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Abstract. In this paper, we study the dynamic behavior of a four-dimensional prey-predator
suggested model of four species. The four species are two prey and two predator species, each of
them grows logistically. The two prey live in diverse habitats and have the ability of group defense.
In the mentioned model, one predator feeds on the two prey, the top predator feeds on other three
species. The existents and, the boundedness of the positive solution, the existence and the local
stability of all possible equilibrium points, of the model are investigated. The model has seven
equilibrium points at most, four of them always exist and the others exist under certain conditions.
Three equilibrium points are not stable while the others are locally asymptotically stable, under
given conditions. For the coexistence point, a basin of attraction for it has been found. The
steady-state bifurcation relative to the mortality rate of the predators in the neighborhood of
three of the equilibrium points and the Hopf-bifurcation relative to the growth rate of the prey in
the neighborhood of two of the equilibrium points has been found. Finally, two numerical example
has been given to support the theoretical results.
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1. Introduction

Predators feed in a habitat that is relatively rich in food for some time, which means
to them that there are large numbers of prey, or that such prey is easy to catch. When
food is scarce, or prey is minor in the habitat, the predators look for another habitat with
enough food to live in for another period of time, this phenomenon is called switching, see
[8, 9, 13]. Group defense means that all prey animals attack predators collectively and do
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not give them an opportunity to attack and prey on them. In 1920, Volterra introduced
a mathematical model that represents the interaction between prey and predator [1, 10].
Later many modified Volterra models were introduced by researchers interested in this
field. Various models, including prey with one predator, two predators with one prey, two
prey with two predators, and food chains of three or more species have been studied in
[2-4, 15, 16]. In the wild, lions are at the top of the food chain because of their strength
and ability to kill all animals and prey on them, but it is possible for a herd or a small
group of hyenas to attack a young lion or an old lion outside its kingdom. In general,
predators such as lions, hyenas, wolves, and others attack prey such as zebra, wild buffalo,
and other prey with the aim of killing and devouring them. Prey by nature has the ability
to live in groups that move from one habitat to another in search of food. Some prey
animals, such as buffaloes and zebras, have the ability to collectively defend and attack
predators in masse [3] and [8]. In [3], two prey-predatory models were studied, one of
the two models was with group prey defense, while the other model was without group
prey defense. The prey was supposed to live in two different habitats. Both predatory
species tend to move from one habitat to another in search of food. The first model has
been expanded into the following mathematical model that proposed and studied, in [5]
and [7] with switching index n = 1,2, respectively. The expanded model deals with, two
prey and two predators, all species grow logistically, the prey lives in diverse habitats with
prey group defense, one predator tends to switch habitats and feeds on the prey, while the
other predator feeds on only one prey.

. 1 a1THY1
pr— 1 —_— — —_— — —_
T =m <91 ( k1> ot 28 53/2) ,

by — 2 <92 (1_902) _azfﬂ’fyl>

ko) attah)’ (1)
. a1l doxtan
yl_yl( ey T arag)

U2 = ya(—p2 + yx1)

The aim of this work is to study the local qualitative behaviors in the neighborhood of the
equilibrium points of a proposed prey-predator mathematical model for four species with
an incomplete food chain. The four species, consist of two prey and two predators, and
each of them grows logistically. The two prey live in two different habitats and have the
ability to group defense. One predator or the top feeds on the other predator, in addition
to the two prey indicated in the model. We show that all positive solutions are bounded
under some conditions. In the third section, it was found that the model has, at most
seven equilibrium points. Local stability and local bifurcation of the equilibrium points
have been analyzed in section4 and section5 respectively. Two sets of parameters form
two systems of 4-dimensional differential equations, each of them is an example of the
model (2) presented in the sixth section of this paper to simulate the theoretical results
obtained in the previous sections. Finally a brave conclusion of this paper is given in the
last section.
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2. THE MATHEMATICAL MODEL

