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Abstract. The main aim of this work is to introduce and study the notions of ideal direct product
d-algebras, d-ideal direct product d-algebras, sub-direct product d-algebras, edge direct product
and positive implicative direct product d-algebras and investigate their characterizations.
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1. Introduction

The concept of d-algebras was first introduced by J. Neggers and H. S. Kim ([9]). A
d-algebraX = (X, ∗, 0) is an algebra of type (2, 0), that is, a nonempty setX together with
a binary operation ∗ and a constant 0 satisfying some axioms In [1], they introduced and
investigated several relations between d-algebras and BCK-algebras and showed that the
class of oriented digraphs corresponds in a simple way to the class of edge d-algebras and
that arbitrary d-algebras also determine unique edge d-algebras in a natural manner. In
1999, J. Neggers, Y. B. Jun and H. S. Kim ([8]), introduced the notions of a d-subalgebra,
d-ideal, and a d∗-ideal in d-algebras, and investigated relations among them. Furthermore,
they are able to define the ideal of a quotient d-algebra and to prove a fundamental
theorem of d-morphisms for d-algebras as a consequence. S. S. Ahn and K. S. So ([1],
defined left-regular maps on d-algebras.These mappings show behaviors reminiscent or
homomorphisms on d-algebras. In particular, they have introduced the kernels,
annihilators, co-annihilators and some of their properties for these mappings, especially in
the setting of positive implicative d-algebras. The study of multipliers have been made by
various researchers in the context of C*-algebras, rings and semigroups in ([6]). In 2012,
M. A. Chaudhry and F. Ali ([3]) introduced the concept of a multiplier on d-algebra and
obtain some properties of multipliers of d-algebras.
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The concept of the direct product, was first defined in groups and obtained the prop-
erties that a direct product of groups is also a group. In 1999, J. Neggers and H. S. Kim
([9] ) introduced the concept of a direct product of d-algebras, they investigate several re-
lations between projection mappings and d-morphisms on a direct sum of edge d-algebras,
In 2020, A. Setiani, S. Gemawati and L. Deswita ([10]) introduced the notions of a direct
product of BP-algebra and some of related properties are investigated. Also, the notion
of direct product of 0-commutative BP-algebra and BP-homomorphisms were studied. In
2022, C. Chanmanee, R. Chinram, R. Prasertpong, P. Julatha, and A. Iampan ([2]) gave
the concept an external direct produc and a weak direct product of B-algebras and they
provided several fundamental theorems of (anti-)B-homomorphisms in view of the external
direct product B-algebras.

In this paper, we introduce the concept of an ideal direct product d-algebra, a
d-ideal direct product d-algebra, sub-direct product d-algebra, an edge direct product and
a positive implicative direct product d-algebra.

2. Preliminaries

First, we will review some essential notations and definitions of d-algebras and ordinary
senses that are needed for this study in this section.

Definition 1. [9] A d-algebras is a non-empty set X with a constant 0 and a binary
operation ∗ satisfying the following axioms:

(i) x ∗ x = 0,

(ii) 0 ∗ x = 0,

(iii) x ∗ y = 0 and y ∗ x = 0 imply x = y for all x, y ∈ X.

A nonempty subset S of a d-algebra X is said to be a sub-algebra of X if x ∗ y ∈ S for
all x, y ∈ S.

Definition 2. [1] A d-algebras (X, ∗, 0) is said to be a positive implicative if (x ∗ y) ∗ z =
(x ∗ z) ∗ (y ∗ z) for all x, y, z ∈ X.

Example 1. [1] Let X = {0, a, b, c} be a set with a binary operation ∗ on X defined by
the following table:

∗ 0 a b c

0 0 0 0 0
a a 0 a 0
b b b 0 0
c c c c 0
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Then (X, ∗, 0) is a positive implicative d-algebra.

Example 2. [5] Let X = {0, a, b, c} be a set with a binary operation ∗ on X defined by
the following table:

∗ 0 a b c

0 0 0 0 0
a a 0 0 b
b b b 0 0
c c c c 0

Then (X, ∗, 0) is a d-algebra but not positive implicative because (a∗b)∗c = 0∗c = 0 ̸= b =
b ∗ 0 = (a ∗ c) ∗ (b ∗ c). The set S1 = {b, c} is not a sub-algebra of X whereas S2 = {0, a, b}
is a sub-algebra of X.

