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1. Introduction

The concept of semi-continuity was first introduced by Levine [13]. In 1982, Mash-
hour et al. [15] introduced and investigated the notion of precontinuous functions. Abd
El-Monsef et al. [7] introduced the notion of β-continuous functions as a generalization
of semi-continuous functions [13] and precontinuous functions [15]. Borśık and Doboš
[4] introduced the notion of almost quasi-continuity which is weaker than that of quasi-
continuity [14] and investigated a decomposition theorem of quasi-continuity. Popa and
Noiri [17] investigated some characterizations of β-continuity and showed that almost
quasi-continuity is equivalent to β-continuity. In 1993, Popa and Noiri [18] extended the
concept of β-continuous functions to multifunctions and introduced the notions of upper
and lower β-continuous multifunctions. Moreover, the relationships between β-continuous
mulfunctions and quasi-continuous multifunctions were established in [17]. Noiri and Popa
[16] introduced and studied the concepts of upper and lower almost β-continuous mul-
functions. In 2003, Hatir et al. [8] introduced and investigated the notions of strong
β-I -open sets and strongly β-I -continuous functions in ideal topological spaces. Hatir
et al. [9] investigated further properties of strong β-I -open sets and strongly β-I -
continuous functions. In 2019, Boonpok [2] introduced and studied the concepts of upper
and lower ⋆-continuous multifunctions in ideal topological spaces. In [3], the present
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author introduced and investigated the notions of upper and lower β(⋆)-continuous mul-
tifunctions. The purpose of the present paper is to introduce the notions of upper and
lower sβ(⋆)-continuous multifunctions. Furthermore, several characterizations of upper
and lower sβ(⋆)-continuous multifunctions are investigated. Moreover, the relationships
between sβ(⋆)-continuous multifunctions and almost sβ(⋆)-continuous multifunctions are
discussed.

2. Preliminaries

Throughout the present paper, spaces (X, τ) and (Y, σ) (or simply X and Y ) always
mean topological spaces on which no separation axioms are assumed unless explicitly
stated. Let A be a subset of a topological space (X, τ). The closure of A and the interior
of A are denoted by Cl(A) and Int(A), respectively. An ideal I on a topological space
(X, τ) is a nonempty collection of subsets of X satisfying the following properties: (1)
A ∈ I and B ⊆ A imply B ∈ I ; (2) A ∈ I and B ∈ I imply A∪B ∈ I . A topological
space (X, τ) with an ideal I on X is called an ideal topological space and is denoted by
(X, τ,I ). For an ideal topological space (X, τ,I ) and a subset A of X, A⋆(I ) is defined
as follows: A⋆(I ) = {x ∈ X : U ∩A ̸∈ I for every open neighbourhood U of x}. In case
there is no chance for confusion, A⋆(I ) is simply written as A⋆. In [12], A⋆ is called the
local function of A with respect to I and τ and Cl⋆(A) = A⋆ ∪ A defines a Kuratowski
closure operator for a topology τ⋆(I ) finer than τ . A subset A is said to be ⋆-closed [11]
if A⋆ ⊆ A. The interior of a subset A in (X, τ⋆(I )) is denoted by Int⋆(A).

By a multifunction F : X → Y , we mean a point-to-set correspondence from X into
Y , and we always assume that F (x) ̸= ∅ for all x ∈ X. For a multifunction F : X → Y ,
following [1] we shall denote the upper and lower inverse of a set B of Y by F+(B) and
F−(B), respectively, that is, F+(B) = {x ∈ X | F (x) ⊆ B} and

F−(B) = {x ∈ X | F (x) ∩B ̸= ∅}.

In particular, F−(y) = {x ∈ X | y ∈ F (x)} for each point y ∈ Y . For each A ⊆ X,
F (A) = ∪x∈AF (x).

Lemma 1. For a subset A of an ideal topological space (X, τ,I ), the following properties
hold:

(1) If V ∈ τ , then V ∩ Cl⋆(A) ⊆ Cl⋆(V ∩A) [9].

(2) If F is closed in X, then Int⋆(A ∪ F ) ⊆ Int⋆(A) ∪ F .

