EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 17, No. 1, 2024, 147-157 ISSN 1307-5543 — ejpam.com Published by New York Business Global

Characterizations of $\delta p(\Lambda, s)$ - R_0 spaces

Chawalit Boonpok¹, Prapart Pue-on^{1,*}

¹ Mathematics and Applied Mathematics Research Unit, Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand

Abstract. Our main purpose is to introduce the concept of $\delta p(\Lambda, s)$ - R_0 spaces. Moreover, some characterizations of $\delta p(\Lambda, s)$ - R_0 spaces are investigated.

2020 Mathematics Subject Classifications: 54A05, 54D10 Key Words and Phrases: $\delta p(\Lambda, s)$ -open set, $\delta p(\Lambda, s)$ - R_0 space

1. Introduction

In 1943, Shanin [20] introduced the concept of R_0 topological spaces. Davis [11] introduced the concept of a separation axiom called R_1 . These concepts are further investigated by Naimpally [16], Dube [13] and Dorsett [12]. Cammaroto and Noiri [10] introduce a weak separation axiom m- R_0 in m-spaces which are equivalent to generalized topological spaces due to Lugojan [15]. Noiri [17] introduced the notion of m- R_1 spaces and investigated several characterizations of m- R_0 spaces and m- R_1 spaces. In 1963, Levine [14] introduced the concept of semi-open sets which is weaker than the concept of open sets in topological spaces. Veličko [23] introduced δ -open sets, which are stronger than open sets. Park et al. [18] have offered new notion called δ -semiopen sets which are stronger than semi-open sets but weaker than δ -open sets and investigated the relationships between several types of these open sets. Caldas and Dontchev [6] introduced and investigated the notions of Λ_s sets and V_s -sets in topological spaces. Moreover, Caldas et al. [9] investigated some weak separation axioms by utilizing δ -semiopen sets and the δ -semiclosure operator. Caldas et al. [8] investigated the notion of $\delta - \Lambda_s$ -semiclosed sets which is defined as the intersection of a δ - Λ_s -set and a δ -semiclosed set. In 1982, Mashhour et al. [1] introduced and studied the concept of preopen sets. Raychaudhuri and Mukherjee [19] introduced the notions of δ -preopen sets and δ -preclosure. The class of δ -preopen sets is larger than that of preopen sets. Caldas et al. [7] introduced some weak separation axioms by utilizing the notions of δ -preopen sets and the δ -preclosure operator. In [5], the present authors introduced and studied the concept of (Λ, s) -closed sets by utilizing the notions of Λ_s -sets

DOI: https://doi.org/10.29020/nybg.ejpam.v17i1.4735

Email addresses: chawalit.b@msu.ac.th (C. Boonpok), prapart.p@msu.ac.th (P. Pue-on)

 $^{^*}$ Corresponding author.

and semi-closed sets. Furthermore, several characterizations of (Λ, s) - R_0 spaces and Λ_p - R_0 spaces were established in [5] and [4], respectively. Boonpok and Khampakdee [2] introduced and investigated the concepts of $\delta s(\Lambda, s)$ - R_0 spaces and $\delta s(\Lambda, s)$ - R_1 spaces. Quite recently, Srisarakham and Boonpok [21] defined and studied the notion of $\delta p(\Lambda, s)$ -open sets in topological spaces. In this paper, we introduce the concept of $\delta p(\Lambda, s)$ - R_0 spaces. Moreover, some characterizations of $\delta p(\Lambda, s)$ - R_0 spaces are discussed.

2. Preliminaries

Throughout the present paper, spaces (X, τ) and (Y, σ) (or simply X and Y) always mean topological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a topological space (X, τ) . The closure of A and the interior of A are denoted by Cl(A) and Int(A), respectively. A subset A of a topological space (X, τ) is called semi-open [14] if $A \subseteq Cl(Int(A))$. The complement of a semi-open set is called semiclosed. The family of all semi-open (resp. semi-closed) sets in a topological space (X, τ) is denoted by $SO(X,\tau)$ (resp. $SC(X,\tau)$). A subset A^{Λ_s} [6] (resp. A^{V_s}) is defined as follows: $A^{\Lambda_s} = \bigcap \{U \mid U \supseteq A, U \in SO(X, \tau)\} \text{ (resp. } A^{V_s} = \bigcup \{F \mid F \subseteq A, F \in SC(X, \tau)\} \text{). } A$ subset A of a topological space (X, τ) is called a Λ_s -set (resp. V_s -set) [6] if $A = A^{\Lambda_s}$ (resp. $A = A^{V_s}$). A subset A of a topological space (X, τ) is called (Λ, s) -closed [5] if $A = T \cap C$, where T is a Λ_s -set and C is a semi-closed set. The complement of a (Λ, s) -closed set is called (Λ, s) -open. The family of all (Λ, s) -closed (resp. (Λ, s) -open) sets in a topological space (X,τ) is denoted by $\Lambda_s C(X,\tau)$ (resp. $\Lambda_s O(X,\tau)$). Let A be a subset of a topological space (X,τ) . A point $x \in X$ is called a (Λ,s) -cluster point [5] of A if for every (Λ,s) -open set U of X containing x we have $A \cap U \neq \emptyset$. The set of all (Λ, s) -cluster points of A is called the (Λ, s) -closure [5] of A and is denoted by $A^{(\Lambda, s)}$. The union of all (Λ, s) -open sets contained in A is called the (Λ, s) -interior [5] of A and is denoted by $A_{(\Lambda, s)}$.

Let A be a subset of a topological space (X, τ) . A point x of X is called a $\delta(\Lambda, s)$ -cluster point [21] of A if $A \cap [V^{(\Lambda,s)}]_{(\Lambda,s)} \neq \emptyset$ for every (Λ, s) -open set V of X containing x. The set of all $\delta(\Lambda, s)$ -cluster points of A is called the $\delta(\Lambda, s)$ -closure [21] of A and is denoted by $A^{\delta(\Lambda,s)}$. If $A = A^{\delta(\Lambda,s)}$, then A is said to be $\delta(\Lambda, s)$ -closed [21]. The complement of a $\delta(\Lambda, s)$ -closed set is said to be $\delta(\Lambda, s)$ -open [21]. The union of all $\delta(\Lambda, s)$ -open sets contained in A is called the $\delta(\Lambda, s)$ -interior [21] of A and is denoted by $A_{\delta(\Lambda,s)}$.

