EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 17, No. 1, 2024, 147-157
ISSN 1307-5543 - ejpam.com
Published by New York Business Global

Characterizations of $\delta p(\Lambda, s)-R_{0}$ spaces

Chawalit Boonpok ${ }^{1}$, Prapart Pue-on ${ }^{1, *}$
${ }^{1}$ Mathematics and Applied Mathematics Research Unit, Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand

Abstract

Our main purpose is to introduce the concept of $\delta p(\Lambda, s)-R_{0}$ spaces. Moreover, some characterizations of $\delta p(\Lambda, s)-R_{0}$ spaces are investigated.

2020 Mathematics Subject Classifications: 54A05, 54D10
Key Words and Phrases: $\delta p(\Lambda, s)$-open set, $\delta p(\Lambda, s)$ - R_{0} space

1. Introduction

In 1943, Shanin [20] introduced the concept of R_{0} topological spaces. Davis [11] introduced the concept of a separation axiom called R_{1}. These concepts are further investigated by Naimpally [16], Dube [13] and Dorsett [12]. Cammaroto and Noiri [10] introduce a weak separation axiom m - R_{0} in m-spaces which are equivalent to generalized topological spaces due to Lugojan [15]. Noiri [17] introduced the notion of m - R_{1} spaces and investigated several characterizations of m - R_{0} spaces and m - R_{1} spaces. In 1963, Levine [14] introduced the concept of semi-open sets which is weaker than the concept of open sets in topological spaces. Veličko [23] introduced δ-open sets, which are stronger than open sets. Park et al. [18] have offered new notion called δ-semiopen sets which are stronger than semi-open sets but weaker than δ-open sets and investigated the relationships between several types of these open sets. Caldas and Dontchev [6] introduced and investigated the notions of $\Lambda_{s^{-}}$ sets and V_{s}-sets in topological spaces. Moreover, Caldas et al. [9] investigated some weak separation axioms by utilizing δ-semiopen sets and the δ-semiclosure operator. Caldas et al. [8] investigated the notion of $\delta-\Lambda_{s}$-semiclosed sets which is defined as the intersection of a $\delta-\Lambda_{s}$-set and a δ-semiclosed set. In 1982, Mashhour et al. [1] introduced and studied the concept of preopen sets. Raychaudhuri and Mukherjee [19] introduced the notions of δ-preopen sets and δ-preclosure. The class of δ-preopen sets is larger than that of preopen sets. Caldas et al. [7] introduced some weak separation axioms by utilizing the notions of δ-preopen sets and the δ-preclosure operator. In [5], the present authors introduced and studied the concept of (Λ, s)-closed sets by utilizing the notions of Λ_{s}-sets

[^0]Email addresses: chawalit.b@msu.ac.th (C. Boonpok), prapart.p@msu.ac.th (P. Pue-on)
and semi-closed sets. Furthermore, several characterizations of (Λ, s) - R_{0} spaces and $\Lambda_{p}-R_{0}$ spaces were established in [5] and [4], respectively. Boonpok and Khampakdee [2] introduced and investigated the concepts of $\delta s(\Lambda, s)-R_{0}$ spaces and $\delta s(\Lambda, s)-R_{1}$ spaces. Quite recently, Srisarakham and Boonpok [21] defined and studied the notion of $\delta p(\Lambda, s)$-open sets in topological spaces. In this paper, we introduce the concept of $\delta p(\Lambda, s)-R_{0}$ spaces. Moreover, some characterizations of $\delta p(\Lambda, s)-R_{0}$ spaces are discussed.

2. Preliminaries

Throughout the present paper, spaces (X, τ) and (Y, σ) (or simply X and Y) always mean topological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a topological space (X, τ). The closure of A and the interior of A are denoted by $\mathrm{Cl}(A)$ and $\operatorname{Int}(A)$, respectively. A subset A of a topological space (X, τ) is called semi-open [14] if $A \subseteq \mathrm{Cl}(\operatorname{Int}(A))$. The complement of a semi-open set is called semiclosed. The family of all semi-open (resp. semi-closed) sets in a topological space (X, τ) is denoted by $S O(X, \tau)$ (resp. $S C(X, \tau)$). A subset $A^{\Lambda_{s}}[6]$ (resp. $A^{V_{s}}$) is defined as follows: $A^{\Lambda_{s}}=\cap\{U \mid U \supseteq A, U \in S O(X, \tau)\}$ (resp. $A^{V_{s}}=\cup\{F \mid F \subseteq A, F \in S C(X, \tau)\}$). A subset A of a topological space (X, τ) is called a Λ_{s}-set (resp. V_{s}-set) [6] if $A=A^{\Lambda_{s}}$ (resp. $A=A^{V_{s}}$). A subset A of a topological space (X, τ) is called (Λ, s)-closed [5] if $A=T \cap C$, where T is a Λ_{s}-set and C is a semi-closed set. The complement of a (Λ, s)-closed set is called (Λ, s)-open. The family of all (Λ, s)-closed (resp. (Λ, s)-open) sets in a topological space (X, τ) is denoted by $\Lambda_{s} C(X, \tau)$ (resp. $\left.\Lambda_{s} O(X, \tau)\right)$. Let A be a subset of a topological space (X, τ). A point $x \in X$ is called a (Λ, s)-cluster point [5] of A if for every (Λ, s)-open set U of X containing x we have $A \cap U \neq \emptyset$. The set of all (Λ, s)-cluster points of A is called the (Λ, s)-closure [5] of A and is denoted by $A^{(\Lambda, s)}$. The union of all (Λ, s)-open sets contained in A is called the (Λ, s)-interior [5] of A and is denoted by $A_{(\Lambda, s)}$.

Let A be a subset of a topological space (X, τ). A point x of X is called a $\delta(\Lambda, s)$-cluster point [21] of A if $A \cap\left[V^{(\Lambda, s)}\right]_{(\Lambda, s)} \neq \emptyset$ for every (Λ, s)-open set V of X containing x. The set of all $\delta(\Lambda, s)$-cluster points of A is called the $\delta(\Lambda, s)$-closure [21] of A and is denoted by $A^{\delta(\Lambda, s)}$. If $A=A^{\delta(\Lambda, s)}$, then A is said to be $\delta(\Lambda, s)$-closed [21]. The complement of a $\delta(\Lambda, s)$-closed set is said to be $\delta(\Lambda, s)$-open [21]. The union of all $\delta(\Lambda, s)$-open sets contained in A is called the $\delta(\Lambda, s)$-interior [21] of A and is denoted by $A_{\delta(\Lambda, s)}$.