A subset A of an ideal topological space (X, τ,I ) is called semi-I -open [10] (resp.
pre⋆I -open [5], strong β-I -open [8]) if A ⊆ Cl⋆(Int(A)) (resp. A ⊆ Int⋆(Cl(A)), A ⊆
Cl⋆(Int(Cl⋆(A)))). The complement of a semi-I -open (resp. pre⋆I -open, strong β-I -
open) set is called semi-I -closed [10] (resp. pre⋆I -closed [5], strong β-I -closed [8]). The
strong β-I -closure (resp. semi-I -closure) [6] of a subset A of an ideal topological space
(X, τ,I ), denoted by sβClI (A) (resp. sClI (A)), is defined by the intersection of all
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strong β-I -closed (resp. semi-I -closed) sets of X containing A. Let A be a subset of an
ideal topological space (X, τ,I ). The union of all strong β-I -open sets of X contained
in A is called the strong β-I -interior of A and is denoted by sβIntI (A).

Lemma 2. For a subset A of an ideal topological space (X, τ,I ), the following properties
hold:

(1) sClI (A) = A ∪ Int⋆(Cl(A)) [6].

(2) sβClI (A) = A ∪ Int⋆(Cl(Int⋆(A))) [6].

(3) sβIntI (A) = A ∩ Cl⋆(Int(Cl⋆(A))).

Proof. (3) We observe that

A ∩ Cl⋆(Int(Cl⋆(A))) ⊆ Cl⋆(Int(Cl⋆(A)))

= Cl⋆(Int(Cl⋆(A) ∩ Int(Cl⋆(A))))

⊆ Cl⋆(Int(Cl⋆(A ∩ Int(Cl⋆(A)))))

⊆ Cl⋆(Int(Cl⋆(A ∩ Cl⋆(Int(Cl⋆(A)))))).

Thus, A∩Cl⋆(Int(Cl⋆(A))) is strong β-I -open and so A∩Cl⋆(Int(Cl⋆(A))) ⊆ sβIntI (A).
On the other hand, since sβIntI (A) is strong-β-I -open, we have

sβIntI (A) ⊆ Cl⋆(Int(Cl⋆(sβIntI (A)))) ⊆ Cl⋆(Int(Cl⋆(A)))

and hence sβIntI (A) ⊆ A ∩ Cl⋆(Int(Cl⋆(A))). Thus, sβIntI (A) = A ∩ Cl⋆(Int(Cl⋆(A))).

Lemma 3. Let V be a subset of an ideal topological space (X, τ,I ). If V is ⋆-open, then
sClI (V ) = Int⋆(Cl(V )).

Proof. Suppose that V is ⋆-open. Then, we have V ⊆ Int⋆(Cl(V )), by Lemma 2,
sClI (V ) = V ∪ Int⋆(Cl(V )) = Int⋆(Cl(V )).

Lemma 4. Let A be a subset of an ideal topological space (X, τ,I ) and x ∈ X. Then,
x ∈ sβClI (A) if and only if U ∩A ̸= ∅ for every strong β-I -open set U containing x.

Proof. Let x ∈ sβClI (A). Suppose that U ∩A = ∅ for some strong β-I -open set U of
X containing x. Then, A ⊆ X−U and X−U is strong β-I -closed. Since x ∈ sβClI (A),
we have x ∈ sβClI (X − U) = X − U ; hence x ̸∈ U , which is a contradiction that x ∈ U .
Thus, U ∩A ̸= ∅ for every strong β-I -open set U containing x.

Conversely, assume that U ∩ A ̸= ∅ for every strong β-I -open set U of X containing
x. We shall show that x ∈ sβClI (A). Suppose that x ̸∈ sβClI (A). Then, there exists a
strong β-I -closed set F such that A ⊆ F and x ̸∈ F . Thus, X − F is a strong β-I -open
set containing x such that (X − F ) ∩ A = ∅. This a contradiction to U ∩ A ̸= ∅; hence
x ∈ sβClI (A).
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Lemma 5. For a subset A of an ideal topological space (X, τ,I ), the following properties
are hold:

(1) X − sβClI (A) = sβIntI (X −A).

(2) X − sβIntI (A) = sβClI (X −A).

