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1. Introduction

In topology, there has been recently significant interest in characterizing and inves-
tigating the characterizations of some weak forms of continuity for functions and multi-
functions. As weak forms of continuity in topological spaces, weak continuity [12], quasi-
continuity [14], semi-continuity [13] and almost continuity in the sense of Husain [9] are
well-known. It is shown in [15] that quasicontinuity is equivalent to semi-continuity. It
will be shown that weak continuity, semi-continuity and almost continuity are respectively
independent. Popa and Stan [23] introduced weak quasi-continuity which is implied by
both weak continuity and quasicontinuity. Janković [10] introduced almost weak continu-
ity as a generalization of both weak continuity and almost continuity. Noiri [16] obtained
some characterizations of almost weak continuity and some relations between almost weak
continuity and weak continuity. Popa [20] and Smithson [24] independently introduced the
notion of weakly continuous multifunctions. The present authors introduced and studied
other weak forms of continuous multifunctions: weakly quasicontinuous multifunctions
[17], almost weakly continuous multifunctions [18], weakly α-continuous multifunctions
[22], weakly β-continuous multifunctions [21]. These multifunctions have similar charac-
terizations. The analogy in their definitions and results suggests the need of formulating a
unified theory. Noiri and Popa [19] introduced and studied the notions of upper and lower
weakly m-continuous multifunctions as a multifunction from a set satisfying certain min-
imal condition into a topological space. In [2], the present author introduced and studied
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the concepts of upper and lower ⋆-continuous multifunctions in ideal topological spaces.
Moreover, several characterizations of upper and lower ⋆-continuous multifunctions were
investigated in [3]. The purpose of the present paper is to introduce the notions of upper
and lower weakly sβ(⋆)-continuous multifunctions. Furthermore, some characterizations
of upper and lower weakly sβ(⋆)-continuous multifunctions are discussed.

2. Preliminaries

Throughout the present paper, spaces (X, τ) and (Y, σ) (or simply X and Y ) always
mean topological spaces on which no separation axioms are assumed unless explicitly
stated. Let A be a subset of a topological space (X, τ). The closure of A and the interior
of A are denoted by Cl(A) and Int(A), respectively. An ideal I on a topological space
(X, τ) is a nonempty collection of subsets of X satisfying the following properties: (1)
A ∈ I and B ⊆ A imply B ∈ I ; (2) A ∈ I and B ∈ I imply A∪B ∈ I . A topological
space (X, τ) with an ideal I on X is called an ideal topological space and is denoted by
(X, τ,I ). For an ideal topological space (X, τ,I ) and a subset A of X, A⋆(I ) is defined
as follows: A⋆(I ) = {x ∈ X : U ∩A ̸∈ I for every open neighbourhood U of x}. In case
there is no chance for confusion, A⋆(I ) is simply written as A⋆. In [11], A⋆ is called the
local function of A with respect to I and τ and Cl⋆(A) = A⋆ ∪ A defines a Kuratowski
closure operator for a topology τ⋆(I ) finer than τ . A subset A is said to be ⋆-closed [10]
if A⋆ ⊆ A. The interior of a subset A in (X, τ⋆(I )) is denoted by Int⋆(A).

Lemma 1. For a subset A of an ideal topological space (X, τ,I ), the following properties
hold:

(1) If V ∈ τ , then V ∩ Cl⋆(A) ⊆ Cl⋆(V ∩A) [8].

(2) If F is closed in X, then Int⋆(A ∪ F ) ⊆ Int⋆(A) ∪ F .

A subset A of an ideal topological space (X, τ,I ) is called semi-I -open [7] (resp.
pre⋆I -open [5], strong β-I -open [7]) if A ⊆ Cl⋆(Int(A)) (resp. A ⊆ Int⋆(Cl(A)), A ⊆
Cl⋆(Int(Cl⋆(A)))). The complement of a semi-I -open (resp. pre⋆I -open, strong β-I -
open) set is called semi-I -closed [7] (resp. pre⋆I -closed [5], strong β-I -closed [7]).