Definition 1. [21] A subset A of a topological space (X, τ) is said to be $\delta p(\Lambda, s)$-open if $A \subseteq\left[A^{(\Lambda, s)}\right]_{\delta(\Lambda, s)}$. The complement of a $\delta p(\Lambda, s)$-open set is said to be $\delta p(\Lambda, s)$-closed.

The family of all $\delta p(\Lambda, s)$-open (resp. $\delta p(\Lambda, s)$-closed) sets in a topological space (X, τ) is denoted by $\delta p(\Lambda, s) O(X, \tau)$ (resp. $\delta p(\Lambda, s) C(X, \tau))$. Let A be a subset of a topological space (X, τ). The intersection of all $\delta p(\Lambda, s)$-closed sets containing A is called the $\delta p(\Lambda, s)$ closure [22] of A and is denoted by $A^{\delta p(\Lambda, s)}$.

Lemma 1. [21] For the $\delta p(\Lambda, s)$-closure of subsets A, B in a topological space (X, τ), the following properties hold:
(1) If $A \subseteq B$, then $A^{\delta p(\Lambda, s)} \subseteq B^{\delta p(\Lambda, s)}$.
(2) A is $\delta p(\Lambda, s)$-closed in (X, τ) if and only if $A=A^{\delta p(\Lambda, s)}$.
(3) $A^{\delta p(\Lambda, s)}$ is $\delta p(\Lambda, s)$-closed, that is, $A^{\delta p(\Lambda, s)}=\left[A^{\delta p(\Lambda, s}\right]^{\delta p(\Lambda, s)}$.
(4) $x \in A^{\delta p(\Lambda, s)}$ if and only if $A \cap V \neq \emptyset$ for every $V \in \delta p(\Lambda, s) O(X, \tau)$ containing x.

Lemma 2. [21] For a family $\left\{A_{\gamma} \mid \gamma \in \nabla\right\}$ of a topological space (X, τ), the following properties hold:
(1) $\left[\cap\left\{A_{\gamma} \mid \gamma \in \nabla\right\}\right]^{\delta p(\Lambda, s)} \subseteq \cap\left\{A_{\gamma}^{\delta p(\Lambda, s)} \mid \gamma \in \nabla\right\}$.
(2) $\left[\cup\left\{A_{\gamma} \mid \gamma \in \nabla\right\}\right]^{\delta p(\Lambda, s)} \supseteq \cup\left\{A_{\gamma}^{\delta p(\Lambda, s)} \mid \gamma \in \nabla\right\}$.

3. Some characterizations of $\delta p(\Lambda, s)-R_{0}$ spaces

In this section, we introduce the notion of $\delta p(\Lambda, s)-R_{0}$ spaces. Moreover, several characterizations of $\delta p(\Lambda, s)-R_{0}$ spaces are discussed.

Definition 2. A topological space (X, τ) is called $\delta p(\Lambda, s)-R_{0}$ if, for each $\delta p(\Lambda, s)$-open set U and each $x \in U,\{x\}^{\delta p(\Lambda, s)} \subseteq U$.

Theorem 1. For a topological space (X, τ), the following properties are equivalent:
(1) (X, τ) is $\delta p(\Lambda, s)-R_{0}$.
(2) For each $\delta p(\Lambda, s)$-closed set F and each $x \in X-F$, there exists $U \in \delta p(\Lambda, s) O(X, \tau)$ such that $F \subseteq U$ and $x \notin U$.
(3) For each $\delta p(\Lambda, s)$-closed set F and each $x \in X-F, F \cap\{x\}^{\delta p(\Lambda, s)}=\emptyset$.
(4) For any distinct points x, y in $X,\{x\}^{\delta p(\Lambda, s)}=\{y\}^{\delta p(\Lambda, s)}$ or $\{x\}^{\delta p(\Lambda, s)} \cap\{y\}^{\delta p(\Lambda, s)}=\emptyset$.

Proof. (1) \Rightarrow (2): Let F be a $\delta p(\Lambda, s)$-closed set and $x \in X-F$. Since (X, τ) is $\delta p(\Lambda, s)-R_{0}$, we have $\{x\}^{\delta p(\Lambda, s)} \subseteq X-F$. Put $U=X-\{x\}^{\delta p(\Lambda, s)}$. Thus, by Lemma 1, $U \in \delta p(\Lambda, s) O(X, \tau), F \subseteq U$ and $x \notin U$.
(2) $\Rightarrow(3)$: Let F be a $\delta p(\Lambda, s)$-closed set and $x \in X-F$. Thus, by (2), there exists $U \in \delta p(\Lambda, s) O(X, \tau)$ such that $F \subseteq U$ and $x \notin U$. Since $U \in \delta p(\Lambda, s) O(X, \tau)$, $U \cap\{x\}^{\delta p(\Lambda, s)}=\emptyset$ and hence $F \cap\{x\}^{\delta p(\Lambda, s)}=\emptyset$.
$(3) \Rightarrow(4)$: Let x and y be distinct points of X. Suppose that $\{x\}^{\delta p(\Lambda, s)} \cap\{y\}^{\delta p(\Lambda, s)} \neq \emptyset$. By (3), $x \in\{y\}^{\delta p(\Lambda, s)}$ and $y \in\{x\}^{\delta p(\Lambda, s)}$. By Lemma 1, $\{x\}^{\delta p(\Lambda, s)} \subseteq\{y\}^{\delta p(\Lambda, s)} \subseteq\{x\}^{\delta p(\Lambda, s)}$ and hence $\{x\}^{\delta p(\Lambda, s)}=\{y\}^{\delta p(\Lambda, s)}$.
(4) \Rightarrow (1): Let $V \in \delta p(\Lambda, s) O(X, \tau)$ and $x \in V$. For each $y \notin V, V \cap\{y\}^{\delta p(\Lambda, s)}=\emptyset$ and hence $x \notin\{y\}^{\delta p(\Lambda, s)}$. Thus, $\{x\}^{\delta p(\Lambda, s)} \neq\{y\}^{\delta p(\Lambda, s)}$. By (4), for each $y \notin V$,

