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1. Introduction

In 1943, Shanin [20] introduced the concept of Ry topological spaces. Davis [11] intro-
duced the concept of a separation axiom called R;. These concepts are further investigated
by Naimpally [16], Dube [13] and Dorsett [12]. Cammaroto and Noiri [10] introduce a weak
separation axiom m-Ry in m-spaces which are equivalent to generalized topological spaces
due to Lugojan [15]. Noiri [17] introduced the notion of m-R; spaces and investigated sev-
eral characterizations of m-Ry spaces and m-R; spaces. In 1963, Levine [14] introduced
the concept of semi-open sets which is weaker than the concept of open sets in topological
spaces. Velicko [23] introduced J-open sets, which are stronger than open sets. Park et al.
[18] have offered new notion called d-semiopen sets which are stronger than semi-open sets
but weaker than J-open sets and investigated the relationships between several types of
these open sets. Caldas and Dontchev [6] introduced and investigated the notions of As-
sets and V;-sets in topological spaces. Moreover, Caldas et al. [9] investigated some weak
separation axioms by utilizing J-semiopen sets and the d-semiclosure operator. Caldas
et al. [8] investigated the notion of d-As-semiclosed sets which is defined as the intersec-
tion of a J-As-set and a d-semiclosed set. In 1982, Mashhour et al. [1] introduced and
studied the concept of preopen sets. Raychaudhuri and Mukherjee [19] introduced the
notions of §-preopen sets and d-preclosure. The class of §-preopen sets is larger than that
of preopen sets. Caldas et al. [7] introduced some weak separation axioms by utilizing
the notions of J-preopen sets and the J-preclosure operator. In [5], the present authors
introduced and studied the concept of (A, s)-closed sets by utilizing the notions of As-sets
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and semi-closed sets. Furthermore, several characterizations of (A, s)-Ry spaces and A,-Ry
spaces were established in [5] and [4], respectively. Boonpok and Khampakdee [2] intro-
duced and investigated the concepts of ds(A, s)-Ry spaces and ds(A, s)-Ry spaces. Quite
recently, Srisarakham and Boonpok [21] defined and studied the notion of dp(A, s)-open
sets in topological spaces. In this paper, we introduce the concept of dp(A, s)-Ry spaces.
Moreover, some characterizations of dp(A, s)-Ry spaces are discussed.

2. Preliminaries

Throughout the present paper, spaces (X, 7) and (Y, o) (or simply X and Y) always
mean topological spaces on which no separation axioms are assumed unless explicitly
stated. Let A be a subset of a topological space (X, 7). The closure of A and the interior of
A are denoted by Cl(A) and Int(A), respectively. A subset A of a topological space (X, 7) is
called semi-open [14] if A C Cl(Int(A)). The complement of a semi-open set is called semi-
closed. The family of all semi-open (resp. semi-closed) sets in a topological space (X, 7) is
denoted by SO(X,7) (resp. SC(X,7)). A subset A% [6] (resp. A"*) is defined as follows:
Ads = n{U | U D A, U € SO(X,7)} (resp. A" =U{F | F C A, FeSC(X,7)}). A
subset A of a topological space (X, 7) is called a A,-set (resp. Vi-set) [6] if A = A%s (resp.
A = AYs). A subset A of a topological space (X, 7) is called (A, s)-closed [5] if A=TnNC,
where T is a Ag-set and C' is a semi-closed set. The complement of a (A, s)-closed set is
called (A, s)-open. The family of all (A, s)-closed (resp. (A, s)-open) sets in a topological
space (X, 7) is denoted by AsC'(X, 7) (resp. A;O(X,7)). Let A be a subset of a topological
space (X, 7). A point x € X is called a (A, s)-cluster point [5] of A if for every (A, s)-open
set U of X containing x we have ANU # (. The set of all (A, s)-cluster points of A is
called the (A, s)-closure [5] of A and is denoted by A). The union of all (A, s)-open
sets contained in A is called the (A, s)-interior [5] of A and is denoted by A, ).