Definition 1. [21] A subset A of a topological space (X, τ) is said to be $\delta p(\Lambda, s)$ -open if $A \subseteq [A^{(\Lambda,s)}]_{\delta(\Lambda,s)}$. The complement of a $\delta p(\Lambda, s)$ -open set is said to be $\delta p(\Lambda, s)$ -closed.

The family of all $\delta p(\Lambda, s)$ -open (resp. $\delta p(\Lambda, s)$ -closed) sets in a topological space (X, τ) is denoted by $\delta p(\Lambda, s)O(X, \tau)$ (resp. $\delta p(\Lambda, s)C(X, \tau)$). Let A be a subset of a topological space (X, τ) . The intersection of all $\delta p(\Lambda, s)$ -closed sets containing A is called the $\delta p(\Lambda, s)$ -closure [22] of A and is denoted by $A^{\delta p(\Lambda, s)}$.

Lemma 1. [21] For the $\delta p(\Lambda, s)$ -closure of subsets A, B in a topological space (X, τ) , the following properties hold:

(1) If $A \subseteq B$, then $A^{\delta p(\Lambda,s)} \subseteq B^{\delta p(\Lambda,s)}$.

- (2) A is $\delta p(\Lambda, s)$ -closed in (X, τ) if and only if $A = A^{\delta p(\Lambda, s)}$.
- (3) $A^{\delta p(\Lambda,s)}$ is $\delta p(\Lambda,s)$ -closed, that is, $A^{\delta p(\Lambda,s)} = [A^{\delta p(\Lambda,s)}]^{\delta p(\Lambda,s)}$.
- (4) $x \in A^{\delta p(\Lambda,s)}$ if and only if $A \cap V \neq \emptyset$ for every $V \in \delta p(\Lambda,s)O(X,\tau)$ containing x.

Lemma 2. [21] For a family $\{A_{\gamma} \mid \gamma \in \nabla\}$ of a topological space (X, τ) , the following properties hold:

- $(1) \ [\cap \{A_{\gamma} \mid \gamma \in \nabla\}]^{\delta p(\Lambda,s)} \subseteq \cap \{A_{\gamma}^{\delta p(\Lambda,s)} \mid \gamma \in \nabla\}.$
- $(2) \left[\bigcup \{ A_{\gamma} \mid \gamma \in \nabla \} \right]^{\delta p(\Lambda,s)} \supseteq \bigcup \{ A_{\gamma}^{\delta p(\Lambda,s)} \mid \gamma \in \nabla \}.$

3. Some characterizations of $\delta p(\Lambda, s)$ - R_0 spaces

In this section, we introduce the notion of $\delta p(\Lambda, s)$ - R_0 spaces. Moreover, several characterizations of $\delta p(\Lambda, s)$ - R_0 spaces are discussed.

Definition 2. A topological space (X, τ) is called $\delta p(\Lambda, s)$ - R_0 if, for each $\delta p(\Lambda, s)$ -open set U and each $x \in U$, $\{x\}^{\delta p(\Lambda, s)} \subseteq U$.

Theorem 1. For a topological space (X, τ) , the following properties are equivalent:

- (1) (X, τ) is $\delta p(\Lambda, s)$ - R_0 .
- (2) For each $\delta p(\Lambda, s)$ -closed set F and each $x \in X F$, there exists $U \in \delta p(\Lambda, s)O(X, \tau)$ such that $F \subseteq U$ and $x \notin U$.
- (3) For each $\delta p(\Lambda, s)$ -closed set F and each $x \in X F$, $F \cap \{x\}^{\delta p(\Lambda, s)} = \emptyset$.
- $(4) \ \ For \ any \ distinct \ points \ x, y \ \ in \ X, \ \{x\}^{\delta p(\Lambda,s)} = \{y\}^{\delta p(\Lambda,s)} \ \ or \ \{x\}^{\delta p(\Lambda,s)} \cap \{y\}^{\delta p(\Lambda,s)} = \emptyset.$
- *Proof.* (1) \Rightarrow (2): Let F be a $\delta p(\Lambda, s)$ -closed set and $x \in X F$. Since (X, τ) is $\delta p(\Lambda, s)$ - R_0 , we have $\{x\}^{\delta p(\Lambda, s)} \subseteq X F$. Put $U = X \{x\}^{\delta p(\Lambda, s)}$. Thus, by Lemma 1, $U \in \delta p(\Lambda, s)O(X, \tau)$, $F \subseteq U$ and $x \notin U$.
- (2) \Rightarrow (3): Let F be a $\delta p(\Lambda, s)$ -closed set and $x \in X F$. Thus, by (2), there exists $U \in \delta p(\Lambda, s)O(X, \tau)$ such that $F \subseteq U$ and $x \not\in U$. Since $U \in \delta p(\Lambda, s)O(X, \tau)$, $U \cap \{x\}^{\delta p(\Lambda, s)} = \emptyset$ and hence $F \cap \{x\}^{\delta p(\Lambda, s)} = \emptyset$.
- (3) \Rightarrow (4): Let x and y be distinct points of X. Suppose that $\{x\}^{\delta p(\Lambda,s)} \cap \{y\}^{\delta p(\Lambda,s)} \neq \emptyset$. By (3), $x \in \{y\}^{\delta p(\Lambda,s)}$ and $y \in \{x\}^{\delta p(\Lambda,s)}$. By Lemma 1, $\{x\}^{\delta p(\Lambda,s)} \subseteq \{y\}^{\delta p(\Lambda,s)} \subseteq \{x\}^{\delta p(\Lambda,s)}$ and hence $\{x\}^{\delta p(\Lambda,s)} = \{y\}^{\delta p(\Lambda,s)}$.
- (4) \Rightarrow (1): Let $V \in \delta p(\Lambda, s)O(X, \tau)$ and $x \in V$. For each $y \notin V$, $V \cap \{y\}^{\delta p(\Lambda, s)} = \emptyset$ and hence $x \notin \{y\}^{\delta p(\Lambda, s)}$. Thus, $\{x\}^{\delta p(\Lambda, s)} \neq \{y\}^{\delta p(\Lambda, s)}$. By (4), for each $y \notin V$,