$$
\{x\}^{\delta p(\Lambda, s)} \cap\{y\}^{\delta p(\Lambda, s)}=\emptyset .
$$

Since $X-V$ is $\delta p(\Lambda, s)$-closed, $y \in\{y\}^{\delta p(\Lambda, s)} \subseteq X-V$ and $\cup_{y \in X-V}\{y\}^{\delta p(\Lambda, s)}=X-V$. Thus,

$$
\begin{aligned}
\{x\}^{\delta p(\Lambda, s)} \cap(X-V) & =\{x\}^{\delta p(\Lambda, s)} \cap\left[\cup_{y \in X-V}\{y\}^{\delta p(\Lambda, s)}\right] \\
& =\cup_{y \in X-V}\left[\{x\}^{\delta p(\Lambda, s)} \cap\{y\}^{\delta p(\Lambda, s)}\right] \\
& =\emptyset
\end{aligned}
$$

and hence $\{x\}^{\delta p(\Lambda, s)} \subseteq V$. This shows that (X, τ) is $\delta p(\Lambda, s)-R_{0}$.
Corollary 1. A topological space (X, τ) is $\delta p(\Lambda, s)-R_{0}$ if and only if for any points x and y in $X,\{x\}^{\delta p(\Lambda, s)} \neq\{y\}^{\delta p(\Lambda, s)}$ implies $\{x\}^{\delta p(\Lambda, s)} \cap\{y\}^{\delta p(\Lambda, s)}=\emptyset$.

Proof. This is obvious by Theorem 1.
Conversely, let $U \in \delta p(\Lambda, s) O(X, \tau)$ and $x \in U$. If $y \notin U$, then $U \cap\{y\}^{\delta p(\Lambda, s)}=\emptyset$. Thus, $x \notin\{y\}^{\delta p(\Lambda, s)}$ and $\{x\}^{\delta p(\Lambda, s)} \neq\{y\}^{\delta p(\Lambda, s)}$. By the hypothesis, $\{x\}^{\delta p(\Lambda, s)} \cap\{y\}^{\delta p(\Lambda, s)}=\emptyset$ and hence $y \notin\{x\}^{\delta p(\Lambda, s)}$. Therefore, $\{x\}^{\delta p(\Lambda, s)} \subseteq U$. This shows that (X, τ) is $\delta p(\Lambda, s)-R_{0}$.

Definition 3. [22] Let A be a subset of a topological space (X, τ). The $\delta p(\Lambda, s)$-kernel of A, denoted by $\delta p(\Lambda, s) \operatorname{Ker}(A)$, is defined to be the set

$$
\delta p(\Lambda, s) \operatorname{Ker}(A)=\cap\{U \in \delta p(\Lambda, s) O(X, \tau) \mid A \subseteq U\}
$$

Lemma 3. [3] For subsets A, B of a topological space (X, τ), the following properties hold:
(1) $A \subseteq \delta p(\Lambda, s) K e r(A)$.
(2) If $A \subseteq B$, then $\delta p(\Lambda, s) \operatorname{Ker}(A) \subseteq \delta p(\Lambda, s) \operatorname{Ker}(B)$.
(3) $\delta p(\Lambda, s) \operatorname{Ker}(\delta p(\Lambda, s) \operatorname{Ker}(A))=\delta p(\Lambda, s) \operatorname{Ker}(A)$.
(4) If A is $\delta p(\Lambda, s)$-open, $\delta p(\Lambda, s) \operatorname{Ker}(A)=A$.

Theorem 2. For any points x and y in a topological space (X, τ), the following properties are equivalent:
(1) $\delta p(\Lambda, s) \operatorname{Ker}(\{x\}) \neq \delta p(\Lambda, s) \operatorname{Ker}(\{y\})$.
(2) $\{x\}^{\delta p(\Lambda, s)} \neq\{y\}^{\delta p(\Lambda, s)}$.

Proof. (1) $\Rightarrow(2)$: Suppose that $\delta p(\Lambda, s) \operatorname{Ker}(\{x\}) \neq \delta p(\Lambda, s) \operatorname{Ker}(\{y\})$. Then, there exists a point $z \in X$ such that $z \in \delta p(\Lambda, s) \operatorname{Ker}(\{x\})$ and $z \notin \delta p(\Lambda, s) \operatorname{Ker}(\{y\})$ or

$$
z \in \delta p(\Lambda, s) \operatorname{Ker}(\{y\})
$$

and $z \notin \delta p(\Lambda, s) \operatorname{Ker}(\{x\})$. We prove only the first case being the second analogous. From $z \in \delta p(\Lambda, s) \operatorname{Ker}(\{x\})$ it follows that $\{x\} \cap\{z\}^{\delta p(\Lambda, s)} \neq \emptyset$ which implies $x \in\{z\}^{\delta p(\Lambda, s)}$. By $z \notin \delta p(\Lambda, s) \operatorname{Ker}(\{y\})$, we have $\{y\} \cap\{z\}^{\delta p(\Lambda, s)}=\emptyset$. Since $x \in\{z\}^{\delta p(\Lambda, s)}$,

$$
\{x\}^{\delta p(\Lambda, s)} \subseteq\{z\}^{\delta p(\Lambda, s)}
$$

and $\{y\} \cap\{x\}^{\delta p(\Lambda, s)}=\emptyset$. Therefore, $\{x\}^{\delta p(\Lambda, s)} \neq\{y\}^{\delta p(\Lambda, s)}$. Thus,

$$
\delta p(\Lambda, s) \operatorname{Ker}(\{x\}) \neq \delta p(\Lambda, s) \operatorname{Ker}(\{y\})
$$

implies that $\{x\}^{\delta p(\Lambda, s)} \neq\{y\}^{\delta p(\Lambda, s)}$.
$(2) \Rightarrow(1)$: Suppose that $\{x\}^{\delta p(\Lambda, s)} \neq\{y\}^{\delta p(\Lambda, s)}$. There exists a point $z \in X$ such that $z \in\{x\}^{\delta p(\Lambda, s)}$ and $z \notin\{y\}^{\delta p(\Lambda, s)}$ or $z \in\{y\}^{\delta p(\Lambda, s)}$ and $z \notin\{x\}^{\delta p(\Lambda, s)}$. We prove only the first case being the second analogous. It follows that there exists a $\delta p(\Lambda, s)$ open set containing z and therefore x but not y, namely, $y \notin \delta p(\Lambda, s) \operatorname{Ker}(\{x\})$ and thus $\delta p(\Lambda, s) \operatorname{Ker}(\{x\}) \neq \delta p(\Lambda, s) \operatorname{Ker}(\{y\})$.

