EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 16, No. 2, 2023, 1318-1325
ISSN 1307-5543 - ejpam.com
Published by New York Business Global

Bounds on Intersection Number in the Join and Corona of Graphs

Jesrael B. Palco ${ }^{1, *}$, Rolando N. Paluga ${ }^{2}$
${ }^{1}$ Department of Physical Sciences and Mathematics, College of Marine and Allied Sciences, Mindanao State University at Naawan, 9023, Philippines
${ }^{2}$ Department of Mathematics, College of Mathematics and Natural Sciences, Caraga State University, 8600, Philippines

Abstract

In this paper, we provide an upper bound for the intersection number in the join and corona of graphs. Moreover, we give formulas for the intersection number of $K_{n} \circ G, P_{n} \circ G, C_{n} \circ G$ and $C r_{n}$.

2020 Mathematics Subject Classifications: 05C69
Key Words and Phrases: Intersection number, extreme intersection graph, join and corona

1. Introduction

Let S be a set and $F=\left\{S_{1}, S_{2}, \cdots, S_{p}\right\}$, for some integer p, a nonempty family of distinct nonempty subsets of S whose union is S. The intersection graph of F is denoted by $\Omega(F)$ and defined by $V(\Omega(F))=F$, with S_{i} and S_{j} adjacent whenever $i \neq j$ and $S_{i} \cap S_{j} \neq \emptyset$. A graph G is an intersection graph on S if there exists a family F of subsets of S for which $G \cong \Omega(F)$. The intersection number $\omega(G)$ of a given graph G is the minimum number of elements in a set S such that G is an intersection graph on S. The intersection number has been studied by [1]. They obtained the best possible upper bound for the intersection number of a graph with a given number of points. In [2], Frank Harary provided an upper bound for the intersection number of a graph G. He showed that $\omega(G) \leq|E(G)|$. In [3], the authors provided a lower bound for the intersection number of a graph G. They showed that $\log _{2}(|V(G)|+1) \leq \omega(G)$. Moreover, the authors provided formulas for the intersection numbers of $P_{n}, C_{n}, W_{n}, F_{n}, K_{n}$, and $G+K_{1}$ for any connected graph G. They also defined the concept of an extreme intersection graph. A graph G is an extreme intersection graph if for any family F of subsets of $S=\{1,2,3, \ldots, \omega(G)\}$ such that $\Omega(F) \cong G$, then $S \in F$.

[^0]Email addresses: jesrael.palco@msunaawan.edu.ph (Jesrael B. Palco), rnpaluga@carsu.edu.ph (Rolando N. Paluga)

2. Results

The join of two graphs G and H, denoted by $G+H$, is the graph with $V(G+H)=V(G) \cup V(H)$ and $E(G+H)=E(G) \cup E(H) \cup\left\{a_{i} b_{j}: a_{i} \in V(G)\right.$ and $\left.b_{j} \in V(H)\right\}$.

Theorem 1. Suppose G is not an extreme intersection graph. Then for any graph H, $\omega(G+H) \leq \omega(G) \omega(H)$.

Proof. Let G be not an extreme intersection graph. Then there exists a family F_{1} of nonempty subsets of a set S_{1} such that $S_{1} \notin F_{1}$ and $\Omega\left(F_{1}\right) \cong G$. That is, there is an isomorphism $\phi_{1}: V(G) \rightarrow F_{1}$ such that $\phi_{1}(x) \neq S_{1}$, for all $x \in V(G)$. Let H be any graph and suppose $\omega(H)=m$. Let $S_{2}=\{1,2, \ldots, m\}$ and F_{2} be a nonempty subset of a set S_{2} for which $\Omega\left(F_{2}\right) \cong H$. That is, there is an isomorphism $\phi_{2}: V(H) \rightarrow F_{2}$. Let $S=S_{1} \times S_{2}$, and $F=\left(\cup\left\{A \times S_{2}: A \in F_{1}\right\}\right) \cup\left(\cup\left\{S_{1} \times B: B \in F_{2}\right\}\right)$. Let $\phi: V(G+H) \rightarrow F$ be a mapping defined by

$$
\phi(x)= \begin{cases}\phi_{1}(x) \times S_{2}, & \text { if } x \in V(G) \\ S_{1} \times \phi_{2}(x), & \text { if } x \in V(H) .\end{cases}
$$