In this work, the following model was proposed, which is a modification of model (1)

ir=a (g (1— L1\  aaleyr  Qol2l?
Ttz wta)’

g = T <92 (1 _ $2> _ Biiyn Bexaye >
ka z1+xy  a1+az)’

where z; denote the density of the prey ¢ = 1,2; y; denote the density of the predator
that fed on the two prey; ys denote the density of the predator that fed on the other three
species (top predator). g;,i = 1,2 is the growth rate of x;, i = 1,2; k;, i = 1,2, is the
carrying environmental capacity to z;, i = 1,2; «a;,% = 1,2, is the rate of predation by the
predatory;, i = 1,2 with the prey z1;5;, ¢ =1, 2 is the rate of predation by the predator
Yi, ¢ = 1,2 on prey xo; p;, ¢ = 1,2, is the mortality rate of predatorsy;, 1 = 1,2;¢;,1 = 1,2,
is the corresponding conversion rates to u;, ¢ = 1,2; p1, is the rate of change of yo due
to the presence of y1,; and ps, is the rate of change of y; due to the presence of yo. The
switching behavior of predators y; and yo is shown by, the functions ajzoyi(z1 + xg)_l,
Brx1yr(x1 + :L‘Q)_l and, the functions agzoys(z1 + 332)_1, Bor1y2(z1 + xQ)_l respectively.
It is easy to show that all functions of the model (2) and their partial derivatives are
continuous, so that these functions are Lipschitizion functions on

R = {(z1,22,y1,52) € R* : 2;(0) > 0,,(0) > 0,i = 1,2, 21 + x5 > 0} .

Hence, the existence and the uniqueness of the solution of model (2) is guaranteed. Now,
we will show that the trajectories of all the positive solutions of the system (2) whose
initial conditions lie within the following region D are bounded

D:= {(1317332,y1,y2) e R4,O <z < k:i,yi > O,i = 1,2} . (3)

Theorem 1. If¢; < a; + G5, © = 1,2, p1 < po, then the trajectories of all the positive
solutions of the system (2) whose initial conditions belong to D are bounded.

Proof. The following real valued function:

2(t) = 1 (t) + 22(t) + y1(8) + 42(1),

is a positive definitive on D. Therefore, we get

2
. T 2 — P1 T122Yi
z = Z <$i9i <1 - k:) — MilYi — ([)Qp)ylyz _mTiZz (i + ﬁi—ffi))

=1
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If 0 < p < max {u1, p2}, then we obtain:

2

. T; — T1ToUs
zZ +pu= Z <$z’gi <1 - kfl + :])) +(p— pai)yi — (o2 p1)y1y2 12 (o + Bi — 5i)> :
(2

P i 2 r1 + x2

It is obvious that

2
. ZT;
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Put o =: 37, ki (gi + p). So it is clear that: 0 < 2z (t) < 2 + 2 (0) e~#*, and when

o
p

t— 00,0 <z(t) <

- (4)

e

So that, from (4), the trajectories of all the positive solutions of the system (2) with initial
conditions lie within the region D defined above and satisfy ¢; < a; +5;, i = 1,2, p1 < po
are bounded. and with this, we have completed the proof.

3. EXISTENCE OF EQUILIBRIUM POINTS

The system has four equilibrium points always exist, regardless of the values of the
system parameters plus three others, whose existence depends on the change in the values
of the system parameters. The equilibrium point are given as follows:

(i) The equilibrium points Py = (0,0,0,0), P, = (k1,0,0,0), P» = (0,k2,0,0) and P53 =
(k1,k2,0,0) always exist.

(ii) The equilibrium point Py = (%1, Z2,71,0), where:
- T 1+
; 1=91<11)( ) (5)

and 7 is a positive root of the equation (7) below, provided that

- o om(l+z) .z
Ty = ——""" T2 = —
€1 X

[y

ki —
i< €1R1 — 1 (6)

251
A7+ Aod? 4+ Azd + Ay =0, (7)

such that

Ay = g1B1kap1 > 0, Ay = g1B1ka(p1 — kie1) <0,
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(iii)

As = goar ki (ko — 1), Ay = —goakipn <O.

The number of sign changes between A1, Ao, A3, and Ay is one if Az < 0, and three
if Ag > 0. According to Descartes’ rule of sign, equation (7) has at most one positive
root if Ag < 0, and at most three positive root if Az > 0. Therefore, the existence
of P, depends on the existence of the positive root Z achieves the two equations (6)
and (7).