Lemma 4. Let (X, τ) be a topological space and $x, y \in X$. Then, the following properties hold:
(1) $y \in \delta p(\Lambda, s) \operatorname{Ker}(\{x\})$ if and only if $x \in\{y\}^{\delta p(\Lambda, s)}$.
(2) $\delta p(\Lambda, s) \operatorname{Ker}(\{x\})=\delta p(\Lambda, s) \operatorname{Ker}(\{y\})$ if and only if $\{x\}^{\delta p(\Lambda, s)}=\{y\}^{\delta p(\Lambda, s)}$.

Proof. (1) Let $x \notin\{y\}^{\delta p(\Lambda, s)}$. Then, there exists $U \in \delta p(\Lambda, s) O(X, \tau)$ such that $x \in U$ and $y \notin U$. Thus, $y \notin \delta p(\Lambda, s) \operatorname{Ker}(\{x\})$. The converse is similarly shown.
(2) Suppose that $\delta p(\Lambda, s) \operatorname{Ker}(\{x\})=\delta p(\Lambda, s) \operatorname{Ker}(\{y\})$ for any $x, y \in X$. Since

$$
x \in \delta p(\Lambda, s) \operatorname{Ker}(\{x\}),
$$

$x \in \delta p(\Lambda, s) \operatorname{Ker}(\{y\})$, by (1), $y \in\{x\}^{\delta p(\Lambda, s)}$. By Lemma 1, $\{y\}^{\delta p(\Lambda, s)} \subseteq\{x\}^{\delta p(\Lambda, s)}$. Similarly, we have $\{x\}^{\delta p(\Lambda, s)} \subseteq\{y\}^{\delta p(\Lambda, s)}$ and hence $\{x\}^{\delta p(\Lambda, s)}=\{y\}^{\delta p(\Lambda, s)}$.

Conversely, suppose that $\{x\}^{\delta p(\Lambda, s)}=\{y\}^{\delta p(\Lambda, s)}$. Since $x \in\{x\}^{\delta p(\Lambda, s)}, x \in\{y\}^{\delta p(\Lambda, s)}$ and by (1), $y \in \delta p(\Lambda, s) \operatorname{Ker}(\{x\})$. By Lemma 3 ,

$$
\delta p(\Lambda, s) \operatorname{Ker}(\{y\}) \subseteq \delta p(\Lambda, s) \operatorname{Ker}(\delta p(\Lambda, s) \operatorname{Ker}(\{x\}))=\delta p(\Lambda, s) \operatorname{Ker}(\{x\}) .
$$

Similarly, we have $\delta p(\Lambda, s) \operatorname{Ker}(\{x\}) \subseteq \delta p(\Lambda, s) \operatorname{Ker}(\{y\})$ and hence

$$
\delta p(\Lambda, s) \operatorname{Ker}(\{x\})=\delta p(\Lambda, s) \operatorname{Ker}(\{y\}) .
$$

Theorem 3. A topological space (X, τ) is $\delta p(\Lambda, s)-R_{0}$ if and only if, for each points x and y in $X, \delta p(\Lambda, s) \operatorname{Ker}(\{x\}) \neq \delta p(\Lambda, s) \operatorname{Ker}(\{y\})$ implies

$$
\delta p(\Lambda, s) \operatorname{Ker}(\{x\}) \cap \delta p(\Lambda, s) \operatorname{Ker}(\{y\})=\emptyset .
$$

Proof. Let (X, τ) be $\delta p(\Lambda, s)-R_{0}$. Suppose that

$$
\delta p(\Lambda, s) \operatorname{Ker}(\{x\}) \cap \delta p(\Lambda, s) \operatorname{Ker}(\{y\}) \neq \emptyset .
$$

Let $z \in \delta p(\Lambda, s) \operatorname{Ker}(\{x\}) \cap \delta p(\Lambda, s) \operatorname{Ker}(\{y\})$. Then, $z \in \delta p(\Lambda, s) \operatorname{Ker}(\{x\})$ and by Lemma $4, x \in\{z\}^{\delta p(\Lambda, s)}$. Thus, $x \in\{z\}^{\delta p(\Lambda, s)} \cap\{x\}^{\delta p(\Lambda, s)}$ and by Corollary 1,

$$
\{z\}^{\delta p(\Lambda, s)}=\{x\}^{\delta p(\Lambda, s)}
$$

Similarly, we have $\{z\}^{\delta p(\Lambda, s)}=\{y\}^{\delta p(\Lambda, s)}$ and hence $\{x\}^{\delta p(\Lambda, s)}=\{y\}^{\delta p(\Lambda, s)}$, by Lemma 4, $\delta p(\Lambda, s) \operatorname{Ker}(\{x\})=\delta p(\Lambda, s) \operatorname{Ker}(\{y\})$.

Conversely, we show the sufficiency by using Corollary 1. Suppose that

$$
\{x\}^{\delta p(\Lambda, s)} \neq\{y\}^{\delta p(\Lambda, s)}
$$

By Lemma $4, \delta p(\Lambda, s) \operatorname{Ker}(\{x\}) \neq \delta p(\Lambda, s) \operatorname{Ker}(\{y\})$ and hence

$$
\delta p(\Lambda, s) \operatorname{Ker}(\{x\}) \cap \delta p(\Lambda, s) \operatorname{Ker}(\{y\})=\emptyset
$$

Thus, $\{x\}^{\delta p(\Lambda, s)} \cap\{y\}^{\delta p(\Lambda, s)}=\emptyset$. In fact, assume that $z \in\{x\}^{\delta p(\Lambda, s)} \cap\{y\}^{\delta p(\Lambda, s)}$. Then,

$$
z \in\{x\}^{\delta p(\Lambda, s)}
$$

implies $x \in \delta p(\Lambda, s) \operatorname{Ker}(\{z\})$ and hence $x \in \delta p(\Lambda, s) \operatorname{Ker}(\{z\}) \cap \delta p(\Lambda, s) \operatorname{Ker}(\{x\})$. By the hypothesis, $\delta p(\Lambda, s) \operatorname{Ker}(\{z\})=\delta p(\Lambda, s) \operatorname{Ker}(\{x\})$ and by Lemma 4,

$$
\{z\}^{\delta p(\Lambda, s)}=\{x\}^{\delta p(\Lambda, s)}
$$

Similarly, we have $\{z\}^{\delta p(\Lambda, s)}=\{y\}^{\delta p(\Lambda, s)}$ and hence $\{x\}^{\delta p(\Lambda, s)}=\{y\}^{\delta p(\Lambda, s)}$. This contradicts that $\{x\}^{\delta p(\Lambda, s)} \neq\{y\}^{\delta p(\Lambda, s)}$. Thus, $\{x\}^{\delta p(\Lambda, s)} \cap\{y\}^{\delta p(\Lambda, s)}=\emptyset$. This shows that (X, τ) is $\delta p(\Lambda, s)-R_{0}$.