Lemma 2. For a subset A of an ideal topological space (X, τ,I ), the following properties
hold:

(1) sClI (A) = A ∪ Int⋆(Cl(A)) [6].

(2) sβClI (A) = A ∪ Int⋆(Cl(Int⋆(A))) [6].

(3) sβIntI (A) = A ∩ Cl⋆(Int(Cl⋆(A))).

Lemma 3. [4] Let (X, τ,I ) be an ideal topological space. If V is ⋆-open, then

sClI (V ) = Int⋆(Cl(V )).
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Lemma 4. [4] For a subset A of an ideal topological space (X, τ,I ), x ∈ sβClI (A) if
and only if U ∩A ̸= ∅ for every strong β-I -open set U containing x.

Lemma 5. [4] For a subset A of an ideal topological space (X, τ,I ), the following prop-
erties are hold:

(1) X − sβClI (A) = sβIntI (X −A).

(2) X − sβIntI (A) = sβClI (X −A).

By a multifunction F : X → Y , we mean a point-to-set correspondence from X into
Y , and we always assume that F (x) ̸= ∅ for all x ∈ X. For a multifunction F : X → Y ,
following [1] we shall denote the upper and lower inverse of a set B of Y by F+(B) and
F−(B), respectively, that is, F+(B) = {x ∈ X | F (x) ⊆ B} and

F−(B) = {x ∈ X | F (x) ∩B ̸= ∅}.

In particular, F−(y) = {x ∈ X | y ∈ F (x)} for each point y ∈ Y . For each A ⊆ X,
F (A) = ∪x∈AF (x). Then F is said to be surjection if F (X) = Y , or equivalent, if for each
y ∈ Y there exists x ∈ X such that y ∈ F (x) and F is called injection if x ̸= y implies
F (x) ∩ F (y) = ∅.

3. Upper and lower weakly sβ(⋆)-continuous multifunctions

In this section, we introduce the notions of upper and lower weakly sβ(⋆)-continuous
multifunctions. Moreover, several characterizations of upper and lower weakly sβ(⋆)-
continuous multifunctions are discussed.

Definition 1. A multifunction F : (X, τ,I ) → (Y, σ,J ) is said to be:

(1) upper weakly sβ(⋆)-continuous at a point x ∈ X if for each ⋆-open set V of Y
containing F (x), there exists a strong β-I -open set U of X containing x such that
F (U) ⊆ Cl⋆(V );

(2) lower weakly sβ(⋆)-continuous at a point x ∈ X if for each ⋆-open set V of Y such
that F (x) ∩ V ̸= ∅, there exists a strong β-I -open set U of X containing x such
that F (z) ∩ Cl⋆(V ) ̸= ∅ for every z ∈ U ;

(3) upper (resp. lower) weakly sβ(⋆)-continuous if F has this property at each point of
X.

Theorem 1. For a multifunction F : (X, τ,I ) → (Y, σ,J ), the following properties are
equivalent:

(1) F is upper weakly sβ(⋆)-continuous at a point x ∈ X;

(2) x ∈ Cl⋆(Int(Cl⋆(F+(Cl⋆(V ))))) for every ⋆-open set V of Y containing F (x);
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(3) x ∈ sβIntI (F+(Cl⋆(V ))) for every ⋆-open set V of Y containing F (x).

Proof. (1) ⇒ (2): Let V be any ⋆-open set of Y containing F (x). By (1), there
exists a strong β-I -open set U of X containing x such that F (U) ⊆ Cl⋆(V ). Then,
x ∈ U ⊆ F+(Cl⋆(V )). Since U is strong β-I -open, we have

x ∈ U ⊆ Cl⋆(Int(Cl⋆(U))) ⊆ Cl⋆(Int(Cl⋆(F+(Cl⋆(V ))))).

(2) ⇒ (3): Let V be any ⋆-open set of Y containing F (x). Thus, by (2), we have
x ∈ Cl⋆(Int(Cl⋆(F+(Cl⋆(V ))))). Since x ∈ F+(Cl⋆(V )) and by Lemma 2, we obtain
x ∈ F+(Cl⋆(V )) ∩ Cl⋆(Int(Cl⋆(F+(Cl⋆(V ))))) = sβIntI (F+(Cl⋆(V ))).