Let A be a subset of a topological space (X, 7). A point x of X is called a §(A, s)-cluster
point [21] of A if AN [V(A’S)](A,S) # () for every (A, s)-open set V of X containing x. The
set of all §(A, s)-cluster points of A is called the §(A, s)-closure [21] of A and is denoted
by A%As) . If A = A%AS) then A is said to be 6(A,s)-closed [21]. The complement
of a (A, s)-closed set is said to be 6(A, s)-open [21]. The union of all d(A, s)-open sets
contained in A is called the §(A, s)-interior [21] of A and is denoted by Asa -

Definition 1. [21] A subset A of a topological space (X, T) is said to be dp(A, s)-open if
AC [A(A’s)](;(ms). The complement of a dp(A, s)-open set is said to be op(A, s)-closed.

The family of all dp(A, s)-open (resp. dp(A, s)-closed) sets in a topological space (X, 7)
is denoted by dp(A, s)O(X, 7) (resp. dp(A, s)C(X,7)). Let A be a subset of a topological
space (X, 7). The intersection of all dp(A, s)-closed sets containing A is called the dp(A, s)-
closure [22] of A and is denoted by AP,

Lemma 1. [21] For the dp(A, s)-closure of subsets A, B in a topological space (X, ), the
following properties hold:

(1) If A C B, then A%P(Ass) ¢ Bop(Ass),
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(2) Ais dp(A, s)-closed in (X, ) if and only if A= APLs),
(8) APNS) s 5p(A, s)-closed, that is, APA5) = [AP(A:9)]9p(Ass),
(4) x € A%PNS) if and only if ANV # 0 for every V € dp(A, s)O(X, T) containing .

Lemma 2. [21] For a family {A, | v € V} of a topological space (X, ), the following
properties hold:

(1) [N{A, |y € V3P € n{aP™) | 5 e v},

(2) [U{A, | v € VPP 5 ufAPPM) | o e vy,

3. Some characterizations of dp(A, s)-Ry spaces

In this section, we introduce the notion of dp(A, s)-Ry spaces. Moreover, several char-
acterizations of dp(A, s)-Ry spaces are discussed.

Definition 2. A topological space (X, T) is called op(A,s)-Ry if, for each op(A,s)-open
set U and each x € U, {x}P() C U.

Theorem 1. For a topological space (X, T), the following properties are equivalent:
(‘Z) (Xa T) is (5]9(A, S)_RO-

(2) For each dp(A, s)-closed set F' and each x € X — F, there exists U € dp(A, s)O(X, T)
such that F CU and x ¢ U.

(3) For each dp(A, s)-closed set F and each x € X — F, F N {z}%P(As) = ¢,
(4) For any distinct points x,y in X, {x}oP(A) = {}0P(As) o £230P(As) [ 10p(Ass) — (),

Proof. (1) = (2): Let F be a dp(A,s)-closed set and = € X — F. Since (X,7) is
5p(A, s)-Ro, we have {2} € X — F. Put U = X — {z}°?(*%), Thus, by Lemma 1,
U e€op(A,s)OX,7), FCU and x ¢ U.

(2) = (3): Let F be a 0p(A,s)-closed set and x € X — F. Thus, by (2), there
exists U € dp(A,s)O(X,7) such that FF C U and = ¢ U. Since U € dp(A,s)O(X, 1),
U N {x}%P(A5) = § and hence F N {z}P(M5) =,

(3) = (4): Let 2 and y be distinct points of X. Suppose that {2}%P(8) {y}op(As) £ ),
By (3), z € {y}%P**) and y € {£}°P("%). By Lemma 1, {z}%P(15) C {y}0P(As) C {}0P(As)
and hence {z}P(A:3) = {4}0p(A5),

(4) = (1): Let V € dp(A,s)O(X,7) and = € V. For each y & V, V N {y}PAs) = ¢)
and hence x ¢ {y}oP(M5). Thus, {2}P(08) £ {y}9P(As) | By (4), for each y €V,

{x}ép(A,s) N {y}ép(A,s) = 0.
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Since X — V is dp(A, s)-closed, y € {y}PM9) C X —V and Uyex_v{y}Ps) = X — V.
Thus,

{2} 0 (X = V) = {2} PO 0 [Uyex oy {y} PA]
= Uyex—v[{z}?) 0 {y}P4)]
=0

and hence {2}°7("5) C V. This shows that (X,7) is dp(A, s)-Ro.

Corollary 1. A topological space (X, 1) is 0p(A, s)-Ry if and only if for any points x and
y in X, {x}P08) £ L10P(08) implies {x}0P(A5) 0 {y}0P(As) = ),

Proof. This is obvious by Theorem 1.