The equilibrium point Ps = (&1, &2, 0, §2) , where:
; 1+&) @ 1+2)\ (14
R Y (IS [ R
) b ok Qg
and & is a positive root of equation (10) below, provided that:
ky —
v < €2R1 M2’ 9)
12
B3 + Boi? 4+ B3z 4+ By = 0, (10)
such that:
By = g182kap2, By = g182ka (n2 — k1g2) <0,
B3 = goaoky (koea — p2), By = —gocoky pa.

The number of sign changes between By, Bo, B3, and By is one if B < 0, and, three
if B3 > 0. Based on Descartes’ rule of sign., eq.(10) has at most one positive root
if Bg < 0, and at most three positive root if Bs > 0. Therefore, the existence of P
depends on the existence of the positive root & achieves the two equations (9) and
(10).

The interior equilibrium point or the coexistence point Pg = (Z1, %2, 71, Ys), where
T = k1ka(14h) ((a1B8y — aafr)hus + p1(1 + h)(azgsh — Bagy))
p1(1+ R)? (k1 aagoh? — kaBagy) + kikoeah? (a1By — a2Bi1)’ (11)
To — W, Ty — (1+h)u2—h€2 —_ hEl—(l-i-h)/J,l
2 1, Y1 01 (1 +h) y Yo 02 (1 +h) y
and h = Tgfl_l, is a positive real root of the following equation:
Ah* +Bh3 + CR2+Dh+E =0, (12)

where:

A = ki1g2(aapi1p1 — arpeps + p1p2g1),
B = 2k1g2(cap1p1 — a1prope) + 3p1p29192k1 — kap1p2g192
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+ kikaga(a1€2p2 — a2e1p1),
C = k1g2(aop1p1 — arpapa) + kagi(Bipzpe — Bapipr) — kikaga(azerpr — areaps)

+ kikogi (Baerpr — Bieapa) + kika(oBa — aafh) (i€ — paer) + 3pip2giga(ki — k2),
D = 2kag1(B1p2p2 — Bapipr) — 3kap1p2g192 + p1p2g192kt + kikagi(B2e1p1 — Brezpa),
E = kog1(B1p2p2 — Bap1p1 — p1p292)-

If the signs of the coefficients A, B, C,D, and E are positive, a positive root cannot
be obtained, and this means that there is no interior equilibrium point. Otherwise,
there is a possibility of finding one positive root, two positive roots, three positive
roots, or four at most, according to Descartes’ rule of signs.

4. LOCAL STABILITY OF EQUILIBRIUM POINTS

In this section, the local stability of the equilibrium points of the system is studied, by
using the following Jacobian matrix J (x1, z2, y1,y2) of the system (2) at each equilibrium
point [6], [11], [12].

Ooxr1 Oxra Oy Jya
0. 0 0 o
J@ w2 yny2) = |op oi 0w on
Ooxr1 Oxa Oy 0y2
992 Oz Oy Oy2
or; Oz Oy1  Oy2

where,

011 211 (a1y1+a2y2)x§ 011 (a1y1+042y2):1:?

R R R e T
1 1 (x1 + x2) 2 (x1 + x2)

a.fl . A1T1T2 8:1'31 A2T1T2

37311__961-1-162’ 57@/2__961-1-162’

d2  (Byy1+Baye)ry Oty 219 (Byy1+Bay2) ]

oo - (ot e = (1752 - e,
1 (a;l + .CUQ) 2 2 (371 + xg)

Oty Py Oiy _ Pomia

oy w4 o dys  mit o

[ £173Y1 [ . e123Y1

Oxy B (1’1 + 1‘2)2’ Oxa B (1'1 + 1‘2)2’

o E1T12 o

E —H1 o1t P2Y2, Ere —pP2Y1,

dgp  e93ys o eaniys

Oxy B (xl + .%‘2)2’ Oxa B (xl + .%‘2)2’

gzj = p1Y2, gzz = —p2 + ;1?:;22 + p1Y1,
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In Theorems 2, 3 and 4, we will prove that the points Py, P;, and P, are unstable point
while the remaining points are locally asymptoticaly stable points if they meet certain
conditions.