(3) ⇒ (1): Let V be any ⋆-open set of Y containing F (x). By (3), we have

x ∈ sβIntI (F+(Cl⋆(V )))

and so there exists a strong β-I -open set U of X containing x such that U ⊆ F+(Cl⋆(V ));
hence F (U) ⊆ Cl⋆(V ). This shows that F is upper weakly sβ(⋆)-continuous at x.

Theorem 2. For a multifunction F : (X, τ,I ) → (Y, σ,J ), the following properties are
equivalent:

(1) F is lower weakly sβ(⋆)-continuous at a point x ∈ X;

(2) x ∈ Cl⋆(Int(Cl⋆(F−(Cl⋆(V ))))) for every ⋆-open set V of Y such that F (x)∩V ̸= ∅;

(3) x ∈ sβIntI (F−(Cl⋆(V ))) for every ⋆-open set V of Y such that F (x) ∩ V ̸= ∅.

Proof. The proof is similar to that of Theorem 1.

Definition 2. A function f : (X, τ,I ) → (Y, σ,J ) is said to be weakly sβ(⋆)-continuous
at a point x ∈ X if for each ⋆-open set V of Y containing f(x), there exists a strong
β-I -open set U of X containing x such that f(U) ⊆ Cl⋆(V ). A function

f : (X, τ,I ) → (Y, σ,J )

is said to be weakly sβ(⋆)-continuous if f has this property at each point of X.

Corollary 1. For a function f : (X, τ,I ) → (Y, σ,J ), the following properties are
equivalent:

(1) f is weakly sβ(⋆)-continuous at a point x ∈ X;

(2) x ∈ Cl⋆(Int(Cl⋆(f−1(Cl⋆(V ))))) for every ⋆-open set V of Y containing f(x);

(3) x ∈ sβIntI (f−1(Cl⋆(V ))) for every ⋆-open set V of Y containing f(x).

Theorem 3. For a multifunction F : (X, τ,I ) → (Y, σ,J ), the following properties are
equivalent:
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(1) F is upper weakly sβ(⋆)-continuous;

(2) F+(V ) ⊆ Cl⋆(Int(Cl⋆(F+(Cl⋆(V ))))) for every ⋆-open set V of Y ;

(3) Int⋆(Cl(Int⋆(F−(V )))) ⊆ F−(Cl⋆(V )) for every ⋆-open set V of Y ;

(4) Int⋆(Cl(Int⋆(F−(Int⋆(K))))) ⊆ F−(K) for every ⋆-closed set K of Y ;

(5) sβClI (F−(Int⋆(K))) ⊆ F−(K) for every ⋆-closed set K of Y ;

(6) sβClI (F−(Int⋆(Cl⋆(B)))) ⊆ F−(Cl⋆(B)) for every subset B of Y ;

(7) F+(Int⋆(B)) ⊆ sβIntI (F+(Cl⋆(Int⋆(B)))) for every subset B of Y ;

(8) F+(V ) ⊆ sβIntI (F+(Cl⋆(V ))) for every ⋆-open set V of Y ;

(9) sβClI (F−(V )) ⊆ F−(Cl⋆(V )) for every ⋆-open set V of Y .

Proof. (1) ⇒ (2): Let V be any ⋆-open set of Y and x ∈ F+(V ). Then, F (x) ⊆ V and
by Theorem 1, x ∈ sβIntI (F+(Cl⋆(V ))) and hence F+(V ) ⊆ Cl⋆(Int(Cl⋆(F+(Cl⋆(V )))))
by Lemma 2.