$$\{x\}^{\delta p(\Lambda,s)} \cap \{y\}^{\delta p(\Lambda,s)} = \emptyset.$$

Since X - V is $\delta p(\Lambda, s)$ -closed, $y \in \{y\}^{\delta p(\Lambda, s)} \subseteq X - V$ and $\bigcup_{y \in X - V} \{y\}^{\delta p(\Lambda, s)} = X - V$. Thus,

$$\{x\}^{\delta p(\Lambda,s)} \cap (X - V) = \{x\}^{\delta p(\Lambda,s)} \cap [\cup_{y \in X - V} \{y\}^{\delta p(\Lambda,s)}]$$

$$= \cup_{y \in X - V} [\{x\}^{\delta p(\Lambda,s)} \cap \{y\}^{\delta p(\Lambda,s)}]$$

$$= \emptyset$$

and hence $\{x\}^{\delta p(\Lambda,s)} \subseteq V$. This shows that (X,τ) is $\delta p(\Lambda,s)$ - R_0 .

Corollary 1. A topological space (X, τ) is $\delta p(\Lambda, s) - R_0$ if and only if for any points x and y in X, $\{x\}^{\delta p(\Lambda, s)} \neq \{y\}^{\delta p(\Lambda, s)}$ implies $\{x\}^{\delta p(\Lambda, s)} \cap \{y\}^{\delta p(\Lambda, s)} = \emptyset$.

Proof. This is obvious by Theorem 1.

Conversely, let $U \in \delta p(\Lambda, s)O(X, \tau)$ and $x \in U$. If $y \notin U$, then $U \cap \{y\}^{\delta p(\Lambda, s)} = \emptyset$. Thus, $x \notin \{y\}^{\delta p(\Lambda, s)}$ and $\{x\}^{\delta p(\Lambda, s)} \neq \{y\}^{\delta p(\Lambda, s)}$. By the hypothesis, $\{x\}^{\delta p(\Lambda, s)} \cap \{y\}^{\delta p(\Lambda, s)} = \emptyset$ and hence $y \notin \{x\}^{\delta p(\Lambda, s)}$. Therefore, $\{x\}^{\delta p(\Lambda, s)} \subseteq U$. This shows that (X, τ) is $\delta p(\Lambda, s)$ - R_0 .

Definition 3. [22] Let A be a subset of a topological space (X, τ) . The $\delta p(\Lambda, s)$ -kernel of A, denoted by $\delta p(\Lambda, s)Ker(A)$, is defined to be the set

$$\delta p(\Lambda, s) Ker(A) = \bigcap \{ U \in \delta p(\Lambda, s) O(X, \tau) \mid A \subseteq U \}.$$

Lemma 3. [3] For subsets A, B of a topological space (X, τ) , the following properties hold:

- (1) $A \subseteq \delta p(\Lambda, s) Ker(A)$.
- (2) If $A \subseteq B$, then $\delta p(\Lambda, s) Ker(A) \subseteq \delta p(\Lambda, s) Ker(B)$.
- (3) $\delta p(\Lambda, s) Ker(\delta p(\Lambda, s) Ker(\Lambda)) = \delta p(\Lambda, s) Ker(\Lambda)$.
- (4) If A is $\delta p(\Lambda, s)$ -open, $\delta p(\Lambda, s)Ker(A) = A$.

Theorem 2. For any points x and y in a topological space (X, τ) , the following properties are equivalent:

- (1) $\delta p(\Lambda, s) Ker(\{x\}) \neq \delta p(\Lambda, s) Ker(\{y\}).$
- (2) $\{x\}^{\delta p(\Lambda,s)} \neq \{y\}^{\delta p(\Lambda,s)}$.

Proof. (1) \Rightarrow (2): Suppose that $\delta p(\Lambda, s)Ker(\{x\}) \neq \delta p(\Lambda, s)Ker(\{y\})$. Then, there exists a point $z \in X$ such that $z \in \delta p(\Lambda, s)Ker(\{x\})$ and $z \notin \delta p(\Lambda, s)Ker(\{y\})$ or

$$z \in \delta p(\Lambda, s) Ker(\{y\})$$

and $z \notin \delta p(\Lambda, s) Ker(\{x\})$. We prove only the first case being the second analogous. From $z \in \delta p(\Lambda, s) Ker(\{x\})$ it follows that $\{x\} \cap \{z\}^{\delta p(\Lambda, s)} \neq \emptyset$ which implies $x \in \{z\}^{\delta p(\Lambda, s)}$. By $z \notin \delta p(\Lambda, s) Ker(\{y\})$, we have $\{y\} \cap \{z\}^{\delta p(\Lambda, s)} = \emptyset$. Since $x \in \{z\}^{\delta p(\Lambda, s)}$,

$$\{x\}^{\delta p(\Lambda,s)} \subseteq \{z\}^{\delta p(\Lambda,s)}$$

and $\{y\} \cap \{x\}^{\delta p(\Lambda,s)} = \emptyset$. Therefore, $\{x\}^{\delta p(\Lambda,s)} \neq \{y\}^{\delta p(\Lambda,s)}$. Thus,

$$\delta p(\Lambda, s) Ker(\{x\}) \neq \delta p(\Lambda, s) Ker(\{y\})$$

implies that $\{x\}^{\delta p(\Lambda,s)} \neq \{y\}^{\delta p(\Lambda,s)}$.

(2) \Rightarrow (1): Suppose that $\{x\}^{\delta p(\Lambda,s)} \neq \{y\}^{\delta p(\Lambda,s)}$. There exists a point $z \in X$ such that $z \in \{x\}^{\delta p(\Lambda,s)}$ and $z \notin \{y\}^{\delta p(\Lambda,s)}$ or $z \in \{y\}^{\delta p(\Lambda,s)}$ and $z \notin \{x\}^{\delta p(\Lambda,s)}$. We prove only the first case being the second analogous. It follows that there exists a $\delta p(\Lambda, s)$ open set containing z and therefore x but not y, namely, $y \notin \delta p(\Lambda, s) Ker(\{x\})$ and thus $\delta p(\Lambda, s) Ker(\{x\}) \neq \delta p(\Lambda, s) Ker(\{y\}).$

Lemma 4. Let (X,τ) be a topological space and $x,y\in X$. Then, the following properties hold:

- (1) $y \in \delta p(\Lambda, s) Ker(\{x\})$ if and only if $x \in \{y\}^{\delta p(\Lambda, s)}$.
- (2) $\delta p(\Lambda, s) Ker(\{x\}) = \delta p(\Lambda, s) Ker(\{y\})$ if and only if $\{x\}^{\delta p(\Lambda, s)} = \{y\}^{\delta p(\Lambda, s)}$.

