 by means of the standard HAM, we choose the initial approximation

u1,0 (x) = f1 (x) , u2,0 (x) = f2 (x) , (34)

and the linear operator

L [ϕ1 (x, q)] = ϕ1 (x, q) , L [ϕ2 (x, q)] = ϕ2 (x, q) , (35)

Furthermore, the system 31 suggests that we define the non-linear operator as{
N1 [ϕ1 (x, q) , ϕ2 (x, q)] = ϕ1 (x, q) − f1 (x) − λ1

∫ x
0

(
ϕ2
1 (t, q) + ϕ2

2 (t, q)
)
dt,

N2 [ϕ1 (x, q) , ϕ2 (x, q)] = ϕ2 (x, q) − f2 (x) − λ2

∫ x
0 (ϕ1 (t, q)ϕ2 (t, q)) dt,

(36)

Using the above definition, we construct the zeroth-order deformation equation as in 6
and 7 and the mth-order deformation equation for m ≥ 1 is{

L [u1,m (x) − χmu1,m−1 (x)] = h [R1,m (u⃗1,m−1) , R2,m (u⃗2,m−1)] ,

L [u2,m (x) − χmu2,m−1 (x)] = h [R1,m (u⃗1,m−1) , R2,m (u⃗2,m−1)] ,
(37)

where{
R1,m (u⃗1,m−1, u⃗2,m−1 ) = u1,m−1 (x) − f1 (x) − λ1

∫ x
0

(
u21,m−1 (t) + u22,m−1 (t)

)
dt,

R2,m (u⃗1,m−1, u⃗2,m−1) = u2,m−1 (x) − f2 (x) − λ2

∫ x
0 (u1,m−1 (t)u2,m−1 (t)) dt,,

(38)
Now, for m ≥ 1, the solutions of the mth-order deformation Equation 38 are{

u1,m (x) = χmu1,m−1 (x) + h [R1,m (u⃗1,m−1) , R2,m (u⃗2,m−1)] ,

u2,m (x) = χmu2,m−1 (x) + h [R1,m (u⃗1,m−1) , R2,m (u⃗2,m−1)] ,
(39)

we now successively obtain

u1,1 (x) = −1

3
hλ3

1x
3 − 2hλ2

1x cosx + 2hλ2
1 sinx− hλ1x +

1

16
hλ1λ

2
2 sin3 x cosx

+
3

32
hλ1λ

2
2 sinx cosx− 3

32
hλ1λ

2
2x +

1

3
hλ1λ2 sin3 x

u2,1 (x) = −hλ1λ2 +
1

3
hλ2

2 +
1

4
hλ1λ

2
2x sinx cosx− 1

8
hλ1λ

2
2x

2
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−1

8
hλ1λ

2
2 sin2 x + hλ1λ2x sinx + hλ1λ2 cosx

−1

6
hλ2

2 sin2 x cosx− 1

3
hλ2

2 cosx− 1

2
hλ2 sin2 x

...
Thus, the approximate solution in a series form is given by

u1 (x) = u1,0 (x) +

5∑
i=1

u1,i(x), u2 (x) = u2,0 (x) +

5∑
i=1

u2,i(x),

This series has the closed form as m → ∞

u1 (x) = sinx, u2 (x) = cosx.

which are the exact solutions of the Problem 2.
Tables 6, 7 show a comparison of the numerical results with the errors applying the
standard HAM (m = 5) and the numerical results applying the HAM developed by genetic
algorithm HAM-GA with the exact solutions 33 within the interval 0 ≤ x ≤ 0.5 for various
values of λ1, λ2 and h. Tables 8, 9, we list the MAE and the MRE by the HAM and HAM-
GA on the interval [0, 0.5] for the various values of λ1, λ2 and h. Table 10 gives the errors
on the interval h-curves [−1.2,−0.8] when λ1 = λ2 = 1.