(2) ⇒ (3): Let V be any ⋆-open set of Y . Thus, by (2), we have

X − F−(Cl⋆(V )) = F+(Y − Cl⋆(V ))

⊆ Cl⋆(Int(Cl⋆(F+(Cl⋆(Y − Cl⋆(V ))))))

= Cl⋆(Int(Cl⋆(F+(Y − Int⋆(Cl⋆(V ))))))

⊆ Cl⋆(Int(Cl⋆(F+(Y − V ))))

= Cl⋆(Int(Cl⋆(X − F−(V ))))

= X − Int⋆(Cl(Int⋆(F−(V ))))

and hence Int⋆(Cl(Int⋆(F−(V )))) ⊆ F−(Cl⋆(V )).
(3) ⇒ (4): Let K be any ⋆-closed set of Y . Then, Int⋆(K) is ⋆-open in Y and so

Int⋆(Cl(Int⋆(F−(Int⋆(K))))) ⊆ F−(Cl⋆(Int⋆(K))) ⊆ F−(Cl⋆(K)) = F−(K).

(4) ⇒ (5): Let K be any ⋆-closed set of Y . Then, we have

Int⋆(Cl(Int⋆(F−(Int⋆(K))))) ⊆ F−(K)

and F−(Int⋆(K)) ⊆ F−(K). Thus, by Lemma 2, sβI Cl(F−(Int⋆(K))) ⊆ F−(K).
(5) ⇒ (6): Let B be any subset of Y . Then, Cl⋆(B) is ⋆-closed in Y and by (5),

sβClI (F−(Int⋆(Cl⋆(B)))) ⊆ F−(Cl⋆(B)).
(6) ⇒ (7): Let B be any subset of Y . By (6),

F+(Int⋆(B)) = X − F−(Cl⋆(Y −B))

⊆ X − sβClI (F−(Int⋆(Cl⋆(Y −B))))
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= sβIntI (F+(Cl⋆(Int⋆(B)))).

(7) ⇒ (8): The proof is obvious.
(8) ⇒ (9): Let V be any ⋆-open set of Y . Thus, by (8), we have

sβClI (F−(V )) ⊆ sβClI (F−(Int⋆(Cl⋆(V ))))

= sβClI (X − F+(Y − Int⋆(Cl⋆(V ))))

= X − sβIntI (F+(Y − Int⋆(Cl⋆(V ))))

= X − sβIntI (F+(Cl⋆(Y − Cl⋆(V ))))

⊆ X − F+(Y − Cl⋆(V ))

= F−(Cl⋆(V )).

(9) ⇒ (1): Let x ∈ X and V be any ⋆-open set of Y containing F (x). By (9),

x ∈ F+(V ) ⊆ F+(Int⋆(Cl⋆(V )))

= X − F−(Cl⋆(Y − Cl⋆(V )))

⊆ X − sβClI (F−(Y − Cl⋆(V )))

= sβIntI (F+(Cl⋆(V )))

and hence F is upper weakly sβ(⋆)-continuous by Theorem 1.

Theorem 4. For a multifunction F : (X, τ,I ) → (Y, σ,J ), the following properties are
equivalent:

(1) F is lower weakly sβ(⋆)-continuous;

(2) F−(V ) ⊆ Cl⋆(Int(Cl⋆(F−(Cl⋆(V ))))) for every ⋆-open set V of Y ;

(3) Int⋆(Cl(Int⋆(F+(V )))) ⊆ F+(Cl⋆(V )) for every ⋆-open set V of Y ;

(4) Int⋆(Cl(Int⋆(F+(Int⋆(K))))) ⊆ F+(K) for every ⋆-closed set K of Y ;

(5) sβClI (F+(Int⋆(K))) ⊆ F+(K) for every ⋆-closed set K of Y ;

(6) sβClI (F+(Int⋆(Cl⋆(B)))) ⊆ F+(Cl⋆(B)) for every subset B of Y ;

(7) F−(Int⋆(B)) ⊆ sβIntI (F−(Cl⋆(Int⋆(B)))) for every subset B of Y ;

(8) F−(V ) ⊆ sβIntI (F−(Cl⋆(V ))) for every ⋆-open set V of Y ;

(9) sβClI (F+(V )) ⊆ F+(Cl⋆(V )) for every ⋆-open set V of Y .

Proof. The proof is similar to that of Theorem 3.