Theorem 4. For a topological space (X, τ), the following properties are equivalent:
(1) (X, τ) is $\delta p(\Lambda, s)-R_{0}$.
(2) $x \in\{y\}^{\delta p(\Lambda, s)}$ if and only if $y \in\{x\}^{\delta p(\Lambda, s)}$.

Proof. (1) $\Rightarrow(2)$: Suppose that $x \in\{y\}^{\delta p(\Lambda, s)}$. By Lemma 4, $y \in \delta p(\Lambda, s) \operatorname{Ker}(\{x\})$ and hence $\delta p(\Lambda, s) \operatorname{Ker}(\{x\}) \cap \delta p(\Lambda, s) \operatorname{Ker}(\{y\}) \neq \emptyset$. By Theorem 3,

$$
\delta p(\Lambda, s) \operatorname{Ker}(\{x\})=\delta p(\Lambda, s) \operatorname{Ker}(\{y\})
$$

and hence $x \in \delta p(\Lambda, s) \operatorname{Ker}(\{y\})$. Thus, by Lemma 4, $y \in\{x\}^{\delta p(\Lambda, s)}$. The converse is similarly shown.
$(2) \Rightarrow(1)$: Let $U \in \delta p(\Lambda, s) O(X, \tau)$ and $x \in U$. If $y \notin U$, then $U \cap\{y\}^{\delta p(\Lambda, s)}=\emptyset$. Thus, $x \notin\{y\}^{\delta p(\Lambda, s)}$ and $y \notin\{x\}^{\delta p(\Lambda, s)}$. This implies that $\{x\}^{\delta p(\Lambda, s)} \subseteq U$. Therefore, (X, τ) is $\delta p(\Lambda, s)-R_{0}$.

Theorem 5. For a topological space (X, τ), the following properties are equivalent:
(1) (X, τ) is $\delta p(\Lambda, s)-R_{0}$.
(2) For each nonempty subset A of X and each $U \in \delta p(\Lambda, s) O(X, \tau)$ such that $A \cap U \neq \emptyset$, there exists a $\delta p(\Lambda, s)$-closed set F such that $A \cap F \neq \emptyset$ and $F \subseteq U$.
(3) $F=\delta p(\Lambda, s) \operatorname{Ker}(F)$ for each $\delta p(\Lambda, s)$-closed set F.
(4) $\{x\}^{\delta p(\Lambda, s)}=\delta p(\Lambda, s) \operatorname{Ker}(\{x\})$ for each $x \in X$.
(5) $\{x\}^{\delta p(\Lambda, s)} \subseteq \delta p(\Lambda, s) \operatorname{Ker}(\{x\})$ for each $x \in X$.

Proof. (1) \Rightarrow (2): Let A be a nonempty subset of X and $U \in \delta p(\Lambda, s) O(X, \tau)$ such that $A \cap U \neq \emptyset$. Then, there exists $x \in A \cap U$ and hence $\{x\}^{\delta p(\Lambda, s)} \subseteq U$. Put $F=\{x\}^{\delta p(\Lambda, s)}$. Then, F is $\delta p(\Lambda, s)$-closed such that $A \cap F \neq \emptyset$ and $F \subseteq U$.
$(2) \Rightarrow(3)$: Let F be any $\delta p(\Lambda, s)$-closed set of X. By Lemma 3, we have

$$
F \subseteq \delta p(\Lambda, s) \operatorname{Ker}(F)
$$

Next, we show $F \supseteq \delta p(\Lambda, s) \operatorname{Ker}(F)$. Let $x \notin F$. Then, $x \in X-F \in \delta p(\Lambda, s) O(X, \tau)$ and by (2), there exists a $\delta p(\Lambda, s)$-closed set K such that $x \in K$ and $K \subseteq X-F$. Now, put $U=X-K$. Then, $F \subseteq U \in \delta p(\Lambda, s) O(X, \tau)$ and $x \notin U$. Thus, $x \notin \delta p(\Lambda, s) \operatorname{Ker}(F)$. This shows that $F \supseteq \delta p(\Lambda, s) \operatorname{Ker}(F)$.
(3) $\Rightarrow(4)$: Let $x \in X$ and $y \notin \delta p(\Lambda, s) \operatorname{Ker}(\{x\})$. There exists $U \in \delta p(\Lambda, s) O(X, \tau)$ such that $x \in U$ and $y \notin U$. Thus, $U \cap\{y\}^{\delta p(\Lambda, s)}=\emptyset$. By (3),

$$
U \cap \delta p(\Lambda, s) \operatorname{Ker}\left(\{y\}^{\delta p(\Lambda, s)}\right)=\emptyset .
$$

Since $x \notin \delta p(\Lambda, s) \operatorname{Ker}\left(\{y\}^{\delta p(\Lambda, s)}\right)$, there exists $V \in \delta p(\Lambda, s) O(X, \tau)$ such that

$$
\{y\}^{\delta p(\Lambda, s)} \subseteq V
$$

and $x \notin V$. Thus, $V \cap\{x\}^{\delta p(\Lambda, s)}=\emptyset$. Since $y \in V$, we have $y \notin\{x\}^{\delta p(\Lambda, s)}$ and hence $\{x\}^{\delta p(\Lambda, s)} \subseteq \delta p(\Lambda, s) \operatorname{Ker}(\{x\})$. Moreover,

$$
\{x\}^{\delta p(\Lambda, s)} \subseteq \delta p(\Lambda, s) \operatorname{Ker}(\{x\}) \subseteq \delta p(\Lambda, s) \operatorname{Ker}\left(\{x\}^{\delta p(\Lambda, s)}\right)=\{x\}^{\delta p(\Lambda, s)} .
$$

This shows that $\{x\}^{\delta p(\Lambda, s)}=\delta p(\Lambda, s) \operatorname{Ker}(\{x\})$.
$(4) \Rightarrow(5)$: The proof is obvious.
(5) \Rightarrow (1): Let $U \in \delta p(\Lambda, s) O(X, \tau)$ and $x \in U$. If $y \notin U$, then $U \cap\{y\}^{\delta p(\Lambda, s)}=\emptyset$ and $x \notin\{y\}^{\delta p(\Lambda, s)}$. By Lemma $4, y \notin \delta p(\Lambda, s) \operatorname{Ker}(\{x\})$ and by (5), $y \notin\{x\}^{\delta p(\Lambda, s)}$. Thus, $\{x\}^{\delta p(\Lambda, s)} \subseteq U$ and hence (X, τ) is $\delta p(\Lambda, s)-R_{0}$.