Let $x_{1}, x_{2} \in V(G+H)$ such that $\phi\left(x_{1}\right)=\phi\left(x_{2}\right)$. The case $x_{1} \in V(G)$ and $x_{2} \in V(H)$ is not possible. Since $\phi\left(x_{1}\right)=\phi_{1}\left(x_{1}\right) \times S_{2}$ and $\phi\left(x_{2}\right)=S_{1} \times \phi_{2}\left(x_{2}\right)$. Consider the following cases:
Case 1. Suppose $x_{1}, x_{2} \in V(G)$. Then $\phi\left(x_{1}\right)=\phi_{1}\left(x_{1}\right) \times S_{2}$ and $\phi\left(x_{2}\right)=\phi_{1}\left(x_{2}\right) \times S_{2}$. Note that $\phi\left(x_{1}\right)=\phi\left(x_{2}\right)$, so we have $\phi_{1}\left(x_{1}\right)=\phi_{1}\left(x_{2}\right)$. Since ϕ_{1} is one to one, $x_{1}=x_{2}$. Case 2. Suppose $x_{1}, x_{2} \in V(H)$. Then $\phi\left(x_{2}\right)=S_{1} \times \phi_{2}\left(x_{1}\right)$ and $\phi\left(x_{2}\right)=S_{1} \times \phi_{2}\left(x_{2}\right)$. Note that $\phi\left(x_{1}\right)=\phi\left(x_{2}\right)$, so we have $\phi_{2}\left(x_{1}\right)=\phi_{2}\left(x_{2}\right)$. Since ϕ_{2} is one to one, $x_{1}=x_{2}$. Therefore, ϕ is one to one.

Let $u \in F$. If $u=S_{1} \times B, B \in F_{2}$. Since ϕ_{2} is onto, there exists $x \in V(H) \subseteq V(G+H)$ such that $\phi_{2}(x)=B$. Thus, $\phi(x)=S_{1} \times \phi_{2}(x)=S_{1} \times B=u$. Therefore, ϕ is onto.

If $u=A \times S_{2}, A \in F_{1}$. Since ϕ_{1} is onto, there exists $x \in V(G) \subseteq V(G+H)$ such that $\phi_{1}(x)=A$. Thus, $\phi(x)=\phi_{1}(x) \times S_{2}=A \times S_{2}=u$. Therefore, ϕ is onto.

Let x_{1} and x_{2} be adjacent in $G+H$. Consider the following cases:
Case 1. Suppose x_{1} and x_{2} are adjacent in G. Then $\phi\left(x_{1}\right)=\phi_{1}\left(x_{1}\right) \times S_{2}$ and $\phi\left(x_{2}\right)=\phi_{1}\left(x_{2}\right) \times S_{2}$. Now,

$$
\begin{aligned}
\phi\left(x_{1}\right) \cap \phi\left(x_{2}\right) & =\left(\phi_{1}\left(x_{1}\right) \times S_{2}\right) \cap\left(\phi_{1}\left(x_{2}\right) \times S_{2}\right) \\
& =\left(\phi_{1}\left(x_{1}\right) \cap \phi_{1}\left(x_{2}\right)\right) \times S_{2} \\
& \neq \varnothing, \text { since } \phi_{1} \text { preserves adjacency } .
\end{aligned}
$$

Therefore, $\phi\left(x_{1}\right)$ and $\phi\left(x_{2}\right)$ are adjacent in $\Omega(F)$.
Case 2. Suppose x_{1} and x_{2} are adjacent in H. Then $\phi\left(x_{1}\right)=S_{1} \times \phi_{2}\left(x_{1}\right)$ and $\phi\left(x_{2}\right)=S_{1} \times \phi_{2}\left(x_{2}\right)$. Now,

$$
\begin{aligned}
\phi\left(x_{1}\right) \cap \phi\left(x_{2}\right) & =\left(S_{1} \times \phi_{2}\left(x_{1}\right)\right) \cap\left(S_{1} \times \phi_{2}\left(x_{2}\right)\right) \\
& =S_{1} \times\left(\phi_{2}\left(x_{1}\right) \cap \phi_{2}\left(x_{2}\right)\right)
\end{aligned}
$$

$$
\neq \varnothing \text {, since } \phi_{2} \text { preserves adjacency. }
$$

Therefore, $\phi\left(x_{1}\right)$ and $\phi\left(x_{2}\right)$ are adjacent $\Omega(F)$.
Case 3. Suppose $x_{1} \in V(G)$ and $x_{2} \in V(H)$. Then $\phi\left(x_{1}\right)=\phi_{1}\left(x_{1}\right) \times S_{2}$ and $\phi\left(x_{2}\right)=S_{1} \times \phi_{2}\left(x_{2}\right)$. Now,

$$
\begin{aligned}
\phi\left(x_{1}\right) \cap \phi\left(x_{2}\right) & =\left(\phi_{1}\left(x_{1}\right) \times S_{2}\right) \cap\left(S_{1} \times \phi_{2}\left(x_{2}\right)\right) \\
& =\left(\phi_{1}\left(x_{1}\right) \cap S_{1}\right) \times\left(S_{2} \cap \phi_{2}\left(x_{2}\right)\right) \\
& =\phi_{1}\left(x_{1}\right) \times \phi_{2}\left(x_{2}\right), \text { since } \phi_{1}\left(x_{1}\right) \subseteq S_{1} \text { and } \phi_{2}\left(x_{2}\right) \subseteq S_{2} \\
& \neq \varnothing
\end{aligned}
$$