Definition 3. [7] Let (X, ∗, 0) be a d-algebra and x ∈ X . Define x ∗X :={x ∗ a |a ∈ X}.
We say that X is edge if x ∗X = {x, 0} for all x ∈ X.

Example 3. [7] Let X = {0, 1, 2, 3} be a set with the binary operation ∗ on X defined by
the following table:

∗ 0 1 2 3

0 0 0 0 0
1 1 0 0 1
2 2 2 0 0
3 3 3 3 0

Then (X, ∗, 0) is an edge d-algebra.

Example 4. [4] Let X = {0, 1, 2, 3} be a set with the following table:

∗ 0 1 2 3

0 0 0 0 0
1 1 0 1 0
2 2 2 0 0
3 3 3 1 0

Since 3 ∗X = {3, 1, 0} ≠ {3, 0}, then (X, ∗, 0) is not an edge d-algebra.
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Theorem 1. [7] Let (X, ∗, 0) be an edge d-algebra. Then the following conditions are
satisfiesd :

(i) x ∗ 0 = x,

(ii) (x ∗ y) ∗ z = (x ∗ z) ∗ y,

(iii) x ∗ (x ∗ y) = y , for any x, y, z ∈ X.

Definition 4. [3] Let (X, ∗, 0) be a d-algebra and I a subset of X, then I is called an ideal
of X if it satisfies the following conditions:

(i) 0 ∈ I ,

(ii) If x ∗ y ∈ I and y ∈ I imply x ∈ I.

Definition 5. [3] Let (X, ∗, 0) be a d-algebra and I a nonempty subset of X, then I is
called a d-ideal of X if it satisfies the following conditions :

(i) If x ∗ y ∈ I and y ∈ I imply x ∈ I,

(ii) If x ∈ I and y ∈ X imply x ∗ y ∈ I.

Clealy, If I is a d-ideal of a d-algebra X, then x ∗ x = 0 ∈ I for any x ∈ I and then I
is an ideal of X, but the converse need not be true as the following example:

Example 5. [9] Let X = {0, a, b, c} be a set with binary operation ∗ on X defined by the
following table:

∗ 0 a b c

0 0 0 0 0
a a 0 0 b
b b b 0 0
c c c c 0

Then (X, ∗, 0) is a d-algebra and I := {0, a} is an ideal of X, but not a d- ideal of X,
since a ∗ c = b /∈ I.

Theorem 2. [9] Let I be a d-ideal of a d-algebra X. If x ∈ I and y ∈ X such that
y ∗ x = 0, then y ∈ I.

3. Direct product d-Algebras

J. Neggers and H. S. Kim ([9] ) introduced the concept of a direct product of d-algebras
as follows. Let {(Xi, ∗, 0) | i ∈ I} be a non-empty family of d-algebras and

∏
i∈I

Xi=

{(xi)i∈I | xi ∈ Xi}. Then (0i)i∈I where 0i ∈ Xi. serves as 0 of
∏
i∈I

Xi. Define a binary
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operation ⊙ on
∏
i∈I

Xi by (xi)i∈I ⊙ (yi)i∈I = (xi ∗ yi)i∈I for all (xi)i∈I , (yi)i∈I ∈
∏
i∈I

Xi.

Then (
∏
i∈I

Xi,⊙, (0i)i∈I) is a d-algebra, called a direct product d-algebra. That is a direct

product d-algebra (
∏
i∈I

Xi,⊙, (0i)i∈I) is satisfies the following conditions :

(i) (xi)i∈I ⊙ (xi)i∈I = (0i)i∈I ,

(ii) (0i)i∈I)⊙ (xi)i∈I = (0i)i∈I ,

(iii) (xi)i∈I ⊙ (yi)i∈I = (0i)i∈I and (yi)i∈I ⊙ (xi)i∈I = (0i)i∈I implies (xi)i∈I = (yi)i∈I
for all (xi)i∈I , (yi)i∈I ∈

∏
i∈I

Xi.