Proof. (1) Let x ∈ X − sβClI (A). Then, x ̸∈ sβClI (A) and there exists a strong
β-I -open set V of X containing x such that V ∩ A = ∅. Thus, V ⊆ X − A and hence
x ∈ sβIntI (X−A). This shows that X−sβClI (A) ⊆ sβIntI (X−A). On the other hand,
let x ∈ sβIntI (X−A). Then, there exists a strong β-I -open set V of X containing x such
that V ⊆ X−A and so V ∩A = ∅. By Lemma 4, x ̸∈ sβClI (A); hence x ∈ X−sβClI (A).
Thus, sβIntI (X −A) ⊆ X − sβClI (A) and so X − sβClI (A) = sβIntI (X −A).

(2) This follows from (1).

3. Upper and lower sβ(⋆)-continuous multifunctions

In this section, we introduce the notions of upper and lower sβ(⋆)-continuous multi-
functions. Moreover, several characterizations of upper and lower sβ(⋆)-continuous mul-
tifunctions are discussed.

Definition 1. A multifunction F : (X, τ,I ) → (Y, σ,J ) is said to be:

(1) upper sβ(⋆)-continuous at a point x ∈ X if, for each ⋆-open set V of Y containing
F (x), there exists a strong β-I -open set U of X containing x such that F (U) ⊆ V ;

(2) lower sβ(⋆)-continuous at a point x ∈ X if, for each ⋆-open set V of Y such that
F (x) ∩ V ̸= ∅, there exists a strong β-I -open set U of X containing x such that
F (z) ∩ V ̸= ∅ for every z ∈ U ;

(3) upper (resp. lower) sβ(⋆)-continuous if F has this property at each point of X.

Theorem 1. A multifunction F : (X, τ,I ) → (Y, σ,J ) is upper sβ(⋆)-continuous at
x ∈ X if and only if x ∈ sβIntI (F+(V )) for every ⋆-open set V of Y containing F (x).

Proof. Let V be any ⋆-open set of Y containing F (x). Then, there exists a strong
β-I -open set U of X containing x such that F (U) ⊆ V . Then, U ⊆ F+(V )). Since U
is strong β-I -open, we have x ∈ U ⊆ Cl⋆(Int(Cl⋆(U))) ⊆ Cl⋆(Int(Cl⋆(F+(V )))). Since
x ∈ F+(V ) and by Lemma 2, x ∈ F+(V ) ∩ Cl⋆(Int(Cl⋆(F+(V )))) = sβIntI (F+(V )).

Conversely, let V be any ⋆-open set of Y containing F (x). By (2), x ∈ sβIntI (F+(V ))
and so there exists a strong β-I -open set U of X containing x such that U ⊆ F+(V );
hence F (U) ⊆ V . This shows that F is upper sβ(⋆)-continuous at x.

Theorem 2. A multifunction F : (X, τ,I ) → (Y, σ,J ) is lower sβ(⋆)-continuous at x ∈
X if and only if x ∈ sβIntI (F−(V )) for every ⋆-open set V of Y such that F (x)∩V ̸= ∅.
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Proof. The proof is similar to that of Theorem 1.

Definition 2. A function f : (X, τ,I ) → (Y, σ,J ) is called sβ(⋆)-continuous at a point
x ∈ X if, for each ⋆-open set V of Y containing f(x), there exists a strong β-I -open set
U of X containing x such that f(U) ⊆ V . A function f : (X, τ,I ) → (Y, σ,J ) is called
sβ(⋆)-continuous if f has this property at each point of X.

Corollary 1. A function f : (X, τ,I ) → (Y, σ,J ) is sβ(⋆)-continuous at x ∈ X if and
only if x ∈ sβIntI (f−1(V )) for every ⋆-open set V of Y containing f(x).

Theorem 3. For a multifunction F : (X, τ,I ) → (Y, σ,J ), the following properties are
equivalent:

(1) F is upper sβ(⋆)-continuous;

(2) F+(V ) is strong β-I -open in X for every ⋆-open set V of Y ;

(3) F−(K) is strong β-I -closed in X for every ⋆-closed set K of Y ;

(4) sβClI (F−(B)) ⊆ F−(Cl⋆(B)) for every subset B of Y ;

(5) Int⋆(Cl(Int⋆(F−(B)))) ⊆ F−(Cl⋆(B)) for every subset B of Y .