Therefore, $\phi\left(x_{1}\right)$ and $\phi\left(x_{2}\right)$ are adjacent $\Omega(F)$.
Let $u, v \in F$. If $u=A \times S_{2}$ and $v=S_{1} \times B$ for some $A \in F_{1}$ and $B \in F_{2}$, then $u=\phi_{1}(x) \times S_{2}$ and $v=S_{1} \times \phi_{2}(y)$ for some $x \in V(G)$ and $y \in V(H)$. Consequently, $\phi^{-1}(u)=x \in V(G)$ and $\phi^{-1}(v)=y \in V(H)$. It follows that x and y are adjacent in $G+H$.

If $u=A_{1} \times S_{2}$ and $v=A_{2} \times S_{2}$, for some $A_{1}, A_{2} \in F_{1}$ then $u=\phi_{1}\left(x_{1}\right) \times S_{2}=\phi\left(x_{1}\right)$ and $v=\phi_{1}\left(x_{2}\right) \times S_{2}=\phi\left(x_{2}\right)$, for some $x_{1}, x_{2} \in V(G)$. Consequently, $\phi^{-1}(u)=x_{1} \in V(G)$ and $\phi^{-1}(v)=x_{2} \in V(G)$. Thus, x_{1} and x_{2} are adjacent in G.

If $u=S_{1} \times B_{1}$ and $v=S_{1} \times B_{2}$, for some $B_{1}, B_{2} \in F_{2}$ then $u=S_{1} \times \phi_{1}\left(y_{1}\right)=\phi\left(y_{1}\right)$ and $v=S_{1} \times \phi_{1}\left(y_{2}\right)=\phi\left(y_{2}\right)$ for some $y_{1}, y_{2} \in V(H)$. Consequently, $\phi^{-1}(u)=y_{1} \in V(H)$ and $\phi^{-1}(v)=y_{2} \in V(H)$. Thus, y_{1} and y_{2} are adjacent in H. Therefore, ϕ preserves adjacency.

Hence, $\Omega(F) \cong G+H$
Accordingly, $\omega(G+H) \leq|S|$, since $S=S_{1} \times S_{2}$. Then $|S|=\left|S_{1}\right|\left|S_{2}\right|=\omega(G) \omega(H)$.
Hence, $\omega(G+H) \leq \omega(G) \omega(H)$.
Let G be a connected graph. A subset S of $V(G)$ is a clique if $\langle S\rangle$ is a complete graph. A clique M is maximal if $a \in V(G)-M$, then $M \cup\{a\}$ is no longer a clique in G. The clique graph of G, denoted by $\zeta(G)$, is the intersection graph of the set of all maximal cliques of G. The clique order of G, denoted by $c o(G)$, is $|V(\zeta(G))|$. That is, $c o(G)$ is the number of maximal cliques in G.

Theorem 2. Let K_{n}, P_{n} and C_{n} be a complete graph, path and cycle, respectively. Then
(i) $c o\left(K_{n}\right)=1, n \geq 1$
(ii) $c o\left(P_{n}\right)=n-1, n \geq 2$
(iii) $\operatorname{co}\left(C_{n}\right)= \begin{cases}1, & \text { if } n=3 \\ n, & \text { if } n \geq 4\end{cases}$

The corona $G \circ H$ of two graphs G and H, is the graph obtained by making n copies (n is the ordered of G) of H and joining every vertex of the i th copy of H with the vertex v_{i} of G. For each $a \in V(G)$, we denote by H^{a} the copy of H corresponding to the vertex a.