Definition 6. Let (
∏
i∈I

Xi,⊙, (0i)i∈I) be a direct product d-algebra. A non-empty subset∏
i∈I

Ni of
∏
i∈I

Xi is said to be an ideal direct product d-algebra if it satisfies the following

conditions :

(I1) (0i)i∈I ∈
∏
i∈I

Ni,

(I2) (xi)i∈I ∗ (yi)i∈I ∈
∏
i∈I

Ni and (yi)i∈I ∈
∏
i∈I

Ni implies (xi)i∈I ∈
∏
i∈I

Ni.

Definition 7. Let (
∏
i∈I

Xi,⊙, (0i)i∈I) be a direct product d-algebra. A non-empty subset∏
i∈I

Ni of
∏
i∈I

Xi is said to be a d-ideal direct product d-algebras if it satisfies the following

conditions:

(D1) (xi)i∈I ⊙ (yi)i∈I ∈
∏
i∈I

Ni and (yi)i∈I ∈
∏
i∈I

Ni implies (xi)i∈I ∈
∏
i∈I

Ni,

(D2) (xi)i∈I ∈
∏
i∈I

Ni and (yi)i∈I ∈
∏
i∈I

Xi implies (xi)i∈I ⊙ (yi)i∈I ∈
∏
i∈I

Ni .

Example 6. [1], [9] Let X1 = {0, 1, 2, 3} and X2 = {0′
, a, b, c}. Define binary operations

∗ on X1 and ∗′
on X2. defined by the following two tables, respectively.

∗ 0 1 2 3

0 0 0 0 0
1 1 0 1 0
2 2 2 0 0
3 3 3 3 0

∗′
0
′

a b c

0
′

0
′

0
′

0
′

0
′

a a 0
′

0
′

b

b b b 0
′

0
′

c c c c 0
′

By example 4 and example 5, (X1, ∗, 0) and (X2, ∗′, 0
′
) are d-algebras. Consider an

ideal N1 = {0, 1} of (X1 and ideal N2 = {0′
, a} of X2, we have

N1 × N2 = {(0, 0′
), (0, a), (1, 0

′
)}, (1, a), } is an ideal direct product d-algebra but not a

d-ideal direct product d-algebra, since then (0, a)⊙ (2, c) = (0∗2, a∗′
c) = (0, b) /∈ N1×N2.
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Definition 8. Let (
∏
i∈I

Xi,⊙, (0i)i∈I) be a direct product d-algebra, a nonempty subset∏
i∈I

Ni of
∏
i∈I

Xi is said to be a sub-direct product of
∏
i∈I

Xi if (xi)i∈I ⊙ (yi)i∈I ∈
∏
i∈I

Ni

for all (xi)i∈I , (yi)i∈I ∈
∏
i∈I

Ni.

Theorem 3. Every d-ideal direct product d-algebra is an ideal direct product d-algebra .

Proof. Let (
∏
i∈I

Xi,⊙, (0i)i∈I) be a direct product d-algebra and
∏
i∈I

Ni be a d-ideal of∏
i∈I

Xi. Since xi ∗ xi = 0i for all i ∈ I implies that (xi)i∈I ⊙ (xi)i∈I = (0i)i∈I ∈
∏
i∈I

Ni for

any (xi)i∈I ∈
∏
i∈I

Ni . Thus
∏
i∈I

Ni is an ideal of
∏
i∈I

Xi.

Theorem 4. Every d-ideal a direct product d-algebra is a sub-direct product d-algebra.
Proof. It is Clear by definition 7 and 8

Definition 9. Let (
∏
i∈I

Xi,⊙, (0i)i∈I) be a direct product d-algebra and (ai)i∈I ∈
∏
i∈I

Xi.

Define the set (ai)i∈I ⊙
∏
i∈I

Xi:= {(ai)i∈I ⊙ (xi)i∈I | (xi)i∈I ∈
∏
i∈I

Xi}. We say that
∏
i∈I

Xi

is to be an edge direct product of d-algebra if (ai)i∈I ⊙
∏
i∈I

Xi:= {(ai)i∈I , (0i)i∈I}.