Table 6: Numerical results when λ1 = λ2 = 1, for (Problem 2)

x i uExacti (x) HAM h = −1 AE
HAM-GA
h=-0.98401

AE

0.1 1 0.099833416 0.099829110 4.306E-06 0.099828113 5.303E-06
2 0.995004165 0.995003990 1.745E-07 0.995002111 2.054E-06

0.3 1 0.295520206 0.294524648 9.955E-04 0.294500710 1.019E-03
2 0.955336489 0.955219396 1.170E-04 0.955085971 2.505E-04

0.5 1 0.479425538 0.467847859 1.157E-02 0.467776042 1.164E-02
2 0.877582561 0.875456892 2.125E-03 0.874603732 2.978E-03

Table 7: Numerical results when λ1 = 0.5, λ2 = 0.5, for (Problem 2)

x i uExacti (x) HAM h = −1 AE
HAM-GA
h=-0.98401

AE

0.1 1 0.099833416 0.099833280 1.356E-07 0.099833132 2.841E-07
2 0.995004165 0.995004155 9.445E-09 0.995004017 1.473E-07

0.3 1 0.295520206 0.295486811 3.339E-05 0.295479223 4.098E-05
2 0.955336489 0.955329938 6.550E-06 0.955320666 1.582E-05

0.5 1 0.479425538 0.478989428 4.361E-04 0.478926206 4.993E-04
2 0.877582561 0.877455542 1.270E-04 0.877391282 1.912E-04
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Table 8: MAE and MRE of HAM and HAM-GA for (Problem 2)

HAM λ1 = λ2 = 1 h = −1 HAM-GA λ1 = λ2 = 1, h = −0.98401

m i MAE MRE MAE MRE
2 1 7.494E-02 1.545E-02 8.174E-02 1.899E-02

2 1.170E-01 5.382E-02 1.170E-01 5.295E-02
3 1 7.716E-02 3.207E-02 7.720E-02 3.158E-02

2 1.534E-02 2.581E-03 1.857E-02 4.154E-03
4 1 1.114E-02 3.207E-03 1.425E-02 4.529E-03

2 1.577E-02 6.432E-03 1.583E-02 6.287E-03
5 1 1.157E-02 4.556E-03 1.164E-02 4.514E-03

2 2.125E-03 4.892E-04 2.978E-03 8.526E-04
6 1 1.642E-03 5.243E-04 2.413E-03 8.310E-04

2 2.204E-03 8.691E-04 2.232E-03 8.547E-04

Table 9: MAE and MRE of HAM-GA for (Problem 2)