Corollary 2. A topological space (X, τ) is $\delta p(\Lambda, s)-R_{0}$ if and only if

$$
\delta p(\Lambda, s) \operatorname{Ker}(\{x\}) \subseteq\{x\}^{\delta p(\Lambda, s)}
$$

for each $x \in X$.

Proof. This is obvious by Theorem 5.
Conversely, let $x \in\{y\}^{\delta p(\Lambda, s)}$. Thus, by Lemma $4, y \in \delta p(\Lambda, s) \operatorname{Ker}(\{x\})$ and hence $y \in\{x\}^{\delta p(\Lambda, s)}$. Similarly, if $y \in\{x\}^{\delta p(\Lambda, s)}$, then $x \in\{y\}^{\delta p(\Lambda, s)}$. It follows from Theorem 4 that (X, τ) is $\delta p(\Lambda, s)-R_{0}$.

Definition 4. [3] Let (X, τ) be a topological space and $x \in X$. A subset $\langle x\rangle_{\delta p(\Lambda, s)}$ is defined as follows: $\langle x\rangle_{\delta p(\Lambda, s)}=\delta p(\Lambda, s) \operatorname{Ker}(\{x\}) \cap\{x\}^{\delta p(\Lambda, s)}$.
Theorem 6. A topological space (X, τ) is $\delta p(\Lambda, s)-R_{0}$ if and only if $\langle x\rangle_{\delta p(\Lambda, s)}=\{x\}^{\delta p(\Lambda, s)}$ for each $x \in X$.

Proof. Let $x \in X$. By Theorem 5, $\delta p(\Lambda, s) \operatorname{Ker}(\{x\})=\{x\}^{\delta p(\Lambda, s)}$. Thus,

$$
\langle x\rangle_{\delta p(\Lambda, s)}=\delta p(\Lambda, s) \operatorname{Ker}(\{x\}) \cap\{x\}^{\delta p(\Lambda, s)}=\{x\}^{\delta p(\Lambda, s)} .
$$

Conversely, let $x \in X$. By the hypothesis,

$$
\{x\}^{\delta p(\Lambda, s)}=\langle x\rangle_{\delta p(\Lambda, s)}=\delta p(\Lambda, s) \operatorname{Ker}(\{x\}) \cap\{x\}^{\delta p(\Lambda, s)} \subseteq \delta p(\Lambda, s) \operatorname{Ker}(\{x\})
$$

It follows from Theorem 5 that (X, τ) is $\delta p(\Lambda, s)-R_{0}$.
Definition 5. A topological space (X, τ) is said to be $\delta p(\Lambda, s)-R_{1}$ if for each points x, y in X with $\{x\}^{\delta p(\Lambda, s)} \neq\{y\}^{\delta p(\Lambda, s)}$, there exist disjoint $\delta p(\Lambda, s)$-open sets U and V such that $\{x\}^{\delta p(\Lambda, s)} \subseteq U$ and $\{y\}^{\delta p(\Lambda, s)} \subseteq V$.
Theorem 7. A topological space (X, τ) is $\delta p(\Lambda, s)-R_{1}$ if and only if for any points x, y in X with $\{x\}^{\delta p(\Lambda, s)} \neq\{y\}^{\delta p(\Lambda, s)}$, there exist $\delta p(\Lambda, s)$-closed sets F and K such that $x \in F$, $y \notin F, y \in K, x \notin K$ and $X=F \cup K$.

Proof. Let x and y be any points in X with $\{x\}^{\delta p(\Lambda, s)} \neq\{y\}^{\delta p(\Lambda, s)}$. Then, there exist disjoint $U, V \in \delta p(\Lambda, s) O(X, \tau)$ such that $\{x\}^{\delta p(\Lambda, s)} \subseteq U$ and $\{y\}^{\delta p(\Lambda, s)} \subseteq V$. Now, put $F=X-V$ and $K=X-U$. Then, F and K are $\delta p(\Lambda, s)$-closed sets of X such that $x \in F, y \notin F, y \in K, x \notin K$ and $X=F \cup K$.

Conversely, let x and y be any points in X such that $\{x\}^{\delta p(\Lambda, s)} \neq\{y\}^{\delta p(\Lambda, s)}$. Then, $\{x\}^{\delta p(\Lambda, s)} \cap\{y\}^{\delta p(\Lambda, s)}=\emptyset$. In fact, if $z \in\{x\}^{\delta p(\Lambda, s)} \cap\{y\}^{\delta p(\Lambda, s)}$, then $\{z\}^{\delta p(\Lambda, s)} \neq\{x\}^{\delta p(\Lambda, s)}$ or $\{z\}^{\delta p(\Lambda, s)} \neq\{y\}^{\delta p(\Lambda, s)}$. In case $\{z\}^{\delta p(\Lambda, s)} \neq\{x\}^{\delta p(\Lambda, s)}$, by the hypothesis, there exists a $\delta p(\Lambda, s)$-closed set F such that $x \in F$ and $z \notin F$. Then, $z \in\{x\}^{\delta p(\Lambda, s)} \subseteq F$. This contradicts that $z \notin F$. In case $\{z\}^{\delta p(\Lambda, s)} \neq\{y\}^{\delta p(\Lambda, s)}$, similarly, this leads to the contradiction. Thus, $\{x\}^{\delta p(\Lambda, s)} \cap\{y\}^{\delta p(\Lambda, s)}=\emptyset$, by Corollary $1,(X, \tau)$ is $\delta p(\Lambda, s)-R_{0}$. By the hypothesis, there exist $\delta p(\Lambda, s)$-closed sets F and K such that $x \in F, y \notin F, y \in K, x \notin K$ and $X=F \cup K$. Put $U=X-K$ and $V=X-F$. Then, $x \in U \in \delta p(\Lambda, s) O(X, \tau)$ and

$$
y \in V \in \delta p(\Lambda, s) O(X, \tau)
$$

Since (X, τ) is $\delta p(\Lambda, s)-R_{0}$, we have $\{x\}^{\delta p(\Lambda, s)} \subseteq U,\{y\}^{\delta p(\Lambda, s)} \subseteq V$ and also $U \cap V=\emptyset$. This shows that (X, τ) is $\delta p(\Lambda, s)-R_{1}$.