Conversely, let U € dp(A, s)O(X,7)and z € U. Ify € U, then UN{y}°P"5) = (. Thus,
x & {y}PAs) and {2}%P(As) o 419P(As) - By the hypothesis, {}%P(49) N {y}P(As) = ()
and hence y ¢ {x}%P(15) Therefore, {x}%P(A) C U. This shows that (X, 7) is dp(A, s)-Ro.

Definition 3. [22] Let A be a subset of a topological space (X, 7). The dp(A, s)-kernel of
A, denoted by op(A, s)Ker(A), is defined to be the set

Ip(A,s)Ker(A) =n{U € dp(A,s)O(X,7) | ACU}.
Lemma 3. [3] For subsets A, B of a topological space (X, T), the following properties hold:
(1) A Cép(A,s)Ker(A).
(2) If A C B, then dp(A, s)Ker(A) C op(A, s)Ker(B).
(3) op(A, s)Ker(op(A, s)Ker(A)) = dp(A, s)Ker(A).
(4) If A is op(A, s)-open, op(A, s)Ker(A) = A.

Theorem 2. For any points x and y in a topological space (X, T), the following properties
are equivalent:

(1) op(A, s)Ker({z}) # op(A, s)Ker({y}).

(2) {70 o [y},

Proof. (1) = (2): Suppose that dp(A,s)Ker({z}) # dp(A,s)Ker({y}). Then, there
exists a point z € X such that z € dp(A, s)Ker({z}) and z & dp(A, s)Ker({y}) or

z € 6p(A, s)Ker({y})

and z € dp(A, s)Ker({z}). We prove only the first case being the second analogous. From
z € 6p(A, s)Ker({z}) it follows that {z} N {z}%7(M9) +£ () which implies = € {z}°P(A5), By
2 ¢ 0p(A, s)Ker({y}), we have {y} N {z}7("5) = (). Since z € {z}%P(1)

{x}ép(/\,s) C {Z}ép(A,s)
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and {y} N {z}%P(N5) = (). Therefore, {x}9PA:s) £ {3}9P(As)  Thus,
op(A, s)Ker({z}) # op(A, s)Ker({y})

implies that {z}0P(As) £ [510p(As),

(2) = (1): Suppose that {z}P(Ns) £ {419P(As)  There exists a point z € X such
that z € {£}P0%) and 2z ¢ {y}P15) or z € {y}?M9) and z ¢ {x}P(A9). We prove
only the first case being the second analogous. It follows that there exists a op(A, s)-
open set containing z and therefore x but not y, namely, y & dp(A, s)Ker({z}) and thus

op(A, s)Ker({z}) # op(A, s)Ker({y}).

Lemma 4. Let (X, 7) be a topological space and x,y € X. Then, the following properties
hold:

(1) y € 6p(A, s)Ker({x}) if and only if x € {y}oPs),
(2) dp(A, s)Ker({x}) = op(A, s)Ker({y}) if and only if {a}?P) = {y}oP(hs),

Proof. (1) Let = ¢ {y}%?(**). Then, there exists U € dp(A, s)O(X,7) such that z € U
and y ¢ U. Thus, y & dp(A, s)Ker({z}). The converse is similarly shown.
(2) Suppose that dp(A, s)Ker({z}) = op(A, s)Ker({y}) for any x,y € X. Since

x € op(A, s)Ker({z}),
v € dp(A,s)Ker({y}), by (1), y € {«}*™). By Lemma 1, {y}*?"*) C {a}o(hs).
Similarly, we have {z}%P(A3) C {y}9P(A9) and hence {x}%P(A9) = {y}9P(Ass),

Conversely, suppose that {z}9P(A) = {y)}9P(A3)  Since & € {x}PAMs) 2 e {y}or(As)
and by (1), y € op(A, s)Ker({z}). By Lemma 3,

op(A, s)Ker({y}) € op(A, s)Ker(dp(A, s)Ker({z})) = dp(A, s)Ker({z}).
Similarly, we have ép(A, s)Ker({x}) C ép(A, s)Ker({y}) and hence
op(A, s)Ker({z}) = op(A, s)Ker({y}).
Theorem 3. A topological space (X,T) is dp(A, s)-Ry if and only if, for each points x and
y in X, 0p(A, s)Ker({z}) # p(A, s)Ker({y}) implies
op(A, s)Ker({z}) N dp(A, s)Ker({y}) = 0.
Proof. Let (X, 7) be dp(A, s)-Ry. Suppose that

5p(A, ) Ker({z}) N op(A, ) Ker({y}) # 0.
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Let z € 0p(A, s)Ker({z})Nop(A, s)Ker({y}). Then, z € dp(A, s)Ker({z}) and by Lemma
4, x € {2}PA9) . Thus, x € {2}P0%) 0 {2}97(M9) and by Corollary 1,

{z}ép(A,s) — {x}ép(A,s).