Theorem 2. Consider the system (2), then the equilibrium points

(i) Py = (0,0,0,0),P;, = (k1,0,0,0) and P, = (0,k2,0,0) are unstable equilibrium
points.

(i) P3 = (ki,k2,0,0) locally asymptotically stable point if kikoe; < (k1+ke) i, i =1,2.
Proof.

(i) Suppose that Py = (0,0,0,0) is locally asymptotically stable. So that all the trajec-
tories (x1,z2,y1,y2) of the system (2) converge to (0,0,0,0) as t — oo. Then since
x1 > 0, we have that % (Inzy) — g1, as t — oo.
It is possible to find a small ball with center Py and radius g;, such that inside it
we have % (Inzy ) > 4. if (21, 22,91, y2) converges to (0,0,0,0), when t converges
to oo, then there exists ty > 0, such that;

z1(to) > 0,z1(t) > x1(to)exp (%_to)) — 00, as t — 00. So x1 — oco. Similarly, if

x2(0) > 0,21 — oo, there is no a trajectory to the system (2) converges to (0, 0,0, 0).
Hence Py = (0,0,0,0) is unstable point.

The Jacobian matrices of the system (2) at the equilibrium points P, and P, are

-qg1 0 0 0 g1 0 0 0
|10 g 0 0 |0 —g2 0 0
J(Pl) = 0 0 —m 0 and J(PQ) = 0 0 — 0 s
0 0 0 —pu 0 0 0 —po

respectively. The eigenvalues of the two matrices J (P;) and J (P) are:
AM=-01<0, Aa=9g2>0, \3=—p1 <0, \g=—p2 <0

and
)\1:g1>0, )\22—92<0, )\3:—u1<0, )\4:—,ug<0,

respectively. It is clear that, we have one positive eigenvalue in both cases. Therefore,
the two points P; and P, are saddle points and this means that they are not stable.

(ii) The Jacobian matrix of the system (2) at the equilibrium point Py = (k1, k2,0,0) is

-91 0 —arkiko(ky + ko)™t —aokiko(ky + ko) 7!
J(Py) = 0 —g2 —Pokika(ky +_/~€12)_1 —Bokiko(ky + ko) ™!
0 0 Elklkg(/ﬁ + kz) — 1 0
0 0 0 eokika(ky + k)" — o
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The solutions of the following characteristic equations |J (P3) — Al4x4| = 0, where
14«4 is the identity matrix, are:

Elklkg €2k1k2

l<;1—i-/€2_'u17 4:/91-1-/92_'“2'

)\1:—91<0, )\Qz—g2<0, )\32

So that, Ps = (ki, k2,0,0) is locally asymptotically stable if the following conditions
are met
kikog; < (]{21 + kg) Wiy, ©=1,2. (13)

Theorem 3. Consider the system (2), then

(i) The equilibrium point Py = (Z1,Z2,91,0) is locally asymptotically stable if

3
Teadit + priji — pi2 < 0,trM < 0,det M < 0, and Y trMM;; < detM.  (14)

i=1
fQOllfﬁgl — k;li‘lgl ff2a1:~c2gj1 *fali‘l
where M = I8 D28,%§1 — ky '@ags —TfBy@1 | and T = 1.
Te1g1 Le1if Fe1tr —

(i) The equilibrium point Ps = (&1, 2,0, 72) is locally asymptotically stable point if

3
Le1d1 — paijp — 1 < 0, trM <0, detM <0, and Ztr/\;l./\;lii < det M. (15)

=1
f2a1i'gg — k‘flflgl —f‘2a1552y2 — fal;il
where M = —T2B470 1285209 — ky 'Zags T B2 and T' = 1=
[2e99 [2e0d2 s Deqdy — po

Proof.