Proof. (1) ⇒ (2): Let V be any ⋆-open set of Y and x ∈ F+(V ). There exists a strong
β-I -open set U of X containing x such that F (U) ⊆ V . Thus,

x ∈ U ⊆ Cl⋆(Int(Cl⋆(U))) ⊆ Cl⋆(Int(Cl⋆(F+(V ))))

and hence F+(V ) ⊆ Cl⋆(Int(Cl⋆(F+(V )))). This shows that F+(V ) is strong β-I -open
in X.

(2) ⇒ (3): This follows from the fact that F+(Y −B) = X − F−(B) for every subset
B of Y .

(3) ⇒ (4): For any subset B of Y , Cl⋆(B) is ⋆-closed in Y and by (3), we have
F−(Cl⋆(B)) is strong β-I -closed in X. Thus, sβClI (F−(B)) ⊆ F−(Cl⋆(B)).

(4) ⇒ (5): Let B be any subset of Y . By (4) and Lemma 2,

Int⋆(Cl(Int⋆(F−(B)))) ⊆ sβClI (F−(B)) ⊆ F−(Cl⋆(B)).

(5) ⇒ (2): Let V be any ⋆-open set of Y . Then, Y − V is ⋆-closed in Y and by (5),

X − F+(V ) = F−(Y − V )

⊇ Int⋆(Cl(Int⋆(F−(Y − V ))))

= Int⋆(Cl(Int⋆(X − F+(V ))))

= X − Cl⋆(Int(Cl⋆(F+(V )))).

Thus, F+(V ) ⊆ Cl⋆(Int(Cl⋆(F+(V )))) and so F+(V ) is strong β-I -open in X.
(2) ⇒ (1): Let x ∈ X and V be any ⋆-open set of Y containing F (x). By (2), we have

F+(V ) is strong β-I -open in X. Put U = F+(V ). Then, U is a strong β-I -open set of
X containing x such that F (U) ⊆ V . This shows that F is upper sβ(⋆)-continuous.
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Theorem 4. For a multifunction F : (X, τ,I ) → (Y, σ,J ), the following properties are
equivalent:

(1) F is lower sβ(⋆)-continuous;

(2) F−(V ) is strong β-I -open in X for every ⋆-open set V of Y ;

(3) F+(K) is strong β-I -closed in X for every ⋆-closed set K of Y ;

(4) sβClI (F+(B)) ⊆ F+(Cl⋆(B)) for every subset B of Y ;

(5) Int⋆(Cl(Int⋆(F+(B)))) ⊆ F+(Cl⋆(B)) for every subset B of Y ;

(6) F (Int⋆(Cl(Int⋆(A)))) ⊆ Cl⋆(F (A)) for every subset A of X;

(7) F (sβClI (A)) ⊆ Cl⋆(F (A)) for every subset A of X.

Proof. It is shown similarly to the proof of Theorem 3 that the statements (1), (2),
(3), (4) and (5) are equivalent. We shall prove only the following implications.

(5) ⇒ (6): Let A be any subset of X. By (5), we have

Int⋆(Cl(Int⋆(F+(F (A))))) ⊆ F+(Cl⋆(F (A)))

and hence F (Int⋆(Cl(Int⋆(A)))) ⊆ Cl⋆(F (A)).
(6) ⇒ (7): Let A be any subset of X. By (6) and Lemma 2, we have

F (sβClI (A)) = F (A ∪ Int⋆(Cl(Int⋆(A))))

= F (A) ∪ F (Int⋆(Cl(Int⋆(A))))

⊆ Cl⋆(F (A)).

(7) ⇒ (3): Let K be any ⋆-closed set of Y . By (7),

F (sβClI (F+(K))) ⊆ Cl⋆(F (F+(K))) ⊆ Cl⋆(K) = K.

Thus, sβClI (F+(K)) ⊆ F+(K) and hence F+(K) is strong β-I -closed in X.