Corollary 2. For a function f : (X, τ,I ) → (Y, σ,J ), the following properties are
equivalent:
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(1) f is weakly sβ(⋆)-continuous;

(2) f−1(V ) ⊆ Cl⋆(Int(Cl⋆(f−1(Cl⋆(V ))))) for every ⋆-open set V of Y ;

(3) Int⋆(Cl(Int⋆(f−1(V )))) ⊆ f−1(Cl⋆(V )) for every ⋆-open set V of Y ;

(4) Int⋆(Cl(Int⋆(f−1(Int⋆(K))))) ⊆ f−1(K) for every ⋆-closed set K of Y ;

(5) sβClI (f−1(Int⋆(K))) ⊆ f−1(K) for every ⋆-closed set K of Y ;

(6) sβClI (f−1(Int⋆(Cl⋆(B)))) ⊆ f−1(Cl⋆(B)) for every subset B of Y ;

(7) f−1(Int⋆(B)) ⊆ sβIntI (f−1(Cl⋆(Int⋆(B)))) for every subset B of Y ;

(8) f−1(V ) ⊆ sβIntI (f−1(Cl⋆(V ))) for every ⋆-open set V of Y ;

(9) sβClI (f−1(V )) ⊆ f−1(Cl⋆(V )) for every ⋆-open set V of Y .

Recall that a subset A of an ideal topological space (X, τ,I ) is called R-I ⋆-open [2]
(resp. I ⋆-preopen [2], I ⋆-semi-open [3]) if A = Int⋆(Cl⋆(A)) (resp. A ⊆ Int⋆(Cl⋆(A)),
A ⊆ Cl⋆(Int⋆(A))). The complement of a R-I ⋆-open (resp. I ⋆-preopen, I ⋆-semi-open)
set is called R-I ⋆-closed [2] (resp. I ⋆-preclosed [2], I ⋆-semi-closed [3]). Let A be a
subset of an ideal topological space (X, τ,I ). A point x in an ideal topological space
(X, τ,I ) is called a ⋆θ-cluster point of A [3] if Cl⋆(U)∩A ̸= ∅ for every ⋆-open set U of X
containing x. The set of all ⋆θ-cluster points of A is called the ⋆θ-closure [3] of A and is
denoted by ⋆θCl(A). A subset B of an ideal topological space (X, τ,I ) is called ⋆θ-closed
[3] if ⋆θCl(B) = B. The complement of a ⋆θ-closed set is called ⋆θ-open [3].

Lemma 6. [3] For a subset A of an ideal topological space (X, τ,I ), the following prop-
erties hold:

(1) If A is ⋆-open in X, then Cl⋆(A) = ⋆θCl(A).

(2) ⋆θCl(A) is ⋆-closed in X.

Theorem 5. For a multifunction F : (X, τ,I ) → (Y, σ,J ), the following properties are
equivalent:

(1) F is upper weakly sβ(⋆)-continuous;

(2) sβClI (F−(Int⋆(⋆θCl(B)))) ⊆ F−(⋆θCl(B)) for every subset B of Y ;

(3) sβClI (F−(Int⋆(Cl⋆(B)))) ⊆ F−(⋆θCl(B)) for every subset B of Y ;

(4) sβClI (F−(Int⋆(Cl⋆(V )))) ⊆ F−(Cl⋆(V )) for every ⋆-open set V of Y ;

(5) sβClI (F−(Int⋆(Cl⋆(V )))) ⊆ F−(Cl⋆(V )) for every J ⋆-preopen set V of Y ;

(6) sβClI (F−(Int⋆(K))) ⊆ F−(K) for every R-J ⋆-closed set K of Y ;
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(7) sβClI (F−(Int⋆(Cl⋆(V )))) ⊆ F−(Cl⋆(V )) for every strong β-J -open set V of Y ;

(8) sβClI (F−(Int⋆(Cl⋆(V )))) ⊆ F−(Cl⋆(V )) for every J ⋆-semi-open set V of Y .

Proof. (1) ⇒ (2): Let B be any subset of Y . Thus, by Lemma 6, ⋆θCl(B) is ⋆-closed
in Y and by Theorem 3, sβClI (F−(Int⋆(⋆θCl(B)))) ⊆ F−(⋆θCl(B)).