(i) The Jacobian matrix of the system (2) at equilibrium points Py = (%1, Z2,71,0), is

1:2041501]1 — kl_l.flgl —f2041.f2g1 —falil —fazi‘l
(P = 2 o — by B0 T —TByin
[e191 e1zy Fe1z1 — —p2y1
0 0 0 Teodn + piiji — 2

1
such that I' = -

The characteristic equation for the matrix J (Py) is as follows:

3
()\ — fEQ.fl — p1y1 + Mg) ()\3 — trM )\2 + Z ./\/lii)\—detM> =0,

=1
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N fQOéli‘gl — k‘fli‘lgl —f20é1:f2ﬂ1 —falil
where, M = —T26, T26,%51 — ky ' @2g2  —T By
Ie1ih [2e13% Fe1Z1 —

and ./K/lvii, i =1,2,3 is the diagonal minor’s of the matrix M.

According to the criteria of Routh-Hurwitz, Py = (Z1,Z2,71,0), is a locally asymp-
totically stable point provided that (14) are satisfied.

The Jacobi’s matrix of the system (2) at Ps = (%1, %2, 0, 92) is
f2a1{i‘y2 — k‘l_li'lgl —f‘zagi'Q:l]Q —falfcl —fOJQ.fl
_ —I2Byys 2By, — ks ' 292 —I'By#1 —I'Bydy
J(P5) = S .
0 0 PerZy —pagz—pm 0
[2e99 2022y P1Y2 Fey®y — p2

n_ 1
such that I' = 5"

Simple calculations yield that the characteristic equation of the matrix.J (Ps) is:

3
(fﬁlfl — pPYy2 — U1 — )\) ()\3 - tI"M )\2 + ZM“ A—detM) = 0,

i=1
where B 5 5
D2ay29e — k1719, —TI2a 529, —Tad
M= —I?By5s D2By0yy — ky 'dag2  DByin
129 20227 Peqd1 — p2

and M;;, i = 1,2,3 is the diagonal minor’s matrix M.

According to the criteria of Routh-Hurwitz, any of the equilibrium points P; =
(Z1,22,0,72), is locally asymptotically provided that (15) are satisfied. And with
this, we have completed the proof.

Theorem 4. Consider the system (2), then Ps = (T1,T2,Y1,Yo) s a locally asymptotically
stable point if

(trM > 0,
4
trM A — ﬂ“ > 0,
2 "
4 4
Zﬂ“ <trM A — ZM”> —detM ter > 0,
=1 i=1

where, fori=1,2,3,4, My is the diagonal minor’s of the matriz M = J(Ps)
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Proof. The Jacobian matrix of the system (2) at equilibrium points Ps = (Z1,ZT2,7;,J2)
is as follows

Ql — % —% OélE Ong
_}2 _ 92T2 __
J(Pﬁ) — }2L QZ hQ2 ko /81E IBQE; —. M’
h*F1 Fy 0 —p2yy
h2Fy Fy P1Ys 0

such that, for i = 1,2, Q; — gi< _ %) o B =%, and F = 5 further, the

characteristic equation of the matrix M is

4
X = tr MO+ AN =) " My A+ detM =0,
i=1
where, M;;, i = 1,2,3,4 is the diagonal minor’s of the matrix M, and
2

— T1GoT _ ~ 9iQ i~y
i=1 v

According to the criteria of Routh-Hurwitz, Ps = (T1,T2,7;,Ys) is locally asymptotically
stable point if the (16) is satisfied. And with this, we have completed the proof.
In the following theorem, we give conditions through which the stability region of the

coexistence point be asymptotically stable.

Theorem 5. Assume that Py = (T1,T2,7Y;,Ys) is locally asymptotically stable point, and
z; > ki, i =1,2.Then, the set B, which is defined below represents an attraction basin for
bBs.
B = {(ﬂfl,xZ,?/layQ) LTy Z Eiuyl S ?1,?/2 = yQ} .
Proof. The function
V(@1 22, 51,42) = Z <96z ~ T Tl 4y — T _giln; )
=1 v (

()

is positive definite .