Proof. (1) Let $x \notin \{y\}^{\delta p(\Lambda,s)}$. Then, there exists $U \in \delta p(\Lambda,s)O(X,\tau)$ such that $x \in U$ and $y \notin U$. Thus, $y \notin \delta p(\Lambda, s) Ker(\{x\})$. The converse is similarly shown.

(2) Suppose that $\delta p(\Lambda, s) Ker(\{x\}) = \delta p(\Lambda, s) Ker(\{y\})$ for any $x, y \in X$. Since

$$x \in \delta p(\Lambda, s) Ker(\{x\}),$$

 $x \in \delta p(\Lambda,s)Ker(\{y\})$, by (1), $y \in \{x\}^{\delta p(\Lambda,s)}$. By Lemma 1, $\{y\}^{\delta p(\Lambda,s)} \subseteq \{x\}^{\delta p(\Lambda,s)}$. Similarly, we have $\{x\}^{\delta p(\Lambda,s)} \subseteq \{y\}^{\delta p(\Lambda,s)}$ and hence $\{x\}^{\delta p(\Lambda,s)} = \{y\}^{\delta p(\Lambda,s)}$. Conversely, suppose that $\{x\}^{\delta p(\Lambda,s)} = \{y\}^{\delta p(\Lambda,s)}$. Since $x \in \{x\}^{\delta p(\Lambda,s)}$, $x \in \{y\}^{\delta p(\Lambda,s)}$

and by (1), $y \in \delta p(\Lambda, s) Ker(\{x\})$. By Lemma 3,

$$\delta p(\Lambda, s) Ker(\{y\}) \subseteq \delta p(\Lambda, s) Ker(\delta p(\Lambda, s) Ker(\{x\})) = \delta p(\Lambda, s) Ker(\{x\}).$$

Similarly, we have $\delta p(\Lambda, s) Ker(\{x\}) \subseteq \delta p(\Lambda, s) Ker(\{y\})$ and hence

$$\delta p(\Lambda, s) Ker(\{x\}) = \delta p(\Lambda, s) Ker(\{y\}).$$

Theorem 3. A topological space (X, τ) is $\delta p(\Lambda, s)$ - R_0 if and only if, for each points x and y in X, $\delta p(\Lambda, s) Ker(\{x\}) \neq \delta p(\Lambda, s) Ker(\{y\})$ implies

$$\delta p(\Lambda, s) Ker(\{x\}) \cap \delta p(\Lambda, s) Ker(\{y\}) = \emptyset.$$

Proof. Let (X,τ) be $\delta p(\Lambda,s)-R_0$. Suppose that

$$\delta p(\Lambda, s) Ker(\{x\}) \cap \delta p(\Lambda, s) Ker(\{y\}) \neq \emptyset.$$

Let $z \in \delta p(\Lambda, s) Ker(\{x\}) \cap \delta p(\Lambda, s) Ker(\{y\})$. Then, $z \in \delta p(\Lambda, s) Ker(\{x\})$ and by Lemma 4, $x \in \{z\}^{\delta p(\Lambda, s)}$. Thus, $x \in \{z\}^{\delta p(\Lambda, s)} \cap \{x\}^{\delta p(\Lambda, s)}$ and by Corollary 1,

$$\{z\}^{\delta p(\Lambda,s)} = \{x\}^{\delta p(\Lambda,s)}.$$

Similarly, we have $\{z\}^{\delta p(\Lambda,s)} = \{y\}^{\delta p(\Lambda,s)}$ and hence $\{x\}^{\delta p(\Lambda,s)} = \{y\}^{\delta p(\Lambda,s)}$, by Lemma 4, $\delta p(\Lambda,s)Ker(\{x\}) = \delta p(\Lambda,s)Ker(\{y\})$.

Conversely, we show the sufficiency by using Corollary 1. Suppose that

$$\{x\}^{\delta p(\Lambda,s)} \neq \{y\}^{\delta p(\Lambda,s)}.$$

By Lemma 4, $\delta p(\Lambda, s) Ker(\{x\}) \neq \delta p(\Lambda, s) Ker(\{y\})$ and hence

$$\delta p(\Lambda, s) Ker(\{x\}) \cap \delta p(\Lambda, s) Ker(\{y\}) = \emptyset.$$

Thus, $\{x\}^{\delta p(\Lambda,s)} \cap \{y\}^{\delta p(\Lambda,s)} = \emptyset$. In fact, assume that $z \in \{x\}^{\delta p(\Lambda,s)} \cap \{y\}^{\delta p(\Lambda,s)}$. Then,

$$z \in \{x\}^{\delta p(\Lambda,s)}$$

implies $x \in \delta p(\Lambda, s) Ker(\{z\})$ and hence $x \in \delta p(\Lambda, s) Ker(\{z\}) \cap \delta p(\Lambda, s) Ker(\{x\})$. By the hypothesis, $\delta p(\Lambda, s) Ker(\{z\}) = \delta p(\Lambda, s) Ker(\{x\})$ and by Lemma 4,

$${z}^{\delta p(\Lambda,s)} = {x}^{\delta p(\Lambda,s)}.$$

Similarly, we have $\{z\}^{\delta p(\Lambda,s)} = \{y\}^{\delta p(\Lambda,s)}$ and hence $\{x\}^{\delta p(\Lambda,s)} = \{y\}^{\delta p(\Lambda,s)}$. This contradicts that $\{x\}^{\delta p(\Lambda,s)} \neq \{y\}^{\delta p(\Lambda,s)}$. Thus, $\{x\}^{\delta p(\Lambda,s)} \cap \{y\}^{\delta p(\Lambda,s)} = \emptyset$. This shows that (X,τ) is $\delta p(\Lambda,s)-R_0$.