HAM-GA λ1 = 0.5,
λ2 = 0.5, h = −1

HAM-GA λ1 = 0.5,
λ2 = 0.5, h = −0.98401

m i MAE MRE MAE MRE
2 1 2.411E-02 8.656E-03 2.772E-02 1.058E-02

2 3.019E-02 1.452E-02 3.063E-02 1.451E-02
3 1 1.051E-02 4.590E-03 1.100E-02 4.749E-03

2 2.735E-03 9.328E-04 3.613E-03 1.351E-03
4 1 1.221E-03 4.665E-04 1.671E-03 6.618E-04

2 1.110E-03 4.649E-04 1.207E-03 4.968E-04
5 1 4.361E-04 1.779E-04 4.993E-04 2.020E-04

2 1.270E-04 4.611E-05 1.912E-04 7.297E-05
6 1 5.861E-05 2.268E-05 9.015E-05 3.552E-06

2 4.302E-05 1.721E-05 5.203E-05 2.049E-06

Table 10: Errors on the interval h-curves for (Problem 2) when λ1 = λ2 = 1

x i h=-1.2 h=-0.98213 h=-1 h=-0.8
-0.5 1 3.319E-02 1.164E-02 1.157E-02 2.387E-02

2 1.640E-02 2.978E-03 2.125E-03 1.287E-02
-0.3 1 6.576E-03 1.019E-03 9.955E-04 4.423E-03

2 3.711E-03 2.505E-04 1.170E-04 2.504E-03
-0.1 1 3.672E-04 5.303E-06 4.306E-06 2.826E-04

2 2.132E-04 2.054E-06 1.745E-07 1.520E-04
0.1 1 3.672E-04 5.303E-06 4.306E-06 2.826E-04

2 2.132E-04 2.054E-06 1.745E-07 1.520E-04
0.3 1 6.576E-03 1.019E-03 9.955E-04 4.423E-03

2 3.711E-03 2.505E-04 1.170E-04 2.504E-03
0.5 1 3.319E-02 1.164E-02 1.157E-02 2.387E-02

2 1.640E-02 2.978E-03 2.125E-03 1.287E-02
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In Figures 8 and 9, an illustration shows how well the exact solution matches with
the approximate solution using the genetic algorithm h=-0.98401 with λ1 = λ2 = 1. In
Figures 10 and 11 the h-curves present for (Problem 2) when λ1 = λ2 = 1. We present
the error residual ER (ui (x)) , i = 1, 2 of HAM-GA when λ1 = λ2 = 0.5, h = −0.98401
in Figures 12 and 13. The CPU time = 2.828 Seconds.

Figure 8: Line : uExact1 (x) , o : HAM −GA1(x) Figure 9: Line : uExact2 (x) , o : HAM −GA2(x)

Figure 10: h-curve for u′
1 (0.1, h)

Figure 11: h-curve for u′
2 (0.4, h)
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Figure 12: ER (u1 (x)) of HAM-GA
Figure 13: ER (u2 (x)) of HAM-GA

Problem 3. Finally, let us consider the following NLSVIEs [8]


u1 (x) = f1 (x) + 4

∫ x
0 u1(t)u2(t)dt,

u2 (x) = f2 (x) +
∫ x
0 tu1(t)u

2
3(t)dt,

u3 (x) = f3 (x) − 1
3

∫ x
0 tu2(t)u3(t)dt,

(40)

where 
f1 (x) = −2 ln (x)x2 + x2 + ln (x),

f2 (x) = −1
6 ln (x)x6 + 1

36x
6 + x,

f3 (x) = 1
15x

5 + x2,

(41)

with the exact solutions

uExact1 (x) = ln (x) , uExact2 (x) = x, uExact3 (x) = x2. (42)

To solve 40 and 41 by means of the standard HAM, we choose the initial approximation

u1,0 (x) = f1 (x) , u2,0 (x) = f2 (x) , u3,0 (x) = f3 (x) , (43)

and the linear operator

L [ϕ1 (x, q)] = ϕ1 (x, q) , L [ϕ2 (x, q)] = ϕ2 (x, q) , L [ϕ3 (x, q)] = ϕ3 (x, q) . (44)

Furthermore, the system 40 suggests that we define the non-linear operator as

N1 [ϕ1 (x, q) , ϕ2 (x, q) , ϕ3 (x, q)] = ϕ1 (x, q) − f1 (x) − 4
∫ x
0 ϕ1 (t, q)ϕ2 (t, q) dt,

N2 [ϕ1 (x, q) , ϕ2 (x, q) , ϕ3 (x, q)] = ϕ2 (x, q) − f2 (x) −
∫ x
0 tϕ1 (t, q)ϕ2

3 (t, q) dt,
N3 [ϕ1 (x, q) , ϕ2 (x, q) , ϕ3 (x, q)] = ϕ3 (x, q) − f3 (x) + 1

3

∫ x
0 tϕ2 (t, q)ϕ3 (t, q) dt.

(45)
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Using the above definition, we construct the zeroth-order deformation equation as in 6
and 7 and the mth-order deformation equation for m ≥ 1 is

L [u1,m (x) − χmu1,m−1 (x)] = h [R1,m (u⃗1,m−1) , R2,m (u⃗2,m−1) , R3,m (u⃗3,m−1)] ,
L [u2,m (x) − χmu2,m−1 (x)] = h [R1,m (u⃗1,m−1) , R2,m (u⃗2,m−1) , R3,m (u⃗3,m−1)] ,
L [u3,m (x) − χmu3,m−1 (x)] = h [R1,m (u⃗1,m−1) , R2,m (u⃗2,m−1) , R3,m (u⃗3,m−1)] .

(46)

where

R1,m (u⃗1,m−1, u⃗2,m−1 , u⃗3,m−1 ) = u1,m−1 (x) − f1 (x) − 4
∫ x
0 u1,m−1 (t)u2,m−1 (t) dt,

R2,m (u⃗1,m−1, u⃗2,m−1, u⃗3,m−1 ) = u2,m−1 (x) − f2 (x) −
∫ x
0 tu1,m−1 (t)u23,m−1 (t) dt,

R3,m (u⃗1,m−1, u⃗2,m−1, u⃗3,m−1 ) = u3,m−1 (x) − f3 (x) + 1
3

∫ x
30 tu2,m−1 (t)u3,m−1 (t) dt.

