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Solving the First Order Differential Equations using
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Abstract. In this paper, we use both Newton’s interpolation and Lagrange polynomial to create
cubic polynomials for solving the initial value problems. By this new method, it is simple to solve
linear and nonlinear first order ordinary differential equations and to yield and implement actual
precise results. Some numerical examples are provided to test the performance and illustrate the
efficiency of the method.

2020 Mathematics Subject Classifications: 65L05

Key Words and Phrases: Numerical method, Initial value problems, Newton’s interpolation,
Lagrange polynomial

1. Introduction

Many mathematical models in science and engineering fields ([3],[4],[5],[6],[7],[10],[13])
can be formulated in the form of linear and nonlinear ordinary differential equations
([9],[12]) which need an analytical method ([2],[15],[17]) to solve the exact equations. How-
ever in some problems, we cannot obtain the exact solutions by the analytical method in [7]
for example y′ = x2 + y2. Therefore numerical method is an important tool to solve this
kind of problems such as Euler’s method, Runge-Kutta method ([11],[14]) and Runge-
Kutta-Fehlberg method ([8],[18]). Many methods have been widely developed by a lot
of researchers ([1],[11], [14] and [16]) to solve these problems. Some problems in form
of partial differential equations can be converted to ordinary differential equations form
([10],[13]). In this article, we consider only the first order ordinary differential equations
with an initial condition (initial value problems) in form:

dy

dx
= f(x, y), y(x0) = y0, (1)

where f(x, y) is a known function and the value of initial conditions x0, y0 are also known
numbers. In 2018, to find solutions of (1), [14] used Newton’s interpolation and three
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points to build a quadratic equation by Lagrange method. Also [11] and [16] used New-
ton’s interpolation and constructed a quadratic equation by Aitken’s method to solve the
same problems. Moreover [20] gave an idea to solve these problems for combining Pi-
card’s method and Taylor’s series. Furthermore [21] proposed a new solving technique by
improved Euler’s method. Ultimately [1] applied all techniques from [11], [14], [16], [19],
[20] and [21] to approximate the solution of (1) and other systems of first order ordinary
differential equations. The goal of this study is to estimate approximated solutions and
relative errors by comparing the results of our new method with other methods such as
Euler’s method and methods in [11] and [14].

2. Our proposed method

To improve the accuracy of methods in [11] and [14] which are the same quadratics
solutions, we combine Newton’s interpolation and Lagrange’s method for solving (1) to
create higher degree polynomial. Newton’s interpolation is applied to find four values yi
for i = 0, 1, 2, 3 to form a cubic polynomial, P3(x) = c0+c1x+c2x

2+c3x
3. This polynomial

approximates solutions of (1) by using Lagrange’s method as following.

2.1. Newton’s interpolation method

This method use the initial point (x0, y0) from (1) to estimate the values of a function
from any intermediate values of the independent variables. The general form of the nth

degree polynomial that goes through n+ 1 points ((xi, yi) for i = 0, 1, ..., n) is written as

fn(x) = a0 + a1(x− x0) + a2(x− x0)(x− x1) + ...+ an(x− x0)(x− x1)...(x− xn−1), (2)

where a0, a1, a2, a3, ... are given by

a0 = y0, (3)

a1 =
y1 − y0
x1 − x0

, (4)

a2 =

y2−y1
x2−x1

− y1−y0
x1−x0

x2 − x0
, (5)

a3 =

y3−y2
x3−x2

− y2−y1
x2−x1

x3−x1
−

y2−y1
x2−x1

− y1−y0
x1−x0

x2−x0

x3 − x0
, ... . (6)

Since y1, y2 and y3 in (4)-(6) are unknown values, we use differential values for approxi-
mation i.e. yi−yi−1

xi−xi−1
≈ dy

dx |(xi−1,yi−1). For our method, we require three more values, y1, y2
and y3 which are given by

y1 = a0 + a1(x1 − x0), (7)

y2 = a0 + a1(x2 − x0) + a2(x2 − x0)(x2 − x1), (8)

y3 = a0 + a1(x3 − x0) + a2(x3 − x0)(x3 − x1) + a3(x3 − x0)(x3 − x1)(x3 − x2), (9)

where xi+1 = xi + h and the step size h is very small constant.
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2.2. Lagrange’s method