Theorem 4. For a topological space (X,τ) , the following properties are equivalent:

- (1) (X, τ) is $\delta p(\Lambda, s)$ - R_0 .
- (2) $x \in \{y\}^{\delta p(\Lambda,s)}$ if and only if $y \in \{x\}^{\delta p(\Lambda,s)}$.

Proof. (1) \Rightarrow (2): Suppose that $x \in \{y\}^{\delta p(\Lambda,s)}$. By Lemma 4, $y \in \delta p(\Lambda,s)Ker(\{x\})$ and hence $\delta p(\Lambda,s)Ker(\{x\}) \cap \delta p(\Lambda,s)Ker(\{y\}) \neq \emptyset$. By Theorem 3,

$$\delta p(\Lambda, s) Ker(\{x\}) = \delta p(\Lambda, s) Ker(\{y\})$$

and hence $x \in \delta p(\Lambda, s) Ker(\{y\})$. Thus, by Lemma 4, $y \in \{x\}^{\delta p(\Lambda, s)}$. The converse is similarly shown.

(2) \Rightarrow (1): Let $U \in \delta p(\Lambda, s)O(X, \tau)$ and $x \in U$. If $y \notin U$, then $U \cap \{y\}^{\delta p(\Lambda, s)} = \emptyset$. Thus, $x \notin \{y\}^{\delta p(\Lambda, s)}$ and $y \notin \{x\}^{\delta p(\Lambda, s)}$. This implies that $\{x\}^{\delta p(\Lambda, s)} \subseteq U$. Therefore, (X, τ) is $\delta p(\Lambda, s)$ - R_0 .

Theorem 5. For a topological space (X,τ) , the following properties are equivalent:

- (1) (X, τ) is $\delta p(\Lambda, s) R_0$.
- (2) For each nonempty subset A of X and each $U \in \delta p(\Lambda, s)O(X, \tau)$ such that $A \cap U \neq \emptyset$, there exists a $\delta p(\Lambda, s)$ -closed set F such that $A \cap F \neq \emptyset$ and $F \subseteq U$.
- (3) $F = \delta p(\Lambda, s) Ker(F)$ for each $\delta p(\Lambda, s)$ -closed set F.
- (4) $\{x\}^{\delta p(\Lambda,s)} = \delta p(\Lambda,s) Ker(\{x\})$ for each $x \in X$.
- (5) $\{x\}^{\delta p(\Lambda,s)} \subseteq \delta p(\Lambda,s) Ker(\{x\})$ for each $x \in X$.

Proof. (1) \Rightarrow (2): Let A be a nonempty subset of X and $U \in \delta p(\Lambda, s)O(X, \tau)$ such that $A \cap U \neq \emptyset$. Then, there exists $x \in A \cap U$ and hence $\{x\}^{\delta p(\Lambda, s)} \subseteq U$. Put $F = \{x\}^{\delta p(\Lambda, s)}$. Then, F is $\delta p(\Lambda, s)$ -closed such that $A \cap F \neq \emptyset$ and $F \subseteq U$.

 $(2) \Rightarrow (3)$: Let F be any $\delta p(\Lambda, s)$ -closed set of X. By Lemma 3, we have

$$F \subseteq \delta p(\Lambda, s) Ker(F)$$
.

Next, we show $F \supseteq \delta p(\Lambda, s) Ker(F)$. Let $x \notin F$. Then, $x \in X - F \in \delta p(\Lambda, s) O(X, \tau)$ and by (2), there exists a $\delta p(\Lambda, s)$ -closed set K such that $x \in K$ and $K \subseteq X - F$. Now, put U = X - K. Then, $F \subseteq U \in \delta p(\Lambda, s) O(X, \tau)$ and $x \notin U$. Thus, $x \notin \delta p(\Lambda, s) Ker(F)$. This shows that $F \supseteq \delta p(\Lambda, s) Ker(F)$.

(3) \Rightarrow (4): Let $x \in X$ and $y \notin \delta p(\Lambda, s) Ker(\{x\})$. There exists $U \in \delta p(\Lambda, s) O(X, \tau)$ such that $x \in U$ and $y \notin U$. Thus, $U \cap \{y\}^{\delta p(\Lambda, s)} = \emptyset$. By (3),

$$U \cap \delta p(\Lambda, s) Ker(\{y\}^{\delta p(\Lambda, s)}) = \emptyset.$$

Since $x \notin \delta p(\Lambda, s) Ker(\{y\}^{\delta p(\Lambda, s)})$, there exists $V \in \delta p(\Lambda, s) O(X, \tau)$ such that

$$\{y\}^{\delta p(\Lambda,s)}\subseteq V$$

and $x \notin V$. Thus, $V \cap \{x\}^{\delta p(\Lambda,s)} = \emptyset$. Since $y \in V$, we have $y \notin \{x\}^{\delta p(\Lambda,s)}$ and hence $\{x\}^{\delta p(\Lambda,s)} \subseteq \delta p(\Lambda,s) Ker(\{x\})$. Moreover,

$$\{x\}^{\delta p(\Lambda,s)} \subseteq \delta p(\Lambda,s) Ker(\{x\}) \subseteq \delta p(\Lambda,s) Ker(\{x\}^{\delta p(\Lambda,s)}) = \{x\}^{\delta p(\Lambda,s)}.$$

This shows that $\{x\}^{\delta p(\Lambda,s)} = \delta p(\Lambda,s) Ker(\{x\}).$

- $(4) \Rightarrow (5)$: The proof is obvious.
- $(5) \Rightarrow (1)$: Let $U \in \delta p(\Lambda, s)O(X, \tau)$ and $x \in U$. If $y \notin U$, then $U \cap \{y\}^{\delta p(\Lambda, s)} = \emptyset$ and $x \notin \{y\}^{\delta p(\Lambda, s)}$. By Lemma 4, $y \notin \delta p(\Lambda, s)Ker(\{x\})$ and by (5), $y \notin \{x\}^{\delta p(\Lambda, s)}$. Thus, $\{x\}^{\delta p(\Lambda, s)} \subseteq U$ and hence (X, τ) is $\delta p(\Lambda, s) R_0$.