Theorem 3. Let G be a connected graph and H be any graph. Then

$$
\omega(G \circ H) \leq c o(G)+|V(G)| \cdot \omega(H) .
$$

Proof. Let $V(G)=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right\}$ and $V(\zeta(G))=\left\{B_{1}, B_{2}, \ldots, B_{c o(G)}\right\}$. For each $i=1,2, \ldots, n$, let F_{i} be a collection of nonempty subsets of $S_{i}=\{(i, j): 1 \leq j \leq \omega(H)\}$ such that $\Omega\left(F_{i}\right) \cong H a_{i}$. For each $i=1,2, \ldots, n$, let $\phi_{i}: V\left(H a_{i}\right) \rightarrow F_{i}$ be an isomorphism. Let $S_{o}=\{(0, j): 1 \leq j \leq c o(G)\}$ and $S=\bigcup_{i=0}^{n} S_{i}$. For each $i=1,2, \ldots, n$, let $T_{i}=\{(0, j)$ $: a_{i} \in B_{j}$, for some $\left.j\right\}$. Let $F=\left(\bigcup_{i=1}^{n} F_{i}\right) \bigcup\left\{S_{i} \bigcup T_{i}: 1 \leq i \leq n\right\}$.
Define a mapping $\phi: V(G \circ H) \rightarrow F$ as follows

$$
\phi(x)= \begin{cases}\phi_{i}(x), & \text { if } x \in V\left(H a_{i}\right), \text { for some } i \\ S_{i} \cup T_{i}, & \text { for some } i .\end{cases}
$$

Let $x_{1}, x_{2} \in V(G \circ H)$ such that $\phi\left(x_{1}\right)=\phi\left(x_{2}\right)$. Suppose $x_{1} \in V(G)$ and $x_{2} \in V\left(H a_{i}\right)$ for some i. Then $x_{1} \in B_{j}$ for some j. Thus, $(0, j) \in \phi\left(x_{1}\right)$. Now, $\phi\left(x_{2}\right)=\phi_{i}\left(x_{2}\right) \subseteq S_{i}$, so $(0, j) \notin S_{j}$. This is a contradiction. Therefore, the case $x_{1} \in V(G)$ and $x_{2} \in V\left(H_{a_{i}}\right)$ is not possible. Consider the following cases:
Case 1. Suppose $x_{1}, x_{2} \in V(G)$. Then $x_{1}=a_{i}$ and $x_{2}=a_{j}$. Thus, $\phi\left(x_{1}\right)=S_{i} \cup T_{i}$ and $\phi\left(x_{2}\right)=S_{j} \cup T_{j}$. Note that $(i, 1) \in S_{i} \subseteq \phi\left(x_{1}\right)=\phi\left(x_{2}\right)$. It follows that $(i, 1) \in S_{j}=\{(j, 1),(j, 2), \ldots,(j, \omega(H))\}$. Consequently, $i=j$. In effect $x_{1}=x_{2}$.
Case 2. Suppose $x_{1} \in V\left(H_{a_{i}}\right)$ and $x_{2} \in V\left(H_{a_{j}}\right)$. Suppose $i \neq j$. Then $\phi\left(x_{1}\right) \cap \phi\left(x_{2}\right)=\phi_{i}\left(x_{1}\right) \cap \phi_{j}\left(x_{2}\right) \subseteq S_{i} \cap S_{j} \neq \emptyset$. This is a contradiction. Hence, $i=j$. Consequently, $\phi_{i}\left(x_{1}\right)=\phi\left(x_{1}\right)=\phi\left(x_{2}\right)=\phi_{j}\left(x_{2}\right)=\phi_{i}\left(x_{2}\right)$. Since ϕ_{i} is one to one, $x_{1}=x_{2}$. Therefore, ϕ is one to one.

Suppose $B \in F_{i}$ for some i. Since $\phi_{i}: V\left(H_{a_{i}}\right) \rightarrow F_{i}$ is onto, there exists $x \in V\left(H_{a_{i}}\right)$ such that $\phi_{i}(x)=B$. Consequently, $\phi(x)=\phi_{i}(x)=B$. Suppose $B=S_{i} \cup T_{i}$, for some i. Take $x=a_{i}$. Then $\phi(x)=\phi\left(a_{i}\right)=B$. Hence, ϕ is onto.