(47)
Now, for m ≥ 1, the solutions of the mth-order deformation Equation 47 are

u1,m (x) = χmu1,m−1 (x) + h [R1,m (u⃗1,m−1) , R2,m (u⃗2,m−1) , R3,m (u⃗2,m−1)] ,
u2,m (x) = χmu2,m−1 (x) + h [R1,m (u⃗1,m−1) , R2,m (u⃗2,m−1) , R3,m (u⃗2,m−1)] ,
u3,m (x) = χmu3,m−1 (x) + h [R1,m (u⃗1,m−1) , R2,m (u⃗2,m−1) , R3,m (u⃗2,m−1)] ,

(48)

we now successively obtain

u1,1 (x) = h

(
−2ln (x)x2 + x2 − 4

27
ln2 (x)x9 +

32

243
ln(x)x9

− 59

2187
x9 + 2 ln (x)x4 − 3

2
x4
)
.

u2,1 (x) = h

(
−1

6
ln(x)x6 +

1

36
x6 +

1

1575
ln(x)x14 − 4

11025
x14 − 1

2700
ln(x)x12

+
1

32400
x12 +

4

165
ln(x)x11 − 26

1815
x11 − 2

135
ln(x)x9 +

2

1215
x9 +

1

4
ln(x)x8 − 5

32
x8
)
,

u3,1 (x) = h

(
1

15
x5 − 1

3510
ln (x)x13 +

19

273780
x13 − 1

180
ln (x)x10 +

1

675
x10 +

1

360
x8
)
,

...
Thus, the approximate solution in a series form is given by

u1 (x) = u1,0 (x) +
6∑

i=1

u1,i(x),

u2 (x) = u2,0 (x) +

6∑
i=1

u2,i(x),
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u3 (x) = u3,0 (x) +
6∑

i=1

u3,i(x).

This series has the closed form m → ∞

u1 (x) = ln(x), u2 (x) = x, u3 (x) = x2.

which are the exact solutions of the Problem 3.
Table 11 shows a comparison of the numerical results with the errors applying the standard
HAM (m=6) and the numerical results applying the HAM developed by genetic algorithm
(HAM-GA) with the exact solutions 42 within the interval 0 ≤ x ≤ 0.6. Table 12 the MAE
is tabulated for different frequencies as well as the MRE. Table 13 gives the errors on the
interval h-curves [−1.2,−0.8].

Table 11: Numerical results for (Problem 3)

x i uExacti (x) HAM h = −1 AE
HAM-GA
h=-1.01064

AE

0.1 1 -2.30258509 -2.302585092 3.094E-13 -2.302585092 3.734E-13
2 0.10000000 0.1000000000 5.644E-18 0.099999999 1.234E-17
3 0.01000000 0.0099999999 2.932E-21 0.009999999 9.274E-17

0.3 1 -1.20397280 -1.203972712 9.189E-08 -1.203972808 4.117E-09
2 0.30000000 0.300000000 1.477E-10 0.300000000 5.030E-12
3 0.09000000 0.089999999 7.052E-13 0.089999999 9.033E-14

0.5 1 -0.69314718 -0.693128726 1.845E-05 -0.693144508 2.672E-06
2 0.50000000 0.500000343 3.436E-07 0.500000159 1.596E-07
3 0.25000000 0.249999995 4.934E-09 0.249999997 2.706E-09

Table 12: MAE and MRE of HAM and HAM-GA for (Problem 3)

HAMh = −1 HAM-GA h = −1.01064
m i MAE MRE MAE MRE
2 1 3.266E-01 1.102E-01 3.223E-01 1.087E-01

2 4.773E-03 1.241E-03 4.768E-03 1.251E-03
3 7.305E-05 2.150E-05 1.289E-04 4.453E-05

3 1 8.783E-02 2.910E-02 8.276E-02 2.744E-02
2 1.582E-03 4.708E-04 1.514E-03 4.544E-04
3 1.783E-05 4.884E-06 1.606E-05 4.295E-06