Corollary 2. A topological space (X, τ) is $\delta p(\Lambda, s)$ - R_0 if and only if

$$\delta p(\Lambda,s) Ker(\{x\}) \subseteq \{x\}^{\delta p(\Lambda,s)}$$

for each $x \in X$.

Proof. This is obvious by Theorem 5.

Conversely, let $x \in \{y\}^{\delta p(\Lambda,s)}$. Thus, by Lemma 4, $y \in \delta p(\Lambda,s)Ker(\{x\})$ and hence $y \in \{x\}^{\delta p(\Lambda,s)}$. Similarly, if $y \in \{x\}^{\delta p(\Lambda,s)}$, then $x \in \{y\}^{\delta p(\Lambda,s)}$. It follows from Theorem 4 that (X,τ) is $\delta p(\Lambda,s)$ - R_0 .

Definition 4. [3] Let (X,τ) be a topological space and $x \in X$. A subset $\langle x \rangle_{\delta p(\Lambda,s)}$ is defined as follows: $\langle x \rangle_{\delta p(\Lambda,s)} = \delta p(\Lambda,s) Ker(\{x\}) \cap \{x\}^{\delta p(\Lambda,s)}$.

Theorem 6. A topological space (X, τ) is $\delta p(\Lambda, s)$ - R_0 if and only if $\langle x \rangle_{\delta p(\Lambda, s)} = \{x\}^{\delta p(\Lambda, s)}$ for each $x \in X$.

Proof. Let $x \in X$. By Theorem 5, $\delta p(\Lambda, s) Ker(\{x\}) = \{x\}^{\delta p(\Lambda, s)}$. Thus,

$$\langle x\rangle_{\delta p(\Lambda,s)}=\delta p(\Lambda,s)Ker(\{x\})\cap \{x\}^{\delta p(\Lambda,s)}=\{x\}^{\delta p(\Lambda,s)}.$$

Conversely, let $x \in X$. By the hypothesis,

$$\{x\}^{\delta p(\Lambda,s)} = \langle x \rangle_{\delta p(\Lambda,s)} = \delta p(\Lambda,s) Ker(\{x\}) \cap \{x\}^{\delta p(\Lambda,s)} \subseteq \delta p(\Lambda,s) Ker(\{x\}).$$

It follows from Theorem 5 that (X, τ) is $\delta p(\Lambda, s)-R_0$.

Definition 5. A topological space (X, τ) is said to be $\delta p(\Lambda, s)$ - R_1 if for each points x, y in X with $\{x\}^{\delta p(\Lambda, s)} \neq \{y\}^{\delta p(\Lambda, s)}$, there exist disjoint $\delta p(\Lambda, s)$ -open sets U and V such that $\{x\}^{\delta p(\Lambda, s)} \subseteq U$ and $\{y\}^{\delta p(\Lambda, s)} \subseteq V$.

Theorem 7. A topological space (X, τ) is $\delta p(\Lambda, s)$ - R_1 if and only if for any points x, y in X with $\{x\}^{\delta p(\Lambda, s)} \neq \{y\}^{\delta p(\Lambda, s)}$, there exist $\delta p(\Lambda, s)$ -closed sets F and K such that $x \in F$, $y \notin F$, $y \in K$, $x \notin K$ and $X = F \cup K$.

Proof. Let x and y be any points in X with $\{x\}^{\delta p(\Lambda,s)} \neq \{y\}^{\delta p(\Lambda,s)}$. Then, there exist disjoint $U, V \in \delta p(\Lambda, s) O(X, \tau)$ such that $\{x\}^{\delta p(\Lambda,s)} \subseteq U$ and $\{y\}^{\delta p(\Lambda,s)} \subseteq V$. Now, put F = X - V and K = X - U. Then, F and K are $\delta p(\Lambda, s)$ -closed sets of X such that $x \in F, y \notin F, y \in K, x \notin K$ and $X = F \cup K$.

Conversely, let x and y be any points in X such that $\{x\}^{\delta p(\Lambda,s)} \neq \{y\}^{\delta p(\Lambda,s)}$. Then, $\{x\}^{\delta p(\Lambda,s)} \cap \{y\}^{\delta p(\Lambda,s)} = \emptyset$. In fact, if $z \in \{x\}^{\delta p(\Lambda,s)} \cap \{y\}^{\delta p(\Lambda,s)}$, then $\{z\}^{\delta p(\Lambda,s)} \neq \{x\}^{\delta p(\Lambda,s)}$ or $\{z\}^{\delta p(\Lambda,s)} \neq \{y\}^{\delta p(\Lambda,s)}$. In case $\{z\}^{\delta p(\Lambda,s)} \neq \{x\}^{\delta p(\Lambda,s)}$, by the hypothesis, there exists a $\delta p(\Lambda,s)$ -closed set F such that $x \in F$ and $z \notin F$. Then, $z \in \{x\}^{\delta p(\Lambda,s)} \subseteq F$. This contradicts that $z \notin F$. In case $\{z\}^{\delta p(\Lambda,s)} \neq \{y\}^{\delta p(\Lambda,s)}$, similarly, this leads to the contradiction. Thus, $\{x\}^{\delta p(\Lambda,s)} \cap \{y\}^{\delta p(\Lambda,s)} = \emptyset$, by Corollary 1, (X,τ) is $\delta p(\Lambda,s)$ - R_0 . By the hypothesis, there exist $\delta p(\Lambda,s)$ -closed sets F and K such that $x \in F$, $y \notin F$, $y \in K$, $x \notin K$ and $X = F \cup K$. Put U = X - K and V = X - F. Then, $x \in U \in \delta p(\Lambda,s)O(X,\tau)$ and

$$y \in V \in \delta p(\Lambda, s)O(X, \tau).$$

Since (X,τ) is $\delta p(\Lambda,s)-R_0$, we have $\{x\}^{\delta p(\Lambda,s)}\subseteq U$, $\{y\}^{\delta p(\Lambda,s)}\subseteq V$ and also $U\cap V=\emptyset$. This shows that (X,τ) is $\delta p(\Lambda,s)-R_1$.

