A hybridization of the Hestenes-Stiefel and Dai-Yuan Conjugate Gradient Methods
DOI:
https://doi.org/10.29020/nybg.ejpam.v16i2.4746Keywords:
Conjugate gradient, Convergence, Convex optimizationAbstract
The paper in discusses conjugate gradient methods, which are often used for unconstrained optimization and are the subject of this discussion. In the process of studying and implementing conjugate gradient algorithms, it is standard practice to assume that the descent condition is true. Despite the fact that this sort of approach very seldom results in search routes that slope in a downward direction, this assumption is made routinely. As a result of this research, we propose a revised method known as the improved hybrid conjugate gradient technique. This method is a convex combination of the Dai-Yuan and Hestenes-Stiefel methodologies. The descending property and global convergence are both exhibited by the Wolfe line search. The numerical data demonstrates that the strategy that was presented is an efficient one.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 European Journal of Pure and Applied Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.