Corollary 2. For a function f : (X, τ,I ) → (Y, σ,J ), the following properties are
equivalent:

(1) f is sβ(⋆)-continuous;

(2) f−1(V ) is strong β-I -open in X for every ⋆-open set V of Y ;

(3) f−1(K) is strong β-I -closed in X for every ⋆-closed set K of Y ;

(4) sβClI (f−1(B)) ⊆ f−1(Cl⋆(B)) for every subset B of Y ;

(5) Int⋆(Cl(Int⋆(f−1(B)))) ⊆ f−1(Cl⋆(B)) for every subset B of Y ;

(6) f(Int⋆(Cl(Int⋆(A)))) ⊆ Cl⋆(f(A)) for every subset A of X;

(7) f(sβClI (A)) ⊆ Cl⋆(f(A)) for every subset A of X.
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4. Upper and lower almost sβ(⋆)-continuous multifunctions

We begin this section by introducing the notions of upper and lower almost sβ(⋆)-
continuous multifunctions.

Definition 3. A multifunction F : (X, τ,I ) → (Y, σ,J ) is said to be:

(1) upper almost sβ(⋆)-continuous at a point x ∈ X if, for each ⋆-open set V of Y
containing F (x), there exists a strong β-I -open set U of X containing x such that
F (U) ⊆ Int⋆(Cl(V ));

(2) lower almost sβ(⋆)-continuous at a point x ∈ X if, for each ⋆-open set V of Y such
that F (x) ∩ V ̸= ∅, there exists a strong β-I -open set U of X containing x such
that F (z) ∩ Int⋆(Cl(V )) ̸= ∅ for every z ∈ U ;

(3) upper (resp. lower) almost β(⋆)-continuous if F has this property at each point of
X.

Remark 1. For a multifunction F : (X, τ,I ) → (Y, σ,J ), the following implication
holds:

upper sβ(⋆)-continuity ⇒ upper almost sβ(⋆)-continuity.

The converse of the implication is not true in general. We give an example for the
implication as follows.

Example 1. Let X = {1, 2, 3} with a topology τ = {∅, X} and an ideal I = {∅}. Let
Y = {a, b, c} with a topology σ = {∅, {b}, Y } and an ideal J = {∅, {b}}. A multifunction
F : (X, τ,I ) → (Y, σ,J ) is defined as follows: F (1) = {b} and F (2) = F (3) = {a, c}.
Then, F is upper almost sβ(⋆)-continuous but F is not upper sβ(⋆)-continuous, since
{a, c} is ⋆-open in Y but F+({a, c}) is not strong β-I -open in X.

Theorem 5. A multifunction F : (X, τ,I ) → (Y, σ,J ) is upper almost sβ(⋆)-continuous
at x ∈ X if and only if x ∈ sβIntI (F+(sClJ (V ))) for every ⋆-open set V of Y containing
F (x).

Proof. Let V be any ⋆-open set of Y containing F (x). Then, there exists a strong
β-I -open set U of X containing x such that F (U) ⊆ Int⋆(Cl(V )) = sClJ (V ); hence
U ⊆ F+(sClJ (V )). Since U is strong β-I -open, we have

x ∈ U ⊆ Cl⋆(Int(Cl⋆(U))) ⊆ Cl⋆(Int(Cl⋆(F+(sClJ (V ))))).

Since x ∈ F+(V ) ⊆ F+(sClJ (V )) and by Lemma 2,

x ∈ F+(sClJ (V )) ∩ Cl⋆(Int(Cl⋆(sClJ (V )))) = sβIntI (F+(sClJ (V ))).

Conversely, let V be any ⋆-open set of Y containing F (x). Then, we have

x ∈ sβIntI (F+(sClJ (V )))
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and so there exists a strong β-I -open set U ofX containing x such that U ⊆ F+(sClJ (V ));
hence F (U) ⊆ sClJ (V ) = Int⋆(Cl(V )). This shows that F is upper almost β(⋆)-
continuous at x.

Theorem 6. A multifunction F : (X, τ,I ) → (Y, σ,J ) is lower almost sβ(⋆)-continuous
at x ∈ X if and only if x ∈ sβIntI (F−(sClJ (V ))) for every ⋆-open set V of Y such that
F (x) ∩ V ̸= ∅.

Proof. The proof is similar to that of Theorem 5.

Definition 4. A function f : (X, τ,I ) → (Y, σ,J ) is called almost sβ(⋆)-continuous
at a point x ∈ X if, for each ⋆-open set V of Y containing f(x), there exists a strong
β-I -open set U of X containing x such that f(U) ⊆ Int⋆(Cl(V )). A function

f : (X, τ,I ) → (Y, σ,J )

is called almost β(⋆)-continuous if f has this property at each point of X.