Definition 6. Let A be a subset of a topological space (X, τ) . The $\theta \delta p(\Lambda, s)$ -closure of A, $A^{\theta \delta p(\Lambda, s)}$, is defined as follows:

 $A^{\theta \delta p(\Lambda,s)} = \{ x \in X \mid A \cap U^{\delta p(\Lambda,s)} \neq \emptyset \text{ for each } U \in \delta p(\Lambda,s)O(X,\tau) \text{ containing } x \}.$

Lemma 5. If a topological space (X,τ) is $\delta p(\Lambda,s)-R_1$, then (X,τ) is $\delta p(\Lambda,s)-R_0$.

Proof. Let $U \in \delta p(\Lambda, s)O(X, \tau)$ and $x \in U$. If $y \notin U$, then $U \cap \{y\}^{\delta p(\Lambda, s)} = \emptyset$ and $x \notin \{y\}^{\delta p(\Lambda, s)}$. Thus, $\{x\}^{\delta p(\Lambda, s)} \neq \{y\}^{\delta p(\Lambda, s)}$. Since (X, τ) is $\delta p(\Lambda, s)-R_1$, there exists $V \in \delta p(\Lambda, s)O(X, \tau)$ such that $\{y\}^{\delta p(\Lambda, s)} \subseteq V$ and $x \notin V$. Thus, $V \cap \{x\}^{\delta p(\Lambda, s)} = \emptyset$ and hence $y \notin \{x\}^{\delta p(\Lambda, s)}$. Therefore, $\{x\}^{\delta p(\Lambda, s)} \subseteq U$. This shows that (X, τ) is $\delta p(\Lambda, s)-R_0$.

Theorem 8. A topological space (X, τ) is $\delta p(\Lambda, s)$ - R_1 if and only if $\langle x \rangle_{\delta p(\Lambda, s)} = \{x\}^{\theta \delta p(\Lambda, s)}$ for each $x \in X$.

Proof. Let (X,τ) be $\delta p(\Lambda,s)$ - R_1 . By Lemma 5, (X,τ) is $\delta p(\Lambda,s)$ - R_0 and by Theorem 6, $\langle x \rangle_{\delta p(\Lambda,s)} = \{x\}^{\delta p(\Lambda,s)} \subseteq \{x\}^{\theta \delta p(\Lambda,s)}$ for each $x \in X$. Thus, $\langle x \rangle_{\delta p(\Lambda,s)} \subseteq \{x\}^{\theta \delta p(\Lambda,s)}$ for each $x \in X$. In order to show the opposite inclusion, suppose that $y \notin \langle x \rangle_{\delta p(\Lambda,s)}$. Then, $\langle x \rangle_{\delta p(\Lambda,s)} \neq \langle y \rangle_{\delta p(\Lambda,s)}$. Since (X,τ) is $\delta p(\Lambda,s)$ - R_0 , by Theorem 6, $\{x\}^{\delta p(\Lambda,s)} \neq \{y\}^{\delta p(\Lambda,s)}$. Since (X,τ) is $\delta p(\Lambda,s)$ - R_1 , there exist disjoint $\delta p(\Lambda,s)$ -open sets U and V of X such that $\{x\}^{\delta p(\Lambda,s)} \subseteq U$ and $\{y\}^{\delta p(\Lambda,s)} \subseteq V$. Since $\{x\} \cap V^{\delta p(\Lambda,s)} \subseteq U \cap V^{\delta p(\Lambda,s)} = \emptyset$, $y \notin \{x\}^{\theta \delta p(\Lambda,s)}$. Thus, $\{x\}^{\theta \delta p(\Lambda,s)} \subseteq \langle x \rangle_{\delta p(\Lambda,s)}$ and hence $\{x\}^{\theta \delta p(\Lambda,s)} = \langle x \rangle_{\delta p(\Lambda,s)}$.

Conversely, suppose that $\{x\}^{\theta\delta p(\Lambda,s)} = \langle x \rangle_{\delta p(\Lambda,s)}$ for each $x \in X$. Then,

$$\langle x \rangle_{\delta p(\Lambda,s)} = \{x\}^{\theta \delta p(\Lambda,s)} \supseteq \{x\}^{\delta p(\Lambda,s)} \supseteq \langle x \rangle_{\delta p(\Lambda,s)}$$

and $\langle x \rangle_{\delta p(\Lambda,s)} = \{x\}^{\delta p(\Lambda,s)}$ for each $x \in X$. By Theorem 6, (X,τ) is $\delta p(\Lambda,s)$ - R_0 . Suppose that $\{x\}^{\delta p(\Lambda,s)} \neq \{y\}^{\delta p(\Lambda,s)}$. Thus, by Corollary 1, $\{x\}^{\delta p(\Lambda,s)} \cap \{y\}^{\delta p(\Lambda,s)} = \emptyset$. By Theorem 6, $\langle x \rangle_{\delta p(\Lambda,s)} \cap \langle y \rangle_{\delta p(\Lambda,s)} = \emptyset$ and hence $\{x\}^{\theta \delta(\Lambda,s)} \cap \{y\}^{\theta \delta p(\Lambda,s)} = \emptyset$. Since $y \notin \{x\}^{\theta \delta p(\Lambda,s)}$, there exists a $\delta p(\Lambda,s)$ -open set U of X such that $y \in U \subseteq U^{\delta p(\Lambda,s)} \subseteq X - \{x\}$. Let

$$V = X - U^{\delta p(\Lambda, s)},$$

then $x \in V \in \delta p(\Lambda, s)O(X, \tau)$. Since (X, τ) is $\delta p(\Lambda, s)-R_0$, $\{y\}^{\delta p(\Lambda, s)} \subseteq U$, $\{x\}^{\delta p(\Lambda, s)} \subseteq V$ and $U \cap V = \emptyset$. This shows that (X, τ) is $\delta p(\Lambda, s)-R_1$.

Corollary 3. A topological space (X, τ) is $\delta p(\Lambda, s)$ - R_1 if and only if $\{x\}^{\delta p(\Lambda, s)} = \{x\}^{\theta \delta p(\Lambda, s)}$ for each $x \in X$.