Let x_{1} and x_{2} be adjacent in $G \circ H$. Consider the following cases:
Case 1. Suppose x_{1} and x_{2} are adjacent in G. Then $x_{1}=a_{i}$ and $x_{2}=a_{j}$, for some i and j. In effect, $\phi\left(x_{1}\right)=S_{i} \cup T_{i}$ and $\phi\left(x_{2}\right)=S_{j} \cup T_{j}$. Since a_{i} and a_{j} are adjacent in G, there exists k such that $a_{i}, a_{j} \in B_{k}$. This implies that $(0, k) \in T_{i}$ and $(0, k) \in T_{j}$. It follows $\phi\left(x_{1}\right) \cap \phi\left(x_{2}\right) \neq \emptyset$. Therefore, $\phi\left(x_{1}\right)$ and $\phi\left(x_{2}\right)$ are adjacent in $\Omega(F)$.
Case 2. Suppose x_{1} and x_{2} are adjacent in $H_{a_{i}}$ for some i. Then $x_{1}, x_{2} \in V\left(H_{a_{i}}\right)$. It follows $\phi\left(x_{1}\right)=\phi_{i}\left(x_{1}\right)$ and $\phi\left(x_{2}\right)=\phi_{i}\left(x_{2}\right)$. Since ϕ_{i} preserves adjacency, $\phi\left(x_{1}\right) \cap \phi\left(x_{2}\right)=$ $\phi_{i}\left(x_{1}\right) \cap \phi_{i}\left(x_{2}\right) \neq \emptyset$. Thus, $\phi\left(x_{1}\right)$ and $\phi\left(x_{2}\right)$ are adjacent in $\Omega(F)$.
Case 3. Suppose $x_{1}=a_{i}$ and $x_{2} \in V\left(H_{a_{i}}\right)$. Then $\phi\left(x_{1}\right)=\phi\left(a_{i}\right)=S_{i} \cup T_{i}$ and $\phi\left(x_{2}\right)=\phi_{i}\left(x_{2}\right)$. Since $\phi_{i}\left(x_{2}\right) \subseteq S_{i}, \phi\left(x_{1}\right) \cap \phi\left(x_{2}\right) \neq \emptyset$. Thus, $\phi\left(x_{1}\right)$ and $\phi\left(x_{2}\right)$ are adjacent in $\Omega(F)$.

Suppose A and B are adjacent in $\Omega(F)$. That is, $A \cap B \neq \emptyset$. The case $A \in F_{i}$ and $B \in F_{j}$, where $i, j \neq 0$ and $i \neq j$, is not possible, since $S_{i} \cap S_{j}=\emptyset$ in this case. Consider the following cases:
Case 1. Suppose $A, B \in F_{i}$, for some i. Since ϕ_{i} is onto, there exists
$x_{1}, x_{2} \in V\left(H_{a_{i}}\right)$ such that $\phi_{i}\left(x_{1}\right)=A$ and $\phi_{i}\left(x_{2}\right)=B$. Since ϕ_{i} preserves adjacency, x_{1}
and x_{2} are adjacent in $H_{a_{i}}$. It follows that x_{1} and x_{2} are adjacent in $G \circ H$.
Case 2. Suppose $A=S_{i} \cup T_{i}$ and $B=S_{j} \cup T_{j}$ for some $i, j=1,2,3, \ldots, n, i \neq j$. Since $A \cap B \neq \emptyset,\left(S_{i} \cap S_{j}\right) \cup\left(S_{i} \cap T_{j}\right) \cup\left(T_{i} \cap S_{j}\right) \cup\left(T_{i} \cap T_{j}\right) \neq \emptyset$. Note that $S_{i} \cap S_{j}=\emptyset$, $S_{i} \cap T_{j}=\emptyset, T_{i} \cap S_{j}=\emptyset$. Consequently, $\left(T_{i} \cap T_{j}\right) \neq \emptyset$. Moreover, $\phi\left(a_{i}\right)=A$ and $\phi\left(a_{j}\right)=B$.
Let $t \in T_{i} \cap T_{j}$. Then $t \in T_{i}$ and $t \in T_{j}$. This implies that $t=(0, r)$ where $a_{i} \in B_{r}$ and $t=(0, s)$ where $a_{j} \in B_{s}$. Obviously, $r=s$ and $a_{i}, a_{j} \in B_{r}$. It follows that a_{i} and a_{j} are adjacent in G. Accordingly, a_{i} and a_{j} are adjacent in $G \circ H$.
Case 3. Suppose $A \in F_{i}$ and $B=S_{j} \cup T_{j}$ for some i and j. Suppose $i \neq j$. Then $\phi(a)=$ $\phi_{i}(a)=A$ for some $a \in V\left(H_{a_{i}}\right)$ and $\phi\left(a_{j}\right)=B$. Since $A \cap B \neq \emptyset,\left(A \cap S_{j}\right) \cup\left(A \cap T_{j}\right) \neq \emptyset$. Since $A \subseteq S_{i}, A \cap T_{j} \subseteq S_{i} \cap T_{j}=\emptyset$ and $A \cap S_{j} \subseteq S_{i} \cap S_{j}=\emptyset$. This is a contradiction. Thus, $i=j$. Consequently, $a \in V\left(H_{a_{j}}\right)$. It follows that a and a_{j} are adjacent in $G \circ H$. Hence ϕ preserves adjacency.