Corollary 3. A function f : (X, τ,I ) → (Y, σ,J ) is almost sβ(⋆)-continuous at x ∈ X
if and only if x ∈ sβIntI (f−1(sClJ (V ))) for every ⋆-open set V of Y containing f(x).

Recall that a subset A of an ideal topological space (X, τ,I ) is said to be R⋆-I -open
[2] if A = Int⋆(Cl(A)). The complement of a R⋆-I -open set is said to be R⋆-I -closed.

Theorem 7. For a multifunction F : (X, τ,I ) → (Y, σ,J ), the following properties are
equivalent:

(1) F is upper almost sβ(⋆)-continuous;

(2) for each x ∈ X and each ⋆-open set V of Y containing F (x), there exists a strong
β-I -open set U of X containing x such that F (U) ⊆ sClJ (V );

(3) for each x ∈ X and each R⋆-J -open set V of Y containing F (x), there exists a
strong β-I -open set U of X containing x such that F (U) ⊆ V ;

(4) F+(V ) is strong β-I -open in X for every R⋆-J -open set V of Y ;

(5) F−(K) is strong β-I -closed in X for every R⋆-J -closed set K of Y ;

(6) F+(V ) ⊆ sβIntI (F+(sClJ (V ))) for every ⋆-open set V of Y ;

(7) sβClI (F−(sIntJ (K))) ⊆ F−(K) for every ⋆-closed set K of Y ;

(8) sβClI (F−(Cl⋆(Int(K)))) ⊆ F−(K) for every ⋆-closed set K of Y ;

(9) sβClI (F−(Cl⋆(Int(Cl⋆(B))))) ⊆ F−(Cl⋆(B)) for every subset B of Y ;

(10) Int⋆(Cl( Int⋆(F−(Cl⋆(Int(K)))))) ⊆ F−(K) for every ⋆-closed set K of Y ;
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(11) Int⋆(Cl(Int⋆(F−(sIntJ (K))))) ⊆ F−(K) for every ⋆-closed set K of Y ;

(12) F+(V ) ⊆ Cl⋆(Int(Cl⋆(F+(sClJ (V ))))) for every ⋆-open set V of Y .

Proof. (1) ⇒ (2) and (2) ⇒ (3): The proofs are obvious.
(3) ⇒ (4): Let V be any ⋆-open set of Y and x ∈ F+(V ). Then, F (x) ⊆ V and so

there exists a strong β-I -open set Ux of X containing x such that F (Ux) ⊆ V . Thus,
x ∈ Ux ⊆ F+(V ) and hence F+(V ) = ∪x∈F+(V )Ux. This shows that F+(V ) is strong
β-I -open in X.

(4) ⇒ (5): This follows from the fact that F+(Y −B) = Y − F−(B) for every subset
B of Y .

(5) ⇒ (6): Let V be any ⋆-open set of Y and x ∈ F+(V ). Then, F (x) ⊆ V ⊆ sClJ (V )
and hence x ∈ F+(sClJ (V )) = X − F−(Y − sClJ (V )). Since Y − sClJ (V ) is R⋆-J -
closed, we have F−(Y − sClJ (V )) is strong β-I -closed in X. Thus, F+(sClJ (V )) is a
strong β-I -open set of X containing x and so x ∈ sβIntI (F+(sClJ (V ))). This shows
that F+(V ) ⊆ sβIntI (F+(sClJ (V ))).

(6) ⇒ (7): Let K be any ⋆-closed set of Y . Then, since Y −K is ⋆-open and by (6),

X − F−(K) = F+(Y −K)

⊆ sβIntI (F+(sClJ (Y −K)))

= sβIntI (F+(Y − sIntJ (K)))

= sβIntI (X − F−(sIntJ (K)))

= X − sβClI (F−(sIntJ (K))).