Lagrange’s method is a method to find a nth degree polynomial that takes on certain
values at an arbitrary point. We have only (x0, y0), (x1, y1), (x2, y2) and (x3, y3) to build
the 3rd degree polynomial equation (cubic function), P3(x) = c0 + c1x+ c2x

2 + c3x
3,

P3(x) =
(x− x1)(x− x2)(x− x3)

(x0 − x1)(x0 − x2)(x0 − x3)
y0 +

(x− x0)(x− x2)(x− x3)

(x1 − x0)(x1 − x2)(x1 − x3)
y1

+
(x− x0)(x− x1)(x− x3)

(x2 − x0)(x2 − x1)(x2 − x3)
y2 +

(x− x0)(x− x1)(x− x2)

(x3 − x0)(x3 − x1)(x3 − x2)
y3. (10)

Then we apply (10) to approximate yi = P3(xi) where i = 4, 5, .., 8 which are the solutions
of (1) as shown in Figure 1.

Figure 1: Showing an initial point, (x0, y0), the red points from the Newton’s interpolation, (x1, y1), (x2, y2)
and (x3, y3) and the solution points by (10).

2.3. Algorithm of our method

# Consider IVP dy/dx = f(x,y) with initial condition y(x0) = y0

1. Define function f(x,y)

2. Set values of initial condition (x0, y0), number of steps (n) and step size (h)

3. Use Newton’s interpolation method to find (x1, y1), (x2, y2) and (x3, y3)

4. Use Lagrange’s method to find P3(x)

5. Set i = 4

6. Loop while i <= n

yi = P3(xi)

xi = xi + h

i = i + 1

7. Display yi as results
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3. Numerical results

We will use our method to find the numerical solutions and relative errors and compare
results with Euler’s method, methods of [11] and [14] in the following examples.

Example 1. Consider the initial value problem

dy

dx
= 1− y, y(0) = 0.

Then take the step size h = 0.1 and use Newton’s interpolation

a0 = 0.0, a1 = 1.0, a2 = −0.499999, a3 = 0.166667

and
y1 = 0.1, y2 = 0.19, y3 = 0.271.

Apply (0, 0), (0.1, 0.1), (0.2, 0.19) and (0.3, 0.271) to find cubic polynomial by (10). Then
we obtain

P3(x) = 0.166667x3 − 0.549997x2 + 1.053333x. (11)

In order to approximate the solutions, we substitute xi in P3(x) to get yi = P3(xi) for

i = 4, 5, ...20 and compute relative error,
∣∣∣yxi−yi

yxi

∣∣∣, where yxi is exact solutions at xi, as

shown in Table 1 and Figure 2. The approximate solutions are close to exact solution
where x ∈ [0, 0.8] and relative errors when x ≥ 0.9 highly increase as show in Figure 2.

Table 1: Showing results of Example 1 with h = 0.1 on xi ∈ [0, 2]

i xi
Approx. Sol. yi Exact Relative errors

Euler [11],[14] Present Solution Euler [11],[14] Present
0 0.00 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
1 0.10 0.100000 0.100000 0.100000 0.095163 0.050833 0.050833 0.050833
2 0.20 0.190000 0.190000 0.190000 0.181282 0.048090 0.048090 0.048090
3 0.30 0.271000 0.270000 0.271000 0.259215 0.045465 0.041608 0.045465
4 0.40 0.343900 0.340000 0.344000 0.329717 0.043017 0.031189 0.043320
5 0.50 0.409510 0.400000 0.410000 0.393490 0.040712 0.016543 0.041957
6 0.60 0.468559 0.450000 0.470000 0.451186 0.038506 0.002628 0.041699
7 0.70 0.521703 0.490000 0.525000 0.503399 0.036361 0.026617 0.042910
8 0.80 0.569533 0.520000 0.576000 0.550681 0.034234 0.055714 0.045978
9 0.90 0.612580 0.540000 0.624000 0.593488 0.032169 0.090124 0.051412
10 1.00 0.651322 0.550000 0.670000 0.632211 0.030228 0.130037 0.059773
11 1.10 0.686189 0.550000 0.715000 0.667221 0.028429 0.175686 0.071609
12 1.20 0.717570 0.540000 0.760000 0.698868 0.026761 0.227322 0.087473
13 1.30 0.745813 0.520000 0.806000 0.727479 0.025202 0.285203 0.107935
14 1.40 0.771232 0.490000 0.854000 0.753364 0.023718 0.349584 0.133583
15 1.50 0.794109 0.450000 0.905000 0.776808 0.022272 0.420706 0.165025
16 1.60 0.814698 0.400000 0.960000 0.798069 0.020837 0.498790 0.202904
17 1.70 0.833228 0.340000 1.020000 0.817336 0.019444 0.584015 0.247956
18 1.80 0.849905 0.270000 1.086000 0.834771 0.018130 0.676558 0.300956
19 1.90 0.864915 0.190000 1.159000 0.850528 0.016915 0.776609 0.362683
20 2.00 0.878423 0.100000 1.240000 0.864758 0.015803 0.884361 0.433928
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Figure 2: Comparing graph of approximate solutions (left) and relative errors (right) in Example 1 with h = 0.1
on xi ∈ [0, 2]