2
V(J317$27y1ay2) = Z <xl <]— - ;) +yl (]— - z>>
i=1 g g
2

(zi — %) Gi (v1,22) + (yi — ;) Gs (21, 22),

such that

Gi (z1,72) = <g1 <1 — xl) _ oy 0429523/2)
’ k1 1 +x9 T +a2)
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1) Q2T1Y1
G ) = 1 - 3 - )
2 ($1 $2) (92 < k2> T+ x2>
£17172 _
G3 (21, 72) = <_H1 + - pzy2> :
1T X2

It is obvious that (z1 — 1) > 0, (z2 — 2) > 0,G1 (21,22) < 0 and Gg (z1,z2) < 0, so that,

(a:i — fl) Gl (I‘l, 1'2) < 0.
1

2
1=
The function Gs (1, z2) is increasing with respect to x;, i = 1,2, because of the positivity
of it derivative with respect to x; for x; > T;,7 = 1,2 as shown below:

0G 2 0G 2
3(0,23) _ 1% 5 >0, 3(@,2) _ _ e1my 5 >0, for z; > ;i =1,2.
O0xq (1'1 + 5132) Oz (.rl + .7}2)

Now, since G3 (Z1,Z2) = 0, then it is obtained that Gs (z1,z2) > 0, for x; > T;,i = 1,2.
Hence, (y1 — 7;) Gs (z1,22) < 0. So that,

(i — ;) Gi (w1, 22) + (yi — ¥;) Gz (z1,22) <O,

2
=1

(2

V(xlax27ylay2) < 0) v(l‘lul?aylay?) S E_ {(flaf27g17?2)})

and V (Z1,%2,7;,7) = 0. So that, B is an attraction basin for Py = (Z1,T2,7,7s) and
with this, we have completed the proof.

5. LOCAL BIFURCATION

This section is dedicated to the study of the local bifurcation of the three equilibrium
points. Local bifurcation occurs when a small change in the parameter value changes
the behavior of the equilibrium. If the corresponding real part of one eigenvalue of the
equilibrium passes through zero, a steady-state bifurcation occurs, and in the case that the
eigenvalues is not zeros but is purely imaginary, then this is a Hopf-bifurcation [12, 14].

(I) If the equilibrium point P(¥) is locally asymptotically stable and for ¥ = 9* we
have one eigenvalue A (9*) = 0, the bifurcation that occurs is a steady state bifurcation
[6]. The following theorems show that steady-state bifurcation occurs at points Py =
(k1,k2.0,0), Py = (%1, Z2,71,0), and P5 = (&1, 2,0, 72) for the parameters u;, ¢ =1 or 2,
w1, and o, respectively.

Theorem 6. Suppose that, the equilibrium point Ps = (k1,k2.0,0) of the system (2) is
locally asymptotically stable point, then

(i) A steady state bifurcation occurs as puy pass through pj = ],?1112221 ,
_ kikoeo
T kitke

(ii) A steady state bifurcation occurs as p11 pass through
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Proof. (i) From Theorem 2 and the assumption or the theorem that we have that the
eigenvalues of the characteristic equation of J(Ps3) are

)‘1:_917 )\2:_927)\3:

It obvious that Ps = (k1, k2.0,0) do not depends on the parameter up, which means that
P3 do not change with the change of the value of p;. Hence, if p; > pj then P of the
system (2) is locally asymptotically stable point (nod point) and if p; < pj then P; of the
system (2) is unstable point (saddle point).

(ii) The proof is the same as the proof of the first part of this theorem, and with this, we
have completed the proof.

Theorem 7. (i) Suppose that, the equilibrium point Py = (Z1,%2,0,72) of the system
(2) exists and is locally asymptotically stable point then a steady state bifurcation

occurs as pt pass through ps = i%f% + p191-

(ii) Suppose that, the equilibrium point Ps of the system (2) exist and is locally asymp-
totically stable point then a steady state bifurcation occurs as ju1 pass through pj =

€12 ~
Tiz — P2l

Proof. (i) From Theorem 3, the characteristic equation of J(Py) is

3
</\ — Deadiy — p1Y1 + ,uz) (/\3 —trM A+ Z M /\—det./\/l> =0.

i=1

As it is clear from the equation that second algebraic expression ()\3 — tr M2 + Z?Zl Mii)\—det/\A/l/>
of the left side the characteristic equation does not depend on the parameter ps. The equa-
tions (5), (6) and (8), show that the existence of Py does not depends on us. Hence, if
o > ph the P3 of the system (2) is locally asymptotically stable point (nod point) and if
pa < ph the Py of the system (2) is unstable point (saddle point).
(ii) The proof is the same as the proof of first part of this theorem.
And with this, we have completed the proof.

