Localization in the Category $COMP(G_{r}(A-Mod))$ of Complex associated to the Category $G_{r}(A-Mod)$ of Graded left $A-$modules over a Graded Ring
DOI:
https://doi.org/10.29020/nybg.ejpam.v16i3.4753Keywords:
Duo-ring, graded module, homogeneous localizationAbstract
The main results of this paper are : \\
If $A=\displaystyle{\bigoplus_{n\in\mathbb{Z}}}A_{n}$ is a graded duo-ring, $S_{H}$ is a part
formed of regulars homogeneous elements of $A$, $\overline{S}_{H}$ is the homogeneous multiplicatively
closed subset of $A$
generated by $S_{H}$, then:
\begin{enumerate}
\item The relation $C_{H}(-) :G_{r}(\overline{S}_{H}^{-1}A-Mod)\longrightarrow COMP(G_{r}(\overline{S}_{H}^{-1}A-Mod))$ which that for all graded left
$\overline{S}_{H}^{-1}A-$module $\overline{S}_{H}^{-1}M$ of $G_{r}(\overline{S}_{H}^{-1}A-Mod)$
we correspond the associate complex sequence $(\overline{S}_{H}^{-1}M)_{*}$ to a graded $\overline{S}_{H}^{-1}A-$module
$\overline{S}_{H}^{-1}M$ and for all graded morphism of graded left $\overline{S}_{H}^{-1}A-$modules
$\overline{S}_{H}^{-1}f : \overline{S}_{H}^{-1}M\longrightarrow \overline{S}_{H}^{-1}N$ of degree $k$
we correspond the associated complex chain
$(\overline{S}_{H}^{-1}f)_{*}^{k}$ to a morphism of graded left $\overline{S}_{H}^{-1}A-$module
$\overline{S}_{H}^{-1}f : \overline{S}_{H}^{-1}M\longrightarrow \overline{S}_{H}^{-1}N$
is an additively exact covariant functor.
\item The relation $(C_{H}\circ\overline{S}_{H}^{-1})(-) :G_{r}(A-Mod)\longrightarrow COMP(G_{r}(\overline{S}_{H}^{-1}A-Mod))$ which that for all graded left
$A-$module $M$ of $G_{r}(A-Mod)$
we correspond the associate complex sequence $(C_{H}\circ\overline{S}_{H}^{-1})(M)=(\overline{S}_{H}^{-1}M)_{*}$ to a graded $A-$module
$M$ and for all graded morphism of graded left $A-$modules
$f : M\longrightarrow N$ of degree $k$
we correspond the associated complex chain
$(C_{H}\circ\overline{S}_{H}^{-1})(f)=(\overline{S}_{H}^{-1}f)_{*}^{k}$ to a morphism of graded left $A-$module
$f : M\longrightarrow N$
is an additively exact covariant functor.
\item \noindent For all $n\in \mathbb{Z}$ fixed and for all $ M \in G_{r}(A-Mod)$ we have:
$$\overline{S}^{-1}_{H}((H_{n}\circ C)(M))\cong H_{n}(C_{H}\circ \overline{S}^{-1}_{H})(M)).$$
\end{enumerate}
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 European Journal of Pure and Applied Mathematics

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the journal, the author(s) accept(s) the transfer of copyright of the article to European Journal of Pure and Applied Mathematics.
European Journal of Pure and Applied Mathematics will be Copyright Holder.