Localization in the Category $COMP(G_{r}(A-Mod))$ of Complex associated to the Category $G_{r}(A-Mod)$ of Graded left $A-$modules over a Graded Ring
DOI:
https://doi.org/10.29020/nybg.ejpam.v16i3.4753Keywords:
Duo-ring, graded module, homogeneous localizationAbstract
The main results of this paper are : \\
If $A=\displaystyle{\bigoplus_{n\in\mathbb{Z}}}A_{n}$ is a graded duo-ring, $S_{H}$ is a part
formed of regulars homogeneous elements of $A$, $\overline{S}_{H}$ is the homogeneous multiplicatively
closed subset of $A$
generated by $S_{H}$, then:
\begin{enumerate}
\item The relation $C_{H}(-) :G_{r}(\overline{S}_{H}^{-1}A-Mod)\longrightarrow COMP(G_{r}(\overline{S}_{H}^{-1}A-Mod))$ which that for all graded left
$\overline{S}_{H}^{-1}A-$module $\overline{S}_{H}^{-1}M$ of $G_{r}(\overline{S}_{H}^{-1}A-Mod)$
we correspond the associate complex sequence $(\overline{S}_{H}^{-1}M)_{*}$ to a graded $\overline{S}_{H}^{-1}A-$module
$\overline{S}_{H}^{-1}M$ and for all graded morphism of graded left $\overline{S}_{H}^{-1}A-$modules
$\overline{S}_{H}^{-1}f : \overline{S}_{H}^{-1}M\longrightarrow \overline{S}_{H}^{-1}N$ of degree $k$
we correspond the associated complex chain
$(\overline{S}_{H}^{-1}f)_{*}^{k}$ to a morphism of graded left $\overline{S}_{H}^{-1}A-$module
$\overline{S}_{H}^{-1}f : \overline{S}_{H}^{-1}M\longrightarrow \overline{S}_{H}^{-1}N$
is an additively exact covariant functor.
\item The relation $(C_{H}\circ\overline{S}_{H}^{-1})(-) :G_{r}(A-Mod)\longrightarrow COMP(G_{r}(\overline{S}_{H}^{-1}A-Mod))$ which that for all graded left
$A-$module $M$ of $G_{r}(A-Mod)$
we correspond the associate complex sequence $(C_{H}\circ\overline{S}_{H}^{-1})(M)=(\overline{S}_{H}^{-1}M)_{*}$ to a graded $A-$module
$M$ and for all graded morphism of graded left $A-$modules
$f : M\longrightarrow N$ of degree $k$
we correspond the associated complex chain
$(C_{H}\circ\overline{S}_{H}^{-1})(f)=(\overline{S}_{H}^{-1}f)_{*}^{k}$ to a morphism of graded left $A-$module
$f : M\longrightarrow N$
is an additively exact covariant functor.
\item \noindent For all $n\in \mathbb{Z}$ fixed and for all $ M \in G_{r}(A-Mod)$ we have:
$$\overline{S}^{-1}_{H}((H_{n}\circ C)(M))\cong H_{n}(C_{H}\circ \overline{S}^{-1}_{H})(M)).$$
\end{enumerate}
Downloads
Published
Issue
Section
License
Copyright (c) 2023 European Journal of Pure and Applied Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.