Example 2. Consider the initial value problem

dy

dx
= x2 − y, y(0) = 1.

Then take the step size h = 0.1 and use Newton’s interpolation

a0 = 1.0, a1 = −1.0, a2 = 0.549999, a3 = 0.149999

and
y1 = 0.9, y2 = 0.811, y3 = 0.7339.

Apply (0, 1.0), (0.1, 0.9), (0.2, 0.811) and (0.3, 0.7339) to find cubic polynomial by (10).
Then we obtain

P3(x) = 0.149999x3 + 0.505x2 − 1.052x+ 1. (12)

In order to approximate the solutions, we substitute xi in P3(x) to get yi = P3(xi) for
i = 4, 5, ...20 in (12) and relative error as shown in Table 2 and Figure 3. The approximate
solutions are close to exact solution where x ∈ [0, 0.6] and relative errors when x ≥ 0.7
highly increase as show in Figure 3.
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Table 2: Showing results of Example 2 with h = 0.1 on xi ∈ [0, 2]

i xi
Approx. Sol. yi Exact Relative errors

Euler [11],[14] Present Solution Euler [11],[14] Present
0 0.00 1.000000 1.000000 1.000000 1.000000 0.000000 0.000000 0.000000
1 0.10 0.900000 0.900000 0.900000 0.905163 0.005703 0.005703 0.005703
2 0.20 0.811000 0.811000 0.811000 0.821212 0.012435 0.012435 0.012435
3 0.30 0.733900 0.733000 0.733900 0.749005 0.020167 0.021368 0.020167
4 0.40 0.669510 0.666000 0.669600 0.689391 0.028839 0.033930 0.028708
5 0.50 0.618559 0.610000 0.619000 0.643129 0.038204 0.051513 0.037519
6 0.60 0.581703 0.565000 0.583000 0.610887 0.047773 0.075115 0.045650
7 0.70 0.559533 0.531000 0.562500 0.593241 0.056820 0.104916 0.051818
8 0.80 0.552580 0.508000 0.558400 0.590676 0.064496 0.139968 0.054642
9 0.90 0.561322 0.496000 0.571600 0.603586 0.070023 0.178245 0.052994
10 1.00 0.586189 0.495000 0.603000 0.632280 0.072896 0.217119 0.046308
11 1.10 0.627570 0.505000 0.653500 0.677123 0.073181 0.254198 0.034888
12 1.20 0.685813 0.526000 0.724000 0.738595 0.071462 0.287837 0.019760
13 1.30 0.761232 0.558000 0.815400 0.817114 0.068389 0.317109 0.002097
14 1.40 0.854109 0.601000 0.928600 0.913027 0.064531 0.341750 0.017056
15 1.50 0.964698 0.655000 1.064500 1.026610 0.060307 0.361978 0.036908
16 1.60 1.093228 0.720000 1.224000 1.158067 0.055989 0.378274 0.056934
17 1.70 1.239905 0.796000 1.408000 1.307528 0.051718 0.391218 0.076841
18 1.80 1.404915 0.883000 1.617400 1.475055 0.047551 0.401378 0.096502
19 1.90 1.588423 0.981000 1.853100 1.660676 0.043508 0.409277 0.115871
20 2.00 1.790581 1.090000 2.116000 1.864644 0.039720 0.415438 0.134801

Figure 3: Comparing graph of approximate solutions (left) and relative errors (right) in Example 2 with h = 0.1
on xi ∈ [0, 2]

Example 3. Consider the initial value problem

dy

dx
=

x− y

ex+y
, y(0) = 1.