Thus, sβClI (F−(sIntJ (K))) ⊆ F−(K).
(7) ⇒ (8): The proof is obvious since sIntJ (K) = Cl⋆(Int(K)) for every ⋆-closed set

K of Y .
(8) ⇒ (9): The proof is obvious.
(9) ⇒ (10): By (9) and Lemma 2,

Int⋆(Cl(Int⋆(F−(Cl⋆(Int⋆(K)))))) ⊆ sβClI (F−(Cl⋆(Int(K))))

⊆ sβClI (F−(Cl⋆(Int(Cl⋆(K)))))

⊆ F−(Cl⋆(K)) = F−(K).

(10) ⇒ (11): The proof is obvious since sIntJ (K) = Cl⋆(Int(K)) for every ⋆-closed
set K of Y .

(11) ⇒ (12): Let V be any ⋆-open set of Y . Then, Y −V is ⋆-closed in Y and by (11),

Int⋆(Cl(Int⋆(F−(sIntJ (Y − V ))))) ⊆ F−(Y − V ) = X − F+(V ).

Moreover, we have

Int⋆(Cl(Int⋆(F−(sIntJ (Y − V ))))) = Int⋆(Cl(Int⋆(F−(Y − sClJ (V )))))

= Int⋆(Cl(Int⋆(X − F+(sClJ (V )))))
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= X − Cl⋆(Int(Cl⋆(F+(sClJ (V ))))).

Thus, F+(V ) ⊆ Cl⋆(Int(Cl⋆(F+(sClJ (V ))))).
(12) ⇒ (1): Let x be any point of X and V be any ⋆-open set of Y containing F (x).

Then, we have x ∈ F+(V ) ⊆ Cl⋆(Int(Cl⋆(F+(sClJ (V ))))) and hence

x ∈ sβIntI (F+(sClJ (V ))).

Thus, F is upper almost sβ(⋆)-continuous at x by Theorem 5.

Theorem 8. For a multifunction F : (X, τ,I ) → (Y, σ,J ), the following properties are
equivalent:

(1) F is lower almost sβ(⋆)-continuous;

(2) for each x ∈ X and each ⋆-open set V of Y such that F (x) ∩ V ̸= ∅, there exists a
strong β-I -open set U of X containing x such that U ⊆ F−(sClJ (V ));

(3) for each x ∈ X and each R⋆-J -open set V of Y such that F (x)∩V ̸= ∅, there exists
a strong β-I -open set U of X containing x such that U ⊆ F−(V );

(4) F−(V ) is strong β-I -open in X for every R⋆-J -open set V of Y ;

(5) F+(K) is strong β-I -closed in X for every R⋆-J -closed set K of Y ;

(6) F−(V ) ⊆ sβIntI (F−(sClJ (V ))) for every ⋆-open set V of Y ;

(7) sβClI (F+(sIntJ (K))) ⊆ F+(K) for every ⋆-closed set K of Y ;

(8) sβClI (F+(Cl⋆(Int(K)))) ⊆ F+(K) for every ⋆-closed set K of Y ;

(9) sβClI (F+(Cl⋆(Int(Cl⋆(B))))) ⊆ F+(Cl⋆(B)) for every subset B of Y ;

(10) Int⋆(Cl( Int⋆(F+(Cl⋆(Int(K)))))) ⊆ F+(K) for every ⋆-closed set K of Y ;

(11) Int⋆(Cl( Int⋆(F+(sIntJ (K))))) ⊆ F+(K) for every ⋆-closed set K of Y ;

(12) F−(V ) ⊆ Cl⋆( Int(Cl⋆(F−(sClJ (V ))))) for every ⋆-open set V of Y .

Proof. The proof is similar to that of Theorem 7.

Corollary 4. For a function f : (X, τ,I ) → (Y, σ,J ), the following properties are
equivalent:

(1) f is almost sβ(⋆)-continuous;

(2) for each x ∈ X and each ⋆-open set V of Y containing f(x), there exists a strong
β-I -open set U of X containing x such that f(U) ⊆ sClJ (V );
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(3) for each x ∈ X and each R⋆-J -open set V of Y containing f(x), there exists a
strong β-I -open set U of X containing x such that f(U) ⊆ V ;

(4) f−1(V ) is strong β-I -open in X for every R⋆-J -open set V of Y ;

(5) f−1(K) is strong β-I -closed in X for every R⋆-J -closed set K of Y ;