Similarly, we have {z}%P(A%) = {519P(A5) and hence {x}9P(M9) = {4}9P(A9) by Lemma 4,

op(A, s)Ker({z}) = dp(A, s)Ker({y}).
Conversely, we show the sufficiency by using Corollary 1. Suppose that

{00 2 ()00
By Lemma 4, 0p(A, s)Ker({z}) # op(A, s)Ker({y}) and hence
op(A, s)Ker({z}) N op(A, s)Ker({y}) = 0.
Thus, {z}%7M5) N {y}9P(A9) = @, In fact, assume that z € {}PA9) 0 {y}%P(A5) Then,
z € {a}oPAs)

implies x € dp(A, s)Ker({z}) and hence x € dp(A, s)Ker({z})Ndp(A, s)Ker({z}). By the
hypothesis, dp(A, s)Ker({z}) = dp(A, s)Ker({z}) and by Lemma 4,

{Z}ép(/\,s) _ {$}6p(/\,s).

Similarly, we have {z}P(A3) = {}9P(A9) and hence {x}9P(A) = {4}9P(A5) " This contra-
dicts that {z}P(A8) £ £310P(A8) - Thus, {2}9P(05) 0 {}9P(A5) = (), This shows that (X, 7)
is 0p(A, s)-Ryp.

Theorem 4. For a topological space (X, T), the following properties are equivalent:
(1) (Xv T) 18 5p(A, S)-Ro.
(2) = € {y}P™s) if and only if y € {x )P,

Proof. (1) = (2): Suppose that z € {y}?(s). By Lemma 4, y € dp(A, s)Ker({z})
and hence dp(A, s)Ker({z}) N dp(A, s)Ker({y}) # (. By Theorem 3,

op(A, s)Ker({z}) = op(A, s)Ker({y})

and hence z € 6p(A, s)Ker({y}). Thus, by Lemma 4, y € {z}?"%). The converse is
similarly shown.

(2) = (1): Let U € 6p(A,s)O(X,7) and z € U. If y € U, then U N {y}?(4) = ¢
Thus, 2 ¢ {y}?*) and y ¢ {x}P(**). This implies that {x}%(5) C U. Therefore,
(X, 7) is dp(A, s)-Ry.

Theorem 5. For a topological space (X, T), the following properties are equivalent:
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(1) (X,7) is dp(A, s)-Ry.

(2) For each nonempty subset A of X and each U € dp(A, s)O(X, ) such that ANU # 0,
there exists a dp(A, s)-closed set F' such that ANF #( and F C U.

(8) F =dp(A,s)Ker(F) for each dp(A, s)-closed set F.
(4) {x}Ps) = 5p(A, s)Ker({z}) for each x € X.
(5) {x}Ps) C §p(A, s)Ker({x}) for each = € X.

Proof. (1) = (2): Let A be a nonempty subset of X and U € dp(A, s)O(X, 7) such that
ANU # (). Then, there exists z € AN U and hence {z}P(}9) C U. Put F = {x}%P(1),
Then, F is dp(A, s)-closed such that AN F # () and F C U.

(2) = (3): Let F be any dp(A, s)-closed set of X. By Lemma 3, we have

F Cop(A, s)Ker(F).

Next, we show F' D dp(A, s)Ker(F). Let z ¢ F. Then, x € X — F € dp(A, s)O(X, 1) and
by (2), there exists a dp(A, s)-closed set K such that z € K and K C X — F. Now, put
U=X-K. Then, F CU € dp(A,s)O(X,7) and x ¢ U. Thus, = &€ dp(A, s)Ker(F'). This
shows that F' D op(A, s)Ker(F).