Definition 6. Let A be a subset of a topological space (X, τ). The $\theta \delta p(\Lambda, s)$-closure of A, $A^{\theta \delta p(\Lambda, s)}$, is defined as follows:

$$
A^{\theta \delta p(\Lambda, s)}=\left\{x \in X \mid A \cap U^{\delta p(\Lambda, s)} \neq \emptyset \text { for each } U \in \delta p(\Lambda, s) O(X, \tau) \text { containing } x\right\} .
$$

Lemma 5. If a topological space (X, τ) is $\delta p(\Lambda, s)-R_{1}$, then (X, τ) is $\delta p(\Lambda, s)-R_{0}$.
Proof. Let $U \in \delta p(\Lambda, s) O(X, \tau)$ and $x \in U$. If $y \notin U$, then $U \cap\{y\}^{\delta p(\Lambda, s)}=\emptyset$ and $x \notin\{y\}^{\delta p(\Lambda, s)}$. Thus, $\{x\}^{\delta p(\Lambda, s)} \neq\{y\}^{\delta p(\Lambda, s)}$. Since (X, τ) is $\delta p(\Lambda, s)-R_{1}$, there exists $V \in \delta p(\Lambda, s) O(X, \tau)$ such that $\{y\}^{\delta p(\Lambda, s)} \subseteq V$ and $x \notin V$. Thus, $V \cap\{x\}^{\delta p(\Lambda, s)}=\emptyset$ and hence $y \notin\{x\}^{\delta p(\Lambda, s)}$. Therefore, $\{x\}^{\delta p(\Lambda, s)} \subseteq U$. This shows that (X, τ) is $\delta p(\Lambda, s)-R_{0}$.

Theorem 8. A topological space (X, τ) is $\delta p(\Lambda, s)-R_{1}$ if and only if $\langle x\rangle_{\delta p(\Lambda, s)}=\{x\}^{\theta \delta p(\Lambda, s)}$ for each $x \in X$.

Proof. Let (X, τ) be $\delta p(\Lambda, s)-R_{1}$. By Lemma $5,(X, \tau)$ is $\delta p(\Lambda, s)-R_{0}$ and by Theorem $6,\langle x\rangle_{\delta p(\Lambda, s)}=\{x\}^{\delta p(\Lambda, s)} \subseteq\{x\}^{\theta \delta p(\Lambda, s)}$ for each $x \in X$. Thus, $\langle x\rangle_{\delta p(\Lambda, s)} \subseteq\{x\}^{\theta \delta p(\Lambda, s)}$ for each $x \in X$. In order to show the opposite inclusion, suppose that $y \notin\langle x\rangle_{\delta p(\Lambda, s)}$. Then, $\langle x\rangle_{\delta p(\Lambda, s)} \neq\langle y\rangle_{\delta p(\Lambda, s)}$. Since (X, τ) is $\delta p(\Lambda, s)-R_{0}$, by Theorem 6, $\{x\}^{\delta p(\Lambda, s)} \neq\{y\}^{\delta p(\Lambda, s)}$. Since (X, τ) is $\delta p(\Lambda, s)-R_{1}$, there exist disjoint $\delta p(\Lambda, s)$-open sets U and V of X such that $\{x\}^{\delta p(\Lambda, s)} \subseteq U$ and $\{y\}^{\delta p(\Lambda, s)} \subseteq V$. Since $\{x\} \cap V^{\delta p(\Lambda, s)} \subseteq U \cap V^{\delta p(\Lambda, s)}=\emptyset, y \notin\{x\}^{\theta \delta p(\Lambda, s)}$. Thus, $\{x\}^{\theta \delta p(\Lambda, s)} \subseteq\langle x\rangle_{\delta p(\Lambda, s)}$ and hence $\{x\}^{\theta \delta p(\Lambda, s)}=\langle x\rangle_{\delta p(\Lambda, s)}$.

Conversely, suppose that $\{x\}^{\theta \delta p(\Lambda, s)}=\langle x\rangle_{\delta p(\Lambda, s)}$ for each $x \in X$. Then,

$$
\langle x\rangle_{\delta p(\Lambda, s)}=\{x\}^{\theta \delta p(\Lambda, s)} \supseteq\{x\}^{\delta p(\Lambda, s)} \supseteq\langle x\rangle_{\delta p(\Lambda, s)}
$$

and $\langle x\rangle_{\delta p(\Lambda, s)}=\{x\}^{\delta p(\Lambda, s)}$ for each $x \in X$. By Theorem 6, (X, τ) is $\delta p(\Lambda, s)$ - R_{0}. Suppose that $\{x\}^{\delta p(\Lambda, s)} \neq\{y\}^{\delta p(\Lambda, s)}$. Thus, by Corollary $1,\{x\}^{\delta p(\Lambda, s)} \cap\{y\}^{\delta p(\Lambda, s)}=\emptyset$. By Theorem $6,\langle x\rangle_{\delta p(\Lambda, s)} \cap\langle y\rangle_{\delta p(\Lambda, s)}=\emptyset$ and hence $\{x\}^{\theta \delta(\Lambda, s)} \cap\{y\}^{\theta \delta p(\Lambda, s)}=\emptyset$. Since $y \notin\{x\}^{\theta \delta p(\Lambda, s)}$, there exists a $\delta p(\Lambda, s)$-open set U of X such that $y \in U \subseteq U^{\delta p(\Lambda, s)} \subseteq X-\{x\}$. Let

$$
V=X-U^{\delta p(\Lambda, s)},
$$

then $x \in V \in \delta p(\Lambda, s) O(X, \tau)$. Since (X, τ) is $\delta p(\Lambda, s)-R_{0},\{y\}^{\delta p(\Lambda, s)} \subseteq U,\{x\}^{\delta p(\Lambda, s)} \subseteq V$ and $U \cap V=\emptyset$. This shows that (X, τ) is $\delta p(\Lambda, s)-R_{1}$.