Then take the step size h = 0.1 and use Newton’s interpolation

a0 = 1.0, a1 = −0.367879, a2 = 0.348868, a3 = −0.129608

and
y1 = 0.963212, y2 = 0.933401, y3 = 0.909791.
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Apply (0, 1.0), (0.1, 0.963212), (0.2, 0.933401) and (0.3, 0.909791) to find cubic polynomial
by (10). Then we obtain

P3(x) = −0.129608x3 + 0.387751x2 − 0.405358x+ 1. (13)

In order to approximate the solutions, we substitute xi in P3(x) to get yi = P3(xi) for
i = 4, 5, ...20 in (13) and relative error as shown in Table 3 and Figure 4. The approximate
solutions are close to exact solution where x ∈ [0, 0.8] and relative errors when x ≥ 0.9
highly increase as show in Figure 4.

Table 3: Showing results of Example 2 with h = 0.1 on xi ∈ [0, 2]

i xi
Approx. Sol. yi Exact Relative errors

Euler [11],[14] Present Solution Euler [11],[14] Present
0 0.00 1.000000 1.000000 1.000000 1.000000 0.000000 0.000000 0.000000
1 0.10 0.963212 0.963212 0.963212 0.966759 0.003669 0.003669 0.003669
2 0.20 0.933401 0.933401 0.933401 0.940092 0.007117 0.007117 0.007117
3 0.30 0.909791 0.910568 0.909791 0.919197 0.010233 0.009387 0.010233
4 0.40 0.891603 0.894712 0.891602 0.903288 0.012936 0.009493 0.012937
5 0.50 0.878092 0.885834 0.878057 0.891643 0.015198 0.006515 0.015237
6 0.60 0.868562 0.883933 0.868380 0.883609 0.017029 0.000366 0.017235
7 0.70 0.862378 0.889009 0.861791 0.878595 0.018457 0.011854 0.019125
8 0.80 0.858974 0.901063 0.857514 0.876075 0.019520 0.028522 0.021186
9 0.90 0.857852 0.920094 0.854771 0.875591 0.020259 0.050826 0.023778
10 1.00 0.858579 0.946102 0.852784 0.876747 0.020723 0.079105 0.027332
11 1.10 0.860783 0.979088 0.850776 0.879215 0.020964 0.113594 0.032346
12 1.20 0.864150 1.019051 0.847968 0.882720 0.021037 0.154444 0.039369
13 1.30 0.868413 1.065991 0.843583 0.886895 0.020840 0.201936 0.048835
14 1.40 0.873349 1.119909 0.836845 0.891563 0.020430 0.256119 0.061373
15 1.50 0.878771 1.180804 0.826974 0.896627 0.019915 0.316940 0.077684
16 1.60 0.884528 1.248677 0.813193 0.902001 0.019371 0.384342 0.098456
17 1.70 0.890492 1.323527 0.794725 0.907601 0.018850 0.458270 0.124368
18 1.80 0.896562 1.405354 0.770792 0.913352 0.018383 0.538677 0.156085
19 1.90 0.902655 1.494159 0.740616 0.919185 0.017984 0.625525 0.194269
20 2.00 0.908704 1.589941 0.703420 0.925037 0.017657 0.718787 0.239576

Figure 4: Comparing graph of approximate solutions (left) and relative errors (right) in Example 3 with h = 0.1
on xi ∈ [0, 2]
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4. Conclusions

In this article, we studied many numerical techniques for solving initial value problems.
Then we decide to combine the Newton’s interpolation and Lagrange’s method to construct
cubic polynomials as the solutions of linear and nonlinear of ordinary differential equations.
We compared our numerical results and relative errors with the results of Euler’s method,
methods from [11] and [14] and exact solutions. From Example 1-3, when we compare
the result in other methods, our method gives numerical approximated solutions which
is much closer to the exact solutions as shown in Table 1-3. Also our relative errors are
nearly close to zero and much smaller than errors from [11] and [14] methods as shown
in Figure 2-4. Notice that to compute each yi in each step size of Euler’s method is so
much time-consuming. Therefore, our method is much more accurate and simpler to find
approximated solutions directly from yi = P3(xi) at any value of xi. For the future work,
we aim to apply our method to solve other systems of first order differential equations or
higher order differential equations.
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