(3) = (4): Let z € X and y & dp(A,s)Ker({z}). There exists U € dp(A,s)O(X, 1)
such that 2 € U and y ¢ U. Thus, U N {y}?(M%) = (. By (3),

U Nop(A, s)Ker({y}PAs)) = 0.
Since z ¢ 6p(A, s)Ker({y}?™9)) there exists V € dp(A, s)O(X,7) such that
o) c v

and 2 ¢ V. Thus, V N {z}?™%) = (. Since y € V, we have y ¢ {x}%P(*%) and hence
{x}0P(N5) C 5p(A, s)Ker({z}). Moreover,

{2} C Gp(A, s)Ker({x}) C dp(A, s)Ker({z}P)) = {a}7o),

This shows that {z}%P(A5) = §p(A, s)Ker({z}).

(4) = (5): The proof is obvious.

(5) = (1): Let U € dp(A,s)O(X,7) and = € U. If y & U, then U N {y}?"s) = ¢
and z ¢ {y}?(19), By Lemma 4, y & 6p(A, s)Ker({z}) and by (5), y & {«}?(®5), Thus,
{x}%(A5) C U and hence (X, 7) is 6p(A, s)-Ry.

Corollary 2. A topological space (X, T) is 0p(A, s)-Ry if and only if
op(A, s)Ker({z}) C {x}oPs)

for each x € X.
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Proof. This is obvious by Theorem 5.

Conversely, let z € {y}%?(**). Thus, by Lemma 4, y € dp(A, s)Ker({z}) and hence
y € {z}PN9) | Similarly, if y € {x}%P(M9) then x € {y}%P(19), Tt follows from Theorem 4
that (X, 7) is 0p(A, s)-Rp.

Definition 4. [3] Let (X,7) be a topological space and v € X. A subset (T)sp(n.s) 05
defined as follows: (x)sp,s) = Op(A, s)Ker({z}) N {x}op(As),

Theorem 6. A topological space (X, T) is 0p(A, s)-Ro if and only if (z)5p(a.s) = {x}0p(Ass)
for each x € X.

Proof. Let x € X. By Theorem 5, dp(A, s)Ker({x}) = {x}%P(%3), Thus,
(@)sp(a,s) = 0p(A, 5)Ker({z}) N {a}PA) = {z}PAe),
Conversely, let x € X. By the hypothesis,
{w} PO = ()50 ) = Op(A, 5) Ker({z}) n{a} PN C op(A, s) Ker({a}).

It follows from Theorem 5 that (X, 7) is dp(A, s)-Rp.

Definition 5. A topological space (X, T) is said to be op(A,s)-Ry if for each points x,y
in X with {x}PN05) £ {y}oP(As) there exist disjoint Sp(A, s)-open sets U and V such that
{x}oP(A8) C U and {y}oPAs) C V.

Theorem 7. A topological space (X, T) is 0p(A, s)-Ry if and only if for any points x,y in
X with {x}P05) £ L410P(0N5) there exist Op(A, s)-closed sets F and K such that = € F,
ye¢F,ye K, 2 ¢ K and X = FUK.

Proof. Let z and y be any points in X with {z}%P(A9) £ {119P(A8)  Then, there exist
disjoint U,V € dp(A, s)O(X,7) such that {2} C U and {y}?(*%) C V. Now, put
F=X-Vand K = X —U. Then, F and K are op(A, s)-closed sets of X such that
reFyédF,ye K,x¢d Kand X =FUK.

Conversely, let z and y be any points in X such that {z}oP(&9) £ {5}9P(A5) - Then,
{x}oP(A8) M {4y 19P(A5) — ) Tn fact, if 2 € {x}OP) N {y}9P(A8) then {2}9P(N8) £ {}0p(Ass)
or {z}9P(Ass) £ £130p(As) T case {2}9P(A9) o£ {2}9P(A5) by the hypothesis, there exists a
6p(A, s)-closed set F such that = € F and z ¢ F. Then, z € {}7("%) C F. This contra-
dicts that z ¢ F. In case {z}9P(A9) =£ {}9P(As) similarly, this leads to the contradiction.
Thus, {z}°P4"%) 0 {y}PAs) = by Corollary 1, (X,7) is 6p(A, 5)-Rp. By the hypothesis,
there exist dp(A, s)-closed sets F' and K such that z € F, y ¢ F, y € K, x ¢ K and
X=FUK. PutU=X—-KandV =X —F. Then, x € U € §p(A,s)O(X,7) and

y eV eop(A,s)O(X,T).