Therefore, $\Omega(F) \cong G \circ H$.
Accordingly,

$$
\begin{aligned}
\omega(G \circ H) & \leq|S| \\
& =\sum_{i=0}^{n}\left|S_{i}\right| \\
& =\left|S_{o}\right|+\sum_{i=1}^{n}\left|S_{i}\right| \\
& =c o(G)+\sum_{i=1}^{n} \omega(H) \\
& =c o(G)+n \cdot \omega(H) \\
& =c o(G)+|V(G)| \cdot \omega(H) .
\end{aligned}
$$

Therefore, $\omega(G \circ H) \leq c o(G)+|V(G)| \cdot \omega(H)$.

Corollary 1. Let G be a connected graph and $n \geq 2$. Then $\omega\left(K_{n} \circ G\right)=1+n \cdot \omega(G)$.
Proof. By Theorem 3, $\omega\left(K_{n} \circ G\right) \leq c o\left(K_{n}\right)+\left|V\left(K_{n}\right)\right| \cdot \omega(G)$. By Theorem 2, $c o\left(K_{n}\right)=1$. Thus,

$$
\begin{aligned}
\omega\left(K_{n} \circ G\right) & \leq \operatorname{co}\left(K_{n}\right)+\left|V\left(K_{n}\right)\right| \cdot \omega(G) \\
& =1+n \cdot \omega(G) .
\end{aligned}
$$

Suppose $\omega\left(K_{n} \circ G\right)<1+n \cdot \omega(G)$. Let $V\left(K_{n}\right)=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and for each $i, 1 \leq i \leq n$, let G_{i} be the i th copy of G corresponding to the vertex a_{i}. Let F be a collection of subsets of $S=\left\{1,2,3, \ldots, \omega\left(K_{n} \circ G\right)\right\}$ such that $\Omega(F) \cong K_{n} \circ G$. Let $\phi: V\left(K_{n} \circ G\right) \rightarrow F$ be an isomorphism. For each $i, 1 \leq i \leq n,\left\{\phi(x): x \in V\left(G_{i}\right)\right\}$ is a set representation for G_{i}. Thus, $\left|\cup_{x \in V\left(G_{i}\right)} \phi(x)\right| \geq \omega\left(G_{i}\right)=\omega(G)$. Note that for each $i, j, i \neq j$, and each $a \in G_{i}$
and $b \in G_{j}, a b \notin E\left(K_{n} \circ G\right)$. Consequently, $E_{i}=\cup_{x \in V\left(G_{i}\right)} \phi(x)$ and $E_{j}=\cup_{x \in V\left(G_{j}\right)} \phi(x)$ are disjoint whenever $i \neq j$. Now,

$$
\begin{aligned}
\left|\cup_{i=1}^{n} E_{i}\right| & =\sum_{i=1}^{n}\left|E_{i}\right| \\
& \geq \sum_{i=1}^{n} \omega(G) \\
& =n \cdot \omega(G) .
\end{aligned}
$$

It follows that the elements of $S-\left(\cup_{i=1}^{n} E_{i}\right)$ are used for the set representation of G. Note that

$$
\begin{aligned}
\left|S-\left(\cup_{i=1}^{n} E_{i}\right)\right| & =|S|-\left|\left(\cup_{i=1}^{n} E_{i}\right)\right| \\
& \leq \omega\left(K_{n} \circ G\right)-n \cdot \omega(G), \text { since we suppose } \omega\left(K_{n} \circ G\right)<1+n \cdot \omega(G) . \\
& <1 .
\end{aligned}
$$

That is, $\left|S-\left(\cup_{i=1}^{n} E_{i}\right)\right|=0$. This implies, $S=\cup_{i=1}^{n} E_{i}$. Since a_{1} and a_{2} are adjacent, $\phi\left(a_{1}\right) \cap \phi\left(a_{2}\right) \neq \emptyset$. Let $t \in \phi\left(a_{1}\right) \cap \phi\left(a_{2}\right)$. Then $t \in \phi\left(a_{1}\right)$ and $t \in \phi\left(a_{2}\right)$. Since $S=\cup_{i=1}^{n} E_{i}$, $t \in E_{r}$ for some r. Thus $t \in \phi(x)$ for $x \in V\left(G_{r}\right)$. Therefore, $\left\langle\left\{x, a_{1}, a_{2}\right\}\right\rangle$ is complete. This is a contradiction.

Therefore, $\omega\left(K_{n} \circ G\right)=1+n \cdot \omega(G)$.