(2) ⇒ (3): This is obvious since Cl⋆(B) ⊆ ⋆θCl(B) for every subset B of Y .
(3) ⇒ (4): This is obvious since Cl⋆(V ) = ⋆θCl(V ) for every ⋆-open set V of Y .
(4) ⇒ (5): Let V be any J ⋆-preopen set of Y . Then, we have V ⊆ Int⋆(Cl⋆(V )) and

so Cl⋆(V ) = Cl⋆(Int⋆(Cl⋆(V ))). Now, put G = Int⋆(Cl⋆(V )), then G is ⋆-open in Y and
Cl⋆(G) = Cl⋆(V ). Thus, by (4), we have sβClI (F−(Int⋆(Cl⋆(V )))) ⊆ F−(Cl⋆(V )).

(5) ⇒ (6): Let K be any R-J ⋆-closed set of Y . Then, Int⋆(K) is J ⋆-preopen in Y ,
by (5),

sβClI (F−(Int⋆(K))) = sβClI (F−(Int⋆(Cl⋆(Int⋆(K)))))

⊆ F−(Cl⋆(Int⋆(K)))

= F−(K).

(6) ⇒ (7): Let V be any strong β-J -open set of Y . Then, V ⊆ Cl⋆(Int(Cl⋆(V ))).
Since Cl⋆(V ) isR-J ⋆-closed in Y . Thus, by (6), sβClI (F−(Int⋆(Cl⋆(V )))) ⊆ F−(Cl⋆(V )).

(7) ⇒ (8): This is obvious since every J ⋆-semi-open set is strong β-J -open.
(8) ⇒ (1): Let V be any ⋆-open set of Y . Then, since V is J ⋆-semi-open set in Y , by

(8), we have sβClI (F−(V )) ⊆ sβClI (F−(Int⋆(Cl⋆(V )))) ⊆ F−(Cl⋆(V )). By Theorem 3,
F is upper weakly sβ(⋆)-continuous.

Theorem 6. For a multifunction F : (X, τ,I ) → (Y, σ,J ), the following properties are
equivalent:

(1) F is lower weakly sβ(⋆)-continuous;

(2) sβClI (F+(Int⋆(⋆θCl(B)))) ⊆ F+(⋆θCl(B)) for every subset B of Y ;

(3) sβClI (F+(Int⋆(Cl⋆(B)))) ⊆ F+(⋆θCl(B)) for every subset B of Y ;

(4) sβClI (F+(Int⋆(Cl⋆(V )))) ⊆ F+(Cl⋆(V )) for every ⋆-open set V of Y ;

(5) sβClI (F+(Int⋆(Cl⋆(V )))) ⊆ F+(Cl⋆(V )) for every J ⋆-preopen set V of Y ;

(6) sβClI (F+(Int⋆(K))) ⊆ F+(K) for every R-J ⋆-closed set K of Y ;

(7) sβClI (F+(Int⋆(Cl⋆(V )))) ⊆ F+(Cl⋆(V )) for every strongly β-J -open set V of Y ;

(8) sβClI (F+(Int⋆(Cl⋆(V )))) ⊆ F+(Cl⋆(V )) for every J ⋆-semi-open set V of Y .

Proof. The proof is similar to that of Theorem 5.
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Corollary 3. For a function f : (X, τ,I ) → (Y, σ,J ), the following properties are
equivalent:

(1) f is weakly sβ(⋆)-continuous;

(2) sβClI (f−1(Int⋆(⋆θCl(B)))) ⊆ f−1(⋆θCl(B)) for every subset B of Y ;

(3) sβClI (f−1(Int⋆(Cl⋆(B)))) ⊆ f−1(⋆θCl(B)) for every subset B of Y ;

(4) sβClI (f−1(Int⋆(Cl⋆(V )))) ⊆ f−1(Cl⋆(V )) for every ⋆-open set V of Y ;

(5) sβClI (f−1(Int⋆(Cl⋆(V )))) ⊆ f−1(Cl⋆(V )) for every J ⋆-preopen set V of Y ;

(6) sβClI (f−1(Int⋆(K))) ⊆ f−1(K) for every R-J ⋆-closed set K of Y ;

(7) sβClI (f−1(Int⋆(Cl⋆(V )))) ⊆ f−1(Cl⋆(V )) for every strongly β-J -open set V of Y ;

(8) sβClI (f−1(Int⋆(Cl⋆(V )))) ⊆ f−1(Cl⋆(V )) for every J ⋆-semi-open set V of Y .