Since (X, ) is 6p(A, s)-Ro, we have {2}°P(9) C U, {y}P05) C V and also UNV = ().
This shows that (X, 7) is dp(A, s)-R;.
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Definition 6. Let A be a subset of a topological space (X, 7). The 65p(A, s)-closure of A,
APP(A5) s defined as follows:

APPAS) — Lo e X | AN UPN) L)) for each U € 6p(A, s)O(X,T) containing .
Lemma 5. If a topological space (X, T) is 0p(A, s)-R1, then (X, 7) is 0p(A, s)-Ryp.

Proof. Let U € 6p(A,s)O(X,7) and z € U. If y ¢ U, then U N {y}?™s) = () and
x & {y}PWs) Thus, {2}P09) £ {4}9P(As) - Since (X,7) is dp(A, s)-Ry, there exists
V € 6p(A, s)O(X, 1) such that {y}?N%) C V and z ¢ V. Thus, V N {£}?13) = () and
hence y & {x}9P(M5) . Therefore, {x}%(A%) C U. This shows that (X, 7) is dp(A, s)-Rp.

Theorem 8. A topological space (X, 1) is dp(A, s)-Ry if and only if (x)
for each x € X.

Sp(A,s) = {x}eép(A,s)

Proof. Let (X, 7) be dp(A, s)-Ry. By Lemma 5, (X, 7) is 0p(A, s)-Ro and by Theorem
6, (a:>5p(A,s) = {m}ap(A’s) C {x}95P(A’s) for each z € X. Thus, <CC>5p(A,s) C {x}e‘;p(A’s) for
each € X. In order to show the opposite inclusion, suppose that y & (x)5,(a 5)- Then,
(T)sp(n,s) 7 (y>5p(A7S). Since (X, 1) is dp(A, s)-Rp, by Theorem 6, {x}‘sl’(A’s) # {y}ép(Aﬁs).
Since (X, 7) is dp(A, s)-R;, there exist disjoint 0p(A, s)-open sets U and V of X such that
{x}0P(N5) C U and {y}PN9) C V. Since {z}NVPWAs) C UNVIPAS) = () 4  {2}00P(As),
Thus, {z}0%7(A9) C (Z)sp(A,s) and hence {x}00p(As) — (T)op(A,s)-

Conversely, suppose that {2}P(%5) = () (A,s) for each z € X. Then,

op

(@)sp(r,s) = {2}0PN) D {2}P9) D (g5

and () 5p(A,5) = {2}9P(A9) for each € X. By Theorem 6, (X,7) is dp(A, 5)-Ry. Suppose
that {2}%P(5) £ £319P(A5)  Thus, by Corollary 1, {z}(A%) N {y}9P(As) — (). By Theorem
6, () sp(A,s) N (Y)sp(A,s) = @ and hence {x}e‘s(A’S) N {y}%p(A’s) = (). Since y ¢ {$}05P(A75),
there exists a dp(A, s)-open set U of X such that y € U C UPA) C X — {z}. Let

V=X - Ui

then z € V € dp(A, s)O(X, 7). Since (X, 7) is 6p(A, s)-Ro, {y}?Ns) C U, {z}op(As) C Vv
and U NV = (). This shows that (X, 7) is dp(A, s)-Ry.

Corollary 3. A topological space (X, ) is 6p(A, s)-Ry if and only if {x}oP(A) = {2}09p(Ass)
for each x € X.

Proof. Let (X, 7) be a dp(A, s)-R;1 space. By Theorem 8, we have
{2} 2 (@) gp(n g = {2} PN 2 {yP )

and hence {}%P(N%) = {2}99P(A5) for each 2 € X.
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Conversely, suppose that {z}%P(05) = {2}99P(A9) for each 2 € X. First, we show that
(X,7)is 0p(A, s)-Rp. Let U € op(A,s)O(X,7) and € U. Let y ¢ U. Then,

UN{y}?™) = U n {yfrhs) = .

Thus, z ¢ {y}?P(M5) There exists V € dp(A, s)O(X, 7) such that z € V and y ¢ VoP(As),
Since {x}oP(As) C Vop(As) g o [2}9P(As) - This shows that {z}°P("%) C U and hence
(X,7) is 6p(A, s)-Ro. By Theorem 6, (z)s5p(a,s) = {x}oP(Ass) = (4100p(A5) for each z € X.
Thus, by Theorem 8, (X, 7) is dp(A, s)-R;.
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