Example 7. [9],[7] Let X1 = {0, 1, 2, 3} and X2 = {0′
, a, b, c} be the set with a binary

operation ∗ and ∗′
respectively that following 2 of tables :

∗ 0 1 2 3

0 0 0 0 0
1 1 0 0 1
2 2 2 0 0
3 3 3 3 0

∗′
0
′

a b c

0
′

0
′

0
′

0
′

0
′

a a 0
′

0
′

b

b b b 0
′

0
′

c c c c 0
′

Then (X1, ∗, 0) and (X2, ∗
′
, 0) are edge d-algebras. But X1 ×X2 is not an edge direct

product d-algebra, because of (2, a)⊙(X1×X2) = {(2, a), (2, 0), (0, a), (0, 0′
)} ≠ {(0, 0′

), (2, a)}.

Theorem 5. Let (
∏
i∈I

Xi,⊙, (0i)i∈I) be an edge direct product d-algebra and
∏
i∈I

Ni be an

ideal direct product of
∏
i∈I

Xi. If (ni)i∈I ∈
∏
i∈I

Ni and (xi)i∈I ∈
∏
i∈I

Xi, then (xi)i∈I ⊙

((xi)i∈I ⊙ (ni)i∈I) ∈
∏
i∈I

Ni.

Proof. Consider ((xi)i∈I⊙((xi)i∈I⊙(ni)i∈I))⊙(ni)i∈I = ((xi)i∈I⊙(ni)i∈I))⊙((xi)i∈I⊙
(ni)i∈I)) = (0i)i∈I , by definition 7 and theorem 1, (xi)i∈I ⊙ ((xi)i∈I ⊙ (ni)i∈I) ∈

∏
i∈I

Ni.

Definition 10. A direct product d-algebra (
∏
i∈I

Xi,⊙, (0i)i∈I) is said to be positive im-

plicative if ((xi)i∈I ⊙ (yi)i∈I) ⊙ (zi)i∈I = ((xi)i∈I ⊙ (zi)i∈I) ⊙ ((yi)i∈I ⊙ (zi)i∈I) for all
(xi)i∈I , (yi)i∈I , (zi)i∈I ∈

∏
i∈I

Xi.
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Theorem 6. Let {(Xi, ∗, 0i) | i ∈ I} be a non-empty family of positive implicative
d-algebra, then (

∏
i∈I

Xi,⊙, (0i)i∈I) is a positive implicative direct product d-algebra.

Proof. Let (xi)i∈I , (yi)i∈I , (zi)i∈I ∈
∏
i∈I

Xi. Then

((xi)i∈I ⊙ (yi)i∈I)⊙ (zi)i∈I = (xi ∗ yi)i∈I ∗ (zi))i∈I
= (xi ∗ zi)i∈I ∗ (yi ∗ zi)i∈I
= ((xi)i∈I ⊙ (zi)i∈I)⊙ ((yi)i∈I ⊙ (zi)i∈I).

Thus
∏
i∈I

Xi is a positive implicative direct product d-algebra.

Theorem 7. Every ideal of a positive implicative direct product d-algebra is a d-ideal
direct product d-algebra.

Proof. Let (
∏
i∈I

Xi,⊙, (0i)i∈I) be a positive implicative direct product d-algebra and∏
i∈I

Ni is an ideal of
∏
i∈I

Xi. By Definition 10, we have

(ni)i∈I ⊙ (xi)i∈I)⊙ (ni)i∈I = (ni ∗ xi)i∈I ⊙ (ni)i∈I
= ((ni ∗ xi) ∗ ((ni))i∈I
= ((ni ∗ ni) ∗ (xi ∗ ni))i∈I
= (0i ∗ (xi ∗ ni))i∈I
= (0i)i∈I ∈ I.

Hence ((ni)i∈I ⊙ (xi)i∈I) ∈ I, implies that
∏
i∈I

Ni is a d-ideal direct product of d-algebras.

4. Conclusion

In this paper, we give the concept of ideal, d-ideal, sub-direct product and edge in
a direct product d-algebra and we prove relationship between ideal direct product and
d-ideal direct product of d-algebras. Moreover, we shown that a direct product of edge
d-algebras is not an edge direct product d-algebra.
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