Theorem 7. For a multifunction F : (X, τ,I ) → (Y, σ,J ), the following properties are
equivalent:

(1) F is upper weakly sβ(⋆)-continuous;

(2) sβClI (F−(V )) ⊆ F−(Cl⋆(V )) for every J ⋆-preopen set V of Y ;

(3) F+(V ) ⊆ sβIntI (F+(Cl⋆(V ))) for every J ⋆-preopen set V of Y .

Proof. (1) ⇒ (2): Let V be any J ⋆-preopen set of Y . Since F is upper weakly sβ(⋆)-
continuous, by Theorem 3, sβClI (F−(V )) ⊆ sβClI (F−(Int⋆(Cl⋆(V )))) ⊆ F−(Cl⋆(V )).

(2) ⇒ (3): Let V be any J ⋆-preopen set of Y . Then, we have V ⊆ Int⋆(Cl⋆(V )) and
Y − V ⊇ Cl⋆(Int⋆(Y − V )). Thus, by (3),

X − F+(V ) = F−(Y − V )

⊇ F−(Cl⋆(Int⋆(Y − V )))

⊇ sβClI (F−(Int⋆(Y − V )))

= sβClI (F−(Y − Cl⋆(V )))

= sβClI (X − F+(Cl⋆(V )))

= X − sβIntI (F+(Cl⋆(V )))

and hence F+(V ) ⊆ sβIntI (F+(Cl⋆(V ))).
(3) ⇒ (1): Let V be any ⋆-open set of Y . Then, V is J ⋆-preopen in Y , by (4),

F+(V ) ⊆ sβIntI (F+(Cl⋆(V ))). Thus, F is upper weakly sβ(⋆)-continuous by Theorem
3.

Theorem 8. For a multifunction F : (X, τ,I ) → (Y, σ,J ), the following properties are
equivalent:
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(1) F is lower weakly sβ(⋆)-continuous;

(2) sβClI (F+(V )) ⊆ F+(Cl⋆(V )) for every J ⋆-preopen set V of Y ;

(3) F−(V ) ⊆ sβIntI (F−(Cl⋆(V ))) for every J ⋆-preopen set V of Y .

Proof. The proof is similar to that of Theorem 7.

Corollary 4. For a function f : (X, τ,I ) → (Y, σ,J ), the following properties are
equivalent:

(1) f is weakly sβ(⋆)-continuous;

(2) sβClI (f−1(V )) ⊆ f−1(Cl⋆(V )) for every J ⋆-preopen set V of Y ;

(3) f−1(V ) ⊆ sβIntI (f−1(Cl⋆(V ))) for every J ⋆-preopen set V of Y .

Definition 3. [4] A multifunction F : (X, τ,I ) → (Y, σ,J ) is said to be:

(1) upper almost sβ(⋆)-continuous at a point x ∈ X if for each ⋆-open set V of Y
containing F (x), there exists a strong β-I -open set U of X containing x such that
F (U) ⊆ Int⋆(Cl(V ));

(2) lower almost sβ(⋆)-continuous at a point x ∈ X if for each ⋆-open set V of Y such
that F (x) ∩ V ̸= ∅, there exists a strong β-I -open set U of X containing x such
that F (z) ∩ Int⋆(Cl(V )) ̸= ∅ for every z ∈ U ;

(3) upper (resp. lower) almost β(⋆)-continuous if F has this property at each point of
X.

Remark 1. For a multifunction F : (X, τ,I ) → (Y, σ,J ), the following implication
holds:

upper almost sβ(⋆)-continuity ⇒ upper weak sβ(⋆)-continuity.

The converse of the implication is not true in general. We give an example for the
implication as follows.