(IT) The local birth or death of a periodic solution from equilibrium as a parameter
passes through a critical value 9* is called Hopf bifurcation.
For the parameter g = g1 = g0, let Py be a locally asymptotically stable equilibrium point

and
3

tI‘MZ M“ == detM, (17)
=1

g* o SoF+/ 55748183
- 254

, is the positive root of the equation (17) where,

S| = ANQQ, Sy = detN — A (Nll + NQQ) — BNgg, S3 = B (Nll + NQQ) ,
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2
A= Z (k@) — T%&5 (an + B1), B = (uy — Terdn),
i—1

kit — D200 g 20, 7% Laq iy
N = 123, ky'E —T2B13)  TBydr |,
—Te125 'y —Teiiy 'y — ey

Theorem 8. Suppose that the equilibrium point Py = (Z1,Z2,71,0), of the system (2)
exists and is locally asymptotically stable for the parameter g = g1 = go, and g* be the pos-
itive root of the equation (17), then a simple Hopf bifurcation occurs as g passes through g*
provided that

(lel + Mv22> <M1 - f€1f1> 97! — Mas (kl_lid—f%éli’ﬂ + ky tig — f25157§) #0.

Proof. Since %5:91 = %—% = %—g; =0, %—ggl = %1 = ¢, then the point Py = (%1, Z2,71,0),
depends smoothly on the parameter g. If there is a simple pair of complex eigenvalues
A1,2 (9) = u £ v of the Jacobian matrix (J (Ps(g))) at the equilibrium point Py (g), such
that, it becomes a purely imaginary at g = ¢*, while all other eigenvalues are real and

negative; and duéz*) # 0, then at g*we have a simple Hopf bifurcation, [5]. It is easy to
deduce,

d(det M) 3 %y dteM A4 db
du (g*) _ < dg =2 Mai tdg _trM?g)
dg

— REND)
2 Z?:l M +2 (tI‘M)
— N2
Because 2 Z?:l M +2 <trM) is positive, so it is sufficient to prove that

d(detM)  —~dSP My =~ dtrtM
W=——"7=——ttM —=——— — M;i—— # 0.
dg dg ; dg
Simple calculation show that

_ d(detM) iﬂ“d M Vi (322, M)
dg

W K22 dg dg

=1
~ —_ ~ ~ ~ 3 —_—~ ~ ~
= (2g) det N — trM (N11 + Noo + 29N33> -3 M (kl‘ljl — 2015 + ky Liy — rzﬁl;zg)

=1
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= trM (Nn + N22> - (gNn + 91\7224-92]\733) (kl_lin—fzal@@ + Ky tag — fZﬂ@@)
= (M + Moz) (y — Terin)g™ — Mg (k&1 — Poni + k' — 128,77,

And with this, we have completed the proof.

Now consider the following equation

3
MY~ M = detM (18)
i=1
sk _ I2F 7"%—47’1T3 is th oy
= — V52— is the positive root of the (18) where

r1 = ANg, 1y =detN — A (Nn + N22) — BN33,r3 =B (Nn + ]\722) )

A=Y (k7'%) — D255 (au + f1), B = (n, — Terdn),

i=1
a2y — kit —T2a132%y —Tayd 1
N = —T28,3 128,75 — ky tia  TBydn and T'= - —
F282g F252i’2g F&Qfl — M2 t

Theorem 9. Suppose that the equilibrium point Ps = (&1, %2,0,92) of the system (2) exists
and is locally asymptotically stable for the parameter g = g1 = g2, and g** be the positive
root of the equation (17), then a simple Hopf bifurcation occurs as g passes through g** pro-
vided that (M1 + Mas) (py — Ter@1)g™! — Mas (ki "1 — T2ondy + ky '@ — 12B,3.) £0,
where § = g~ o, and g** is the positive root of the (17) given above.

Proof. The proof is the same as the proof of Theorem 8.