Proof. Let (X,τ) be a $\delta p(\Lambda,s)$ - R_1 space. By Theorem 8, we have

$$\{x\}^{\delta p(\Lambda,s)} \supseteq \langle x \rangle_{\delta p(\Lambda,s)} = \{x\}^{\theta \delta p(\Lambda,s)} \supseteq \{x\}^{\delta p(\Lambda,s)}$$

and hence $\{x\}^{\delta p(\Lambda,s)} = \{x\}^{\theta \delta p(\Lambda,s)}$ for each $x \in X$.

REFERENCES 156

Conversely, suppose that $\{x\}^{\delta p(\Lambda,s)} = \{x\}^{\theta \delta p(\Lambda,s)}$ for each $x \in X$. First, we show that (X,τ) is $\delta p(\Lambda,s)-R_0$. Let $U \in \delta p(\Lambda,s)O(X,\tau)$ and $x \in U$. Let $y \notin U$. Then,

$$U \cap \{y\}^{\delta p(\Lambda,s)} = U \cap \{y\}^{\theta \delta p(\Lambda,s)} = \emptyset.$$

Thus, $x \notin \{y\}^{\theta \delta p(\Lambda,s)}$. There exists $V \in \delta p(\Lambda,s)O(X,\tau)$ such that $x \in V$ and $y \notin V^{\delta p(\Lambda,s)}$. Since $\{x\}^{\delta p(\Lambda,s)} \subseteq V^{\delta p(\Lambda,s)}$, $y \notin \{x\}^{\delta p(\Lambda,s)}$. This shows that $\{x\}^{\delta p(\Lambda,s)} \subseteq U$ and hence (X,τ) is $\delta p(\Lambda,s)$ - R_0 . By Theorem 6, $\langle x \rangle_{\delta p(\Lambda,s)} = \{x\}^{\delta p(\Lambda,s)} = \{x\}^{\theta \delta p(\Lambda,s)}$ for each $x \in X$. Thus, by Theorem 8, (X,τ) is $\delta p(\Lambda,s)$ - R_1 .

Acknowledgements

This research project was financially supported by Mahasarakham University.

References

- [1] M. E. Abd El-Monsef A. S. Mashhour and S. N. El-Deeb. On precontinuous and weak precontinuous functions. *Proceedings of the Mathematical and Physical Society of Egypt*, 53:47–53, 1982.
- [2] C. Boonpok and J. Khampakdee. $\delta s(\Lambda, s)$ - R_0 spaces and $\delta s(\Lambda, s)$ - R_1 spaces. International Journal of Analysis and Applications, 21:99, 2023.
- [3] C. Boonpok and N. Srisarakham. Properties of generalized $\delta p(\Lambda, s)$ -closed sets. European Journal of Pure and Applied Mathematics, 16(4):2581–2596, 2023.
- [4] C. Boonpok and C. Viriyapong. On (Λ, p) -closed sets and the related notions in topological spaces. European Journal of Pure and Applied Mathematics, 15(2):415–436, 2022.
- [5] C. Boonpok and C. Viriyapong. On some forms of closed sets and related topics. European Journal of Pure and Applied Mathematics, 16(1):336–362, 2023.
- [6] M. Caldas and J. Dontchev. $G.\Lambda_s$ -sets and $g.V_s$ -sets. arXiv:math/9810080v1 /math.GN/, 1998.
- [7] M. Caldas, T. Fukutake, S. Jafari, and T. Noiri. Some applications of δ -preopen sets in topological spaces. Bulletin of the Institute of Mathematics, Academia Sinica, 33(3):261–276, 2005.
- [8] M. Caldas, M. Ganster, D. N. Georgiou, S. Jafari, and T. Noiri. δ -semiopen sets in topological spaces. *Topology Proceedings*, 29(2):369–383, 2005.
- [9] M. Caldas, D. N. Georgiou, S. Jafari, and T. Noiri. More on δ -semiopen sets. *Note di Matematica*, 22(2):1–14, 2003.

REFERENCES 157

[10] F. Cammaroto and T. Noiri. On Λ_m -sets and related topological spaces. Acta Mathematica Hungarica, 109:261–279, 2005.

- [11] A. S. Davis. Indexed systems of neighborhoods for general topological spaces. *The American Mathematical Monthly*, 68:886–893, 1961.
- [12] C. Dorsett. R_0 and R_1 topological spaces. *Matematički Vesnik*, 2(15)(30):117-122,
- [13] K. K. Dube. A note on R₀ topological spaces. Matematički Vesnik, 11:203–208, 1974.
- [14] N. Levine. Semi-open sets and semi-continuity in topological spaces. *The American Mathematical Monthly*, 70:36–41, 1963.
- [15] S. Lugojan. Generalized topology. Studii ş Cercetări de Matematică, 34:348–360, 1982.
- [16] S. A. Naimpally. On R_0 topological spaces. Annales Universitatis Scientiarium Budapestinensis de Rolando Eötvös Nominatae Sectio Mathematica, 10:53–54, 1967.
- [17] T. Noiri. Unified characterizations for modifications of R_0 and R_1 topological spaces. Rendiconti del Circolo Matematico di Palermo Series 2, 60:29–42, 2006.
- [18] J. H. Park, B. Y. Lee, and M. J. Son. On δ -semiopen sets in topological spaces. The Journal of the Indian Academy of Mathematics, 19:59–67, 1997.
- [19] S. Raychaudhuri and M. N. Mukherjee. On δ -almost continuity and δ -preopen sets. Bulletin of the Institute of Mathematics, Academia Sinica, 21:357–366, 1993.
- [20] N. A. Shanin. On separation in topological spaces. *Doklady Akademii Nauk SSSR*, 38:110–113, 1943.
- [21] N. Srisarakham and C. Boonpok. On characterizations of $\delta p(\Lambda, s)$ - \mathcal{D}_1 spaces. International Journal of Mathematics and Computer Science, 18(4):743–747, 2023.
- [22] M. Thongmoon and C. Boonpok. Sober $\delta p(\Lambda, s)$ - R_0 spaces. International Journal of Mathematics and Computer Science, 18(4):761–765, 2023.
- [23] N. V. Veličko. *H*-closed topological spaces. *American Mathematical Society Translations*, 78(2):102–118, 1968.