(6) f−1(V ) ⊆ sβIntI (f−1(sClJ (V ))) for every ⋆-open set V of Y ;

(7) sβClI (f−1(sIntJ (K))) ⊆ f−1(K) for every ⋆-closed set K of Y ;

(8) sβClI (f−1(Cl⋆(Int(K)))) ⊆ f−1(K) for every ⋆-closed set K of Y ;

(9) sβClI (f−1(Cl⋆(Int(Cl⋆(B))))) ⊆ f−1(Cl⋆(B)) for every subset B of Y ;

(10) Int⋆(Cl( Int⋆(f−1(Cl⋆(Int(K)))))) ⊆ f−1(K) for every ⋆-closed set K of Y ;

(11) Int⋆(Cl( Int⋆(f−1(sIntJ (K))))) ⊆ f−1(K) for every ⋆-closed set K of Y ;

(12) f−1(V ) ⊆ Cl⋆( Int(Cl⋆(f−1(sClJ (V ))))) for every ⋆-open set V of Y .

Theorem 9. For a multifunction F : (X, τ,I ) → (Y, σ,J ), the following properties are
equivalent:

(1) F is upper almost sβ(⋆)-continuous;

(2) sβClI (F−(V )) ⊆ F−(Cl⋆(V )) for every strong β-J -open set V of Y ;

(3) sβClI (F−(V )) ⊆ F−(Cl⋆(V )) for every semi-J -open set V of Y ;

(4) F+(V ) ⊆ sβIntI (F+(Int⋆(Cl(V )))) for every pre⋆J -open set V of Y .

Proof. (1) ⇒ (2): Let V be any strong β-J -open set of Y . Since Cl⋆(V ) is R⋆-J -
closed, by Theorem 7, F−(Cl⋆(V )) is strong β-I -closed in X and hence

sβClI (F−(V )) ⊆ F−(Cl⋆(V )).

(2) ⇒ (3): This is obvious since every semi-J -open set is strong β-J -open.
(3) ⇒ (4): Let V be any pre⋆J -open set of Y . Then, we have V ⊆ Int⋆(Cl(V )) and

Y − V ⊇ Cl⋆(Int(Y − V )). Since Cl⋆(Int(Y − V )) is semi-J -open in Y and by (3),

X − F+(V ) = F−(Y − V )

⊇ F−(Cl⋆(Int(Y − V )))

⊇ sβClI (F−(Cl⋆(Int(Y − V ))))

= sβClI (F−(Y − Int⋆(Cl(V ))))

= sβClI (X − F+(Int⋆(Cl(V ))))

= X − sβIntI (F+(Int⋆(Cl(V )))).
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Thus, F+(V ) ⊆ sβIntI (F+(Int⋆(Cl(V )))).
(4) ⇒ (1): Let V be any R⋆-J -open set of Y . Then, V is pre⋆J -open in Y and by

(4), F+(V ) ⊆ sβIntI (F+(Int⋆(Cl(V )))) = sβIntI (F+(V )) and hence F+(V ) is strong
β-I -open in X. It follows from Theorem 7 that F is upper almost sβ(⋆)-continuous.

Theorem 10. For a multifunction F : (X, τ,I ) → (Y, σ,J ), the following properties
are equivalent:

(1) F is lower almost sβ(⋆)-continuous;

(2) sβClI (F−(V )) ⊆ F−(Cl⋆(V )) for every strong β-J -open set V of Y ;

(3) sβClI (F−(V )) ⊆ F−(Cl⋆(V )) for every semi-J -open set V of Y ;

(4) F+(V ) ⊆ sβIntI (F+(Int⋆(Cl(V )))) for every pre⋆J -open set V of Y .

Proof. The proof is similar to that of Theorem 9.

Corollary 5. For a function f : (X, τ,I ) → (Y, σ,J ), the following properties are
equivalent:

(1) f is almost sβ(⋆)-continuous;

(2) sβClI (f−1(V )) ⊆ f−1(Cl⋆(V )) for every strong β-J -open set V of Y ;

(3) sβClI (f−1(V )) ⊆ f−1(Cl⋆(V )) for every semi-J -open set V of Y ;

(4) f−1(V ) ⊆ sβIntI (f−1(Int⋆(Cl(V )))) for every pre⋆J -open set V of Y .
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