Corollary 2. Let G be a connected graph and $n \geq 2$. Then $\omega\left(P_{n} \circ G\right)=(n-1)+n \cdot \omega(G)$.
Proof. By Theorem 3, $\omega\left(P_{n} \circ G\right) \leq c o\left(P_{n}\right)+\left|V\left(P_{n}\right)\right| \cdot \omega(G)$. By Theorem 2, $c o\left(P_{n}\right)=n-1$. Thus,

$$
\begin{aligned}
\omega\left(P_{n} \circ G\right) & \leq c o\left(P_{n}\right)+\left|V\left(P_{n}\right)\right| \cdot \omega(G) \\
& =(n-1)+n \cdot \omega(G) .
\end{aligned}
$$

Suppose $\omega\left(P_{n} \circ G\right)<(n-1)+n \cdot \omega(G)$. Let $V\left(P_{n}\right)=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}, E\left(P_{n}\right)=\left\{a_{i} a_{i+1}\right.$: $1 \leq i \leq n-1\}$ and for each $i, 1 \leq i \leq n$, let G_{i} be the i th copy of G corresponding to the vertex a_{i}. Let F be a collection of subsets of $S=\left\{1,2,3, \ldots, \omega\left(P_{n} \circ G\right)\right\}$ such that $\Omega(F) \cong P_{n} \circ G$. Let $\phi: V\left(P_{n} \circ G\right) \rightarrow F$ be an isomorphism. For each $i, 1 \leq i \leq n$, $\left\{\phi(x): x \in V\left(G_{i}\right)\right\}$ is a set representation for G_{i}. Thus, $\left|\cup_{x \in V\left(G_{i}\right)} \phi(x)\right| \geq \omega\left(G_{i}\right)=\omega(G)$. Note that for each $i, j, i \neq j$, and each $a \in G_{i}$ and $b \in G_{j}, a b \notin E\left(P_{n} \circ G\right)$. Consequently, $E_{i}=\cup_{x \in V\left(G_{i}\right)} \phi(x)$ and $E_{j}=\cup_{x \in V\left(G_{j}\right)} \phi(x)$ are disjoint whenever $i \neq j$. Now,

$$
\begin{aligned}
\left|\cup_{i=1}^{n} E_{i}\right| & =\sum_{i=1}^{n}\left|E_{i}\right| \\
& \geq \sum_{i=1}^{n} \omega(G)
\end{aligned}
$$

$$
=n \cdot \omega(G) .
$$

It follows that the elements of $S-\left(\cup_{i=1}^{n} E_{i}\right)$ are used for the set representation of G. Note that

$$
\begin{aligned}
\left|S-\left(\cup_{i=1}^{n} E_{i}\right)\right| & =|S|-\left|\left(\cup_{i=1}^{n} E_{i}\right)\right| \\
& \leq \omega\left(P_{n} \circ G\right)-n \cdot \omega(G), \text { since we suppose } \omega\left(P_{n} \circ G\right)<(n-1)+n \cdot \omega(G) . \\
& <n-1 .
\end{aligned}
$$

Since a_{i} and a_{i+1} are adjacent, $\phi\left(a_{i}\right) \cap \phi\left(a_{i+1}\right) \neq \emptyset$, for every $i, 1 \leq i \leq n-1$. Let $A_{i}=\phi\left(a_{i}\right) \cap \phi\left(a_{i+1}\right), 1 \leq i \leq n-1$. Since $\left|S-\left(\cup_{i=1}^{n} E_{i}\right)\right|<n-1$, there exist i, j with $i<j$, such that $A_{i} \cap A_{j} \neq \emptyset$. Let $t \in A_{i} \cap A_{j}$. Then $t \in A_{i}$ and $t \in A_{j}$. It follows that $t \in \phi\left(a_{i}\right)$ and $t \in \phi\left(a_{j+1}\right)$. Note that $j \geq i+1$, it follows a_{i} and a_{j+1} are adjacent. This is a contradiction.

Hence, $\omega\left(P_{n} \circ G\right)=(n-1)+n \cdot \omega(G)$.