4 1 1.626E-02 5.420E-03 1.404E-02 4.690E-03
2 3.342E-04 1.057E-04 2.950E-04 9.430E-05
3 4.897E-06 1.510E-06 4.505E-06 1.409E-06

5 1 2.020E-03 6.799E-04 1.452E-03 4.914E-04
2 5.048E-05 1.679E-05 3.905E-05 1.319E-05
3 8.725E-07 2.839E-07 7.070E-07 2.332E-07

6 1 8.969E-05 3.016E-05 2.672E-06 9.493E-07
2 5.256E-06 1.880E-06 3.111E-06 1.169E-06
3 1.138E-07 3.870E-08 7.714E-08 2.675E-08
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Table 13: Errors on the interval h-curves for (Problem 3)

x i h=-1.2 h=-1.01064 h=-1 h=-0.8
-0.5 1 1.758E-04 1.337E-04 1.806E-04 9.697E-03

2 2.235E-06 8.834E-07 1.363E-06 8.807E-05
3 5.742E-07 9.568E-09 1.562E-08 1.219E-06

-0.3 1 4.996E-05 4.619E-08 2.375E-07 8.175E-04
2 6.683E-08 4.114E-11 3.324E-10 8.066E-07
3 5.017E-08 1.777E-13 1.546E-12 5.382E-08

-0.1 1 1.921E-05 8.053E-13 4.255E-13 3.286E-05
2 1.200E-10 1.517E-17 8.126E-18 2.866E-10
3 2.130E-10 8.919E-17 4.310E-21 2.135E-10

0.1 1 1.255E-05 3.734E-13 3.094E-13 2.206E-05
2 6.870E-11 1.234E-17 5.644E-18 1.815E-10
3 2.136E-10 9.274E-17 2.932E-21 2.131E-10

0.3 1 2.885E-05 4.117E-09 9.189E-08 4.264E-04
2 3.622E-08 5.030E-12 1.477E-10 3.910E-07
3 5.355E-08 9.033E-14 7.052E-13 4.991E-08

0.5 1 8.557E-05 2.672E-06 1.845E-05 4.074E-03
2 1.003E-06 1.596E-07 3.436E-07 3.433E-05
3 7.582E-07 2.706E-09 4.934E-09 3.348E-07

In Figures 14-16 an illustration of how well the exact solution matches with the ap-
proximate solution using the genetic algorithm h=-1.01064. In Figures 17-19 present the
h-curves for (Problem 3). We present the error residual ER (ui (x)) , i = 1, 2, 3 of HAM-
GA when h = −1.01064 in Figures 20-22. The CPU time = 10.890 Seconds.

Figure 14: Line : uExact1 (x) , o : HAM −GA1(x) Figure 15: Line : uExact2 (x) , o : HAM −GA2(x)
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Figure 16: Line : uExact3 (x) , o : HAM −GA3(x)
Figure 17: h-curve for u′

1 (0.15, h)

Figure 18: h− curveforu′
2 (0.15, h)

Figure 19: h− curveforu′
3 (0.15, h)

Figure 20: ER (u1 (x)) of HAM-GA
Figure 21: ER (u2 (x)) of HAM-GA
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Figure 22: ER (u3 (x)) of HAM-GA

6. Conclusion

The present study suggests a new algorithm (HAM-GA) merging both the HAM and
the GA for solving the nonlinear system of Volterra integral equations. Based on four
consecutive cases, the algorithm determines the solution. The algorithm deems the residual
error function as a fitness function and based on which the optimum value of λ1, λ2 and h
are selected. In the first case, the results were calculated according to the standard HAM,
in the second case, the best value for h were chosen according to the genetic algorithm and
based on which the results were calculated using HAM-GA. As for the third case, the best
λ1and λ2 for the Volterra system of integral equations were chosen, then the results were
calculated using HAM-GA. Finally, the results were calculated using HAM-GA depending
on optimal λ1, λ2 and h. The results obtained using the best h were better than those
obtained using the standard HAM. As for the results for the fourth case, they were optimal
for the exact solution. The findings are in good agreement with the h-curves indicating
that the proposed algorithm is successful in finding the solution.
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