Corollary 3. A topological space (X, τ) is $\delta p(\Lambda, s)-R_{1}$ if and only if $\{x\}^{\delta p(\Lambda, s)}=\{x\}^{\theta \delta p(\Lambda, s)}$ for each $x \in X$.

Proof. Let (X, τ) be a $\delta p(\Lambda, s)-R_{1}$ space. By Theorem 8 , we have

$$
\{x\}^{\delta p(\Lambda, s)} \supseteq\langle x\rangle_{\delta p(\Lambda, s)}=\{x\}^{\theta \delta p(\Lambda, s)} \supseteq\{x\}^{\delta p(\Lambda, s)}
$$

and hence $\{x\}^{\delta p(\Lambda, s)}=\{x\}^{\theta \delta p(\Lambda, s)}$ for each $x \in X$.

Conversely, suppose that $\{x\}^{\delta p(\Lambda, s)}=\{x\}^{\theta \delta p(\Lambda, s)}$ for each $x \in X$. First, we show that (X, τ) is $\delta p(\Lambda, s)-R_{0}$. Let $U \in \delta p(\Lambda, s) O(X, \tau)$ and $x \in U$. Let $y \notin U$. Then,

$$
U \cap\{y\}^{\delta p(\Lambda, s)}=U \cap\{y\}^{\theta \delta p(\Lambda, s)}=\emptyset .
$$

Thus, $x \notin\{y\}^{\theta \delta p(\Lambda, s)}$. There exists $V \in \delta p(\Lambda, s) O(X, \tau)$ such that $x \in V$ and $y \notin V^{\delta p(\Lambda, s)}$. Since $\{x\}^{\delta p(\Lambda, s)} \subseteq V^{\delta p(\Lambda, s)}, y \notin\{x\}^{\delta p(\Lambda, s)}$. This shows that $\{x\}^{\delta p(\Lambda, s)} \subseteq U$ and hence (X, τ) is $\delta p(\Lambda, s)-R_{0}$. By Theorem $6,\langle x\rangle_{\delta p(\Lambda, s)}=\{x\}^{\delta p(\Lambda, s)}=\{x\}^{\theta \delta p(\Lambda, s)}$ for each $x \in X$. Thus, by Theorem $8,(X, \tau)$ is $\delta p(\Lambda, s)-R_{1}$.

Acknowledgements

This research project was financially supported by Mahasarakham University.

References

[1] M. E. Abd El-Monsef A. S. Mashhour and S. N. El-Deeb. On precontinuous and weak precontinuous functions. Proceedings of the Mathematical and Physical Society of Egypt, 53:47-53, 1982.
[2] C. Boonpok and J. Khampakdee. $\delta s(\Lambda, s)-R_{0}$ spaces and $\delta s(\Lambda, s)-R_{1}$ spaces. International Journal of Analysis and Applications, 21:99, 2023.
[3] C. Boonpok and N. Srisarakham. Properties of generalized $\delta p(\Lambda, s)$-closed sets. European Journal of Pure and Applied Mathematics, 16(4):2581-2596, 2023.
[4] C. Boonpok and C. Viriyapong. On (Λ, p)-closed sets and the related notions in topological spaces. European Journal of Pure and Applied Mathematics, 15(2):415436, 2022.
[5] C. Boonpok and C. Viriyapong. On some forms of closed sets and related topics. European Journal of Pure and Applied Mathematics, 16(1):336-362, 2023.
[6] M. Caldas and J. Dontchev. G. Λ_{s}-sets and g. V_{s}-sets. arXiv:math/9810080v1 [math.GN], 1998.
[7] M. Caldas, T. Fukutake, S. Jafari, and T. Noiri. Some applications of δ-preopen sets in topological spaces. Bulletin of the Institute of Mathematics, Academia Sinica, 33(3):261-276, 2005.
[8] M. Caldas, M. Ganster, D. N. Georgiou, S. Jafari, and T. Noiri. δ-semiopen sets in topological spaces. Topology Proceedings, 29(2):369-383, 2005.
[9] M. Caldas, D. N. Georgiou, S. Jafari, and T. Noiri. More on δ-semiopen sets. Note di Matematica, 22(2):1-14, 2003.
[10] F. Cammaroto and T. Noiri. On Λ_{m}-sets and related topological spaces. Acta Mathematica Hungarica, 109:261-279, 2005.
[11] A. S. Davis. Indexed systems of neighborhoods for general topological spaces. The American Mathematical Monthly, 68:886-893, 1961.
[12] C. Dorsett. R_{0} and R_{1} topological spaces. Matematički Vesnik, 2(15)(30):117-122, 1978.
[13] K. K. Dube. A note on R_{0} topological spaces. Matematički Vesnik, 11:203-208, 1974.
[14] N. Levine. Semi-open sets and semi-continuity in topological spaces. The American Mathematical Monthly, 70:36-41, 1963.
[15] S. Lugojan. Generalized topology. Studii § Cercetări de Matematică, 34:348-360, 1982.
[16] S. A. Naimpally. On R_{0} topological spaces. Annales Universitatis Scientiarium Budapestinensis de Rolando Eötvös Nominatae Sectio Mathematica, 10:53-54, 1967.
[17] T. Noiri. Unified characterizations for modifications of R_{0} and R_{1} topological spaces. Rendiconti del Circolo Matematico di Palermo Series 2, 60:29-42, 2006.
[18] J. H. Park, B. Y. Lee, and M. J. Son. On δ-semiopen sets in topological spaces. The Journal of the Indian Academy of Mathematics, 19:59-67, 1997.
[19] S. Raychaudhuri and M. N. Mukherjee. On δ-almost continuity and δ-preopen sets. Bulletin of the Institute of Mathematics, Academia Sinica, 21:357-366, 1993.
[20] N. A. Shanin. On separation in topological spaces. Doklady Akademii Nauk SSSR, 38:110-113, 1943.
[21] N. Srisarakham and C. Boonpok. On characterizations of $\delta p(\Lambda, s)-\mathscr{D}_{1}$ spaces. International Journal of Mathematics and Computer Science, 18(4):743-747, 2023.
[22] M. Thongmoon and C. Boonpok. Sober $\delta p(\Lambda, s)-R_{0}$ spaces. International Journal of Mathematics and Computer Science, 18(4):761-765, 2023.
[23] N. V. Veličko. H-closed topological spaces. American Mathematical Society Translations, 78(2):102-118, 1968.

[^0]: *Corresponding author.
 DOI: https://doi.org/10.29020/nybg.ejpam.v17i1.4735