Corollary 3. Let G be a connected graph. Then

$$
\omega\left(C_{n} \circ G\right)= \begin{cases}1+3 \omega(G), & \text { if } n=3 \\ n+n \cdot \omega(G), & \text { if } n \geq 4\end{cases}
$$

Proof. By Theorem 3, $\omega\left(C_{n} \circ G\right) \leq c o\left(C_{n}\right)+\left|V\left(C_{n}\right)\right| \cdot \omega(G)$. By Theorem 2,

$$
c o\left(C_{n}\right)= \begin{cases}1, & \text { if } n=3 \\ n, & \text { if } n \geq 4\end{cases}
$$

The case $n=3$, follows from Corollary 1 and for $n \geq 4$,

$$
\begin{aligned}
\omega\left(C_{n} \circ G\right) & \leq c o\left(C_{n}\right)+\left|V\left(C_{n}\right)\right| \cdot \omega(G) \\
& =n+n \cdot \omega(G) .
\end{aligned}
$$

Suppose $\omega\left(C_{n} \circ G\right)<n+n \cdot \omega(G)$. Let $V\left(C_{n}\right)=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$,
$E\left(C_{n}\right)=\left\{a_{i} a_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{a_{1} a_{n}\right\}$ and for each $i, 1 \leq i \leq n$, let G_{i} be the i th copy of G corresponding to the vertex a_{i}. Let F be a collection of subsets of $S=\left\{1,2,3, \ldots, \omega\left(C_{n} \circ G\right)\right\}$ such that $\Omega(F) \cong C_{n} \circ G$. Let $\phi: V\left(C_{n} \circ G\right) \rightarrow F$ be an isomorphism. For each $i, 1 \leq i \leq n,\left\{\phi(x): x \in V\left(G_{i}\right)\right\}$ is a set representation for G_{i}. Thus, $\left|\cup_{x \in V\left(G_{i}\right)} \phi(x)\right| \geq \omega\left(G_{i}\right)=\omega(G)$. Note that for each $i, j, i \neq j$, and each $a \in G_{i}$ and $b \in G_{j}, a b \notin E\left(C_{n} \circ G\right)$. Consequently, $E_{i}=\cup_{x \in V\left(G_{i}\right)} \phi(x)$ and $E_{j}=\cup_{x \in V\left(G_{j}\right)} \phi(x)$ are disjoint whenever $i \neq j$. Now,

$$
\left|\cup_{i=1}^{n} E_{i}\right|=\sum_{i=1}^{n}\left|E_{i}\right|
$$

$$
\begin{aligned}
& \geq \sum_{i=1}^{n} \omega(G) \\
& =n \cdot \omega(G) .
\end{aligned}
$$

It follows that the elements of $S-\left(\cup_{i=1}^{n} E_{i}\right)$ are used for the set representation of G. Note that

$$
\begin{aligned}
\left|S-\left(\cup_{i=1}^{n} E_{i}\right)\right| & =|S|-\left|\left(\cup_{i=1}^{n} E_{i}\right)\right| \\
& \leq \omega\left(C_{n} \circ G\right)-n \cdot \omega(G), \text { since we suppose } \omega\left(C_{n} \circ G\right)<n+n \cdot \omega(G) . \\
& <n .
\end{aligned}
$$

Since a_{i} and a_{i+1} are adjacent, $\phi\left(a_{i}\right) \cap \phi\left(a_{i+1}\right) \neq \emptyset$, for every $i, 1 \leq i \leq n$. Let $A_{i}=\phi\left(a_{i}\right) \cap \phi\left(a_{i+1}\right), 1 \leq i \leq n$. Since $\left|S-\left(\cup_{i=1}^{n} E_{i}\right)\right|<n$, there exist i, j with $i<j$, such that $A_{i} \cap A_{j} \neq \emptyset$. Let $t \in A_{i} \cap A_{j}$. Then $t \in A_{i}$ and $t \in A_{j}$. It follows that $t \in \phi\left(a_{i}\right)$ and $t \in \phi\left(a_{j+1}\right)$. Note that $j \geq i+1$, it follows a_{i} and a_{j+1} are adjacent. This is a contradiction.

Hence, $\omega\left(C_{n} \circ G\right)=n+n \cdot \omega(G)$.

Corollary 4. Let $n \geq 3$. Then

$$
\omega\left(C r_{n}\right)= \begin{cases}4, & \text { if } n=3 \\ 2 n, & \text { if } n \geq 4\end{cases}
$$

Proof. The proof follows from Corollary 3.

Acknowledgements

The author would like to thank the peer reviewers of the paper and this research is funded by the Mindanao State University at Naawan.

References

[1] Paul Erdos, A Goodman, and Louis Posa. The representation of a graphing by set intersections. Canadian Journal of Mathematics, 18:106-112, 1966.
[2] Frank Harary. Graph Theory. Addison-Wesly Publishing Company, Massachusetts, 1972.
[3] Palco J and Paluga R. Intersection number of some graphs. The Mindanawan Journal of Mathematics, 3:63-75, 2012.

[^0]: *Corresponding author.
 DOI: https://doi.org/10.29020/nybg.ejpam.v16i2.4744