Example 1. Let X = {1, 2, 3} with a topology τ = {∅, {1}, {2}, {1, 2}, X} and an ideal
I = {∅, {1}}. Let Y = {a, b, c} with a topology σ = {∅, {a}, {a, b}, Y } and an ideal J =
{∅, {c}}. A multifunction F : (X, τ,I ) → (Y, σ,J ) is defined as follows: F (1) = {c}
and F (2) = F (3) = {a, b}. Then, F is upper weakly sβ(⋆)-continuous but F is not upper
almost sβ(⋆)-continuous, since {a, b} is ⋆-open in Y but F+({a, b}) is not strong β-I -open
in X.

Lemma 7. [2] For an ideal topological space (X, τ,I ), the following properties are equiv-
alent:

(1) (X, τ,I ) is ⋆-I -normal.
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(2) For each ⋆-closed set F and each ⋆-open set V containing F , there exists a ⋆-open
set U such that F ⊆ U ⊆ Cl⋆(U) ⊆ V .

Theorem 9. For a multifunction F : (X, τ,I ) → (Y, σ,J ) such that F (x) is ⋆-closed
in Y for each x ∈ X and (Y, σ,J ) is a ⋆-J -normal space, the following properties are
equivalent:

(1) F is upper sβ(⋆)-continuous;

(2) F is upper almost sβ(⋆)-continuous;

(3) F is upper weakly sβ(⋆)-continuous.

Proof. We show only the implication (3) ⇒ (1) since the others are obvious. Suppose
that F is upper weakly sβ(⋆)-continuous. Let x ∈ X and V be any ⋆-open set of Y such
that F (x) ⊆ V . Since F (x) is ⋆-closed in Y and Y is ⋆-J -normal, there exists a ⋆-open
set G of Y such that F (x) ⊆ G ⊆ Cl⋆(G) ⊆ V . Since F is upper weakly sβ(⋆)-continuous,
there exists a strong β-I -open set U of X containing x such that F (U) ⊆ Cl⋆(G); hence
F (U) ⊆ V . This shows that F is upper sβ(⋆)-continuous.

Theorem 10. For a multifunction F : (X, τ,I ) → (Y, σ,J ) such that F (x) is ⋆-open in
Y for each x ∈ X, the following properties are equivalent:

(1) F is lower sβ(⋆)-continuous;

(2) F is lower almost sβ(⋆)-continuous;

(3) F is lower weakly sβ(⋆)-continuous.

Proof. (1) ⇒ (2) and (2) ⇒ (3): The proofs of these implications are obvious.
(3) ⇒ (1): Suppose that F is lower weakly sβ(⋆)-continuous. Let x ∈ X and V be

any ⋆-open set such that F (x)∩ V ̸= ∅. Then, there exists a strong β-I -open set U of X
containing x such that F (z) ∩ Cl⋆(V ) ̸= ∅ for each z ∈ U . Since F (z) is ⋆-open, we have
F (z) ∩ V ̸= ∅ for each z ∈ U and so F is lower sβ(⋆)-continuous.

Definition 4. [4] A function f : (X, τ,I ) → (Y, σ,J ) is called almost sβ(⋆)-continuous
at a point x ∈ X if for each ⋆-open set V of Y containing f(x), there exists a strong
β-I -open set U of X containing x such that f(U) ⊆ Int⋆(Cl(V )). A function

f : (X, τ,I ) → (Y, σ,J )

is called almost β(⋆)-continuous if f has this property at each point of X.

Corollary 5. For a function f : (X, τ,I ) → (Y, σ,J ) such that f(x) is ⋆-open in Y for
each x ∈ X, the following properties are equivalent:

(1) f is sβ(⋆)-continuous;

(2) f is almost sβ(⋆)-continuous;

(3) f is weakly sβ(⋆)-continuous.
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Časopis, 23:374–380, 1973.

[16] T. Noiri. Properties of some weak forms of continuity. International Journal of
Mathematics and Mathematical Sciences, 10(1):97–111, 1987.



REFERENCES 2556

[17] T. Noiri and V. Popa. On upper and lower weakly quasicontinuous multifunctions.
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