6. NUMERICAL EXAMPLE

In this section, two numerical examples are given to confirm the obtained theoretical
results in the above sections. Consider is the set of parameters in the following table

Table 1: model parametersl

9 | ki | o Bi fi € pi
0.5 [ 1.9] 0.2 {049 0.12|0.19 | 0.1
051 (181021 05 [0.19] 0.2 | 0.12

The point P3 = (ki, k1,0,0) is unstable, but with p; > pj = 0.1756 is locally asymp-
totically stable as shown in Figure 1, this means P has a steady state bifurcation when
pass throw pj = 0.1756 . The point Py = (1.6927,1.0075,0.731,0), is unstable, see Figure
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2, whether the equilibrium point P; = (1.6934,0.7095,0,0.87686), exist when pus = 0.1,
and is locally asymptotically stable as shown in Figure 3. The point Ps = (1.7098, 1.1715,
0.5096, 0.1007), exist and is locally asymptotically stable as shown in Figure 4.

Now consider the table bellow

Table 2: model parameters 2

Ll gi | ki || Bi | i | € | pi
0.3 2 0.11041]012101] 0.1
041(132]102|05]013|0.2]0.11

The point P; = (k1,k1,0,0) is unstable, but with pq > p7 = 0.12308 and pe > p3 =
0.24615 is locally asymptotically stable as shown in Figure 6 This means P; has a steady
bifurcation when g1 pass throw pj = 0.12308, and py pass throw pj = 0.24615.

The point Py = (1.9630, 3.0872,0.0907,0), is unstable, see Figure 7, whether the equilib-
rium point Ps = (1.4549,1.1749,0,0.9151), exist and is locally asymptotically stable as
shown in Figure 8. The point Ps = does not exist.

-
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Populations a6
=T = =
R ] m o
T T T

o
R
T

=]

0 50 100 150 200 250 300 250 400 450
t-axis
Figure 1: The trajectory of system (2), according to the parameters listed in Table 1 and p; > pi = 0.1756,
starts in (1.7,1.6,0.05,0.08), which located close to Ps tend to Ps.
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Figure 2: The trajectory of system (2), according to the parameters listed in Table 1, starts in the initial point
(1.6,,1,0.7,0.01), which located close to P, and it is moving away from P4 and approaching Ps.
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Figure 3: The trajectory of system (2), according to the parameters listed in table 1, starts in the initial point
(1.6,0.7,0.02,0.8), which located close to Ps, is approaching Ps.
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Figure 4: The trajectory of system (2), according to the parameters listed in Table 1, starts in the initial point
(1.4,1.3,0.3,0.05), which located close to Ps is approaching Fs.
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Figure 5: The trajectory of system (2), according to the parameters listed in Table 1, starts in the initial point
(1.4,1.3,0.3,0.05), which located close to Ps is approaching Ps.
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Figure 6: The trajectory of system (2), according to the parameters listed in Table 2 and 1 > pi = 0.12308,
and p2 > p5 = 0.24615 starts in the initial point (1.8,2.9,0.3,0.1) that located close to P; tends to Ps.
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Figure 7: The trajectory of system (2), according to the parameters listed in Table 2 starts in the initial point
(1.7,2.9,0.07,0.03) that located close to P4 tends to Ps
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Figure 8: The trajectory of system (2), according to the parameters listed in Table 2 starts in the initial point
(1.3,1,0.3,0.8) is located close to Ps tends to Ps

7. CONCLUSION

In this paper, the dynamical behavior of a four-dimensional prey-predator model for
four species was presented. The model has seven equilibrium points, four of them always
exist, whatever the values of the model parameters. The positive trajectory of the model
are bounded under some certain conditions. The system has three, unstable equilibrium
points and four equilibrium points that are asymptotically locally stable under some con-
ditions. The appearance of steady-state and, Hopf bifurcation near the equilibrium points
has been discussed. In the numerical example represented by Table 1, all the possible
equilibrium points exist, and in the example represented by Table 2, the coexistence point
disappeared. In both examples, the steady-state bifurcation was present in the neighbor-
hood of Ps; Py is not stable while Ps is locally asymptotically stable.
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