EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 16, No. 3, 2023, 1913-1939
ISSN 1307-5543 - ejpam.com
Published by New York Business Global

Localization in the Category $\operatorname{COMP}\left(G_{r}(A-M o d)\right)$ of Complex associated to the Category $G_{r}(A-M o d)$ of Graded left A-modules over a Graded Ring

Ahmed Ould Chbih ${ }^{1, *}$, Mohamed Ben Faraj Ben Maaouia ${ }^{2}$, Mamadou Sanghare ${ }^{3}$
${ }^{1}$ Unité de recherche Géométrie, Analyse, Algèbre et Applications (G3A), Faculté des Sciences et Techniques/Universitéé de Nouakchott, Nouakchott, Mauritanie
${ }^{2}$ Applied Mathematics, UFR-SAT/Gaston BERGER, University, Saint-Louis, Senegal
${ }^{3}$ Université Cheikh Anta Diop, Dakar (UCAD), Sénégal

Abstract. The main results of this paper are:
If $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ is a graded duo-ring, S_{H} is a part formed of regulars homogeneous elements of A, \bar{S}_{H} is the homogeneous multiplicatively closed subset of A generated by S_{H}, then:
(i) The relation $C_{H}(-): G_{r}\left(\bar{S}_{H}^{-1} A-M o d\right) \longrightarrow C O M P\left(G_{r}\left(\bar{S}_{H}^{-1} A-M o d\right)\right)$ which that for all graded left $\bar{S}_{H}^{-1} A$-module $\bar{S}_{H}^{-1} M$ of $G_{r}\left(\bar{S}_{H}^{-1} A-M o d\right)$ we correspond the associate complex sequence $\left(\bar{S}_{H}^{-1} M\right)_{*}$ to a graded $\bar{S}_{H}^{-1} A$-module $\bar{S}_{H}^{-1} M$ and for all graded morphism of graded left $\bar{S}_{H}^{-1} A$-modules $\bar{S}_{H}^{-1} f: \bar{S}_{H}^{-1} M \longrightarrow \bar{S}_{H}^{-1} N$ of degree k we correspond the associate complex chain $\left(\bar{S}_{H}^{-1} f\right)_{*}^{k}$ to a morphism of graded left $\bar{S}_{H}^{-1} A$-module $\bar{S}_{H}^{-1} f: \bar{S}_{H}^{-1} M \longrightarrow \bar{S}_{H}^{-1} N$ is additively exact covariant functor.
(ii) The relation $\left(C_{H} \circ \bar{S}_{H}^{-1}\right)(-): G_{r}(A-M o d) \longrightarrow C O M P\left(G_{r}\left(\bar{S}_{H}^{-1} A-M o d\right)\right)$ which that for all graded left A-module M of $G_{r}(A-M o d)$ we correspond the associate complex sequence $\left(C_{H} \circ \bar{S}_{H}^{-1}\right)(M)=\left(\bar{S}_{H}^{-1} M\right)_{*}$ to a graded A-module M and for all graded morphism of graded left A-modules $f: M \longrightarrow N$ of degree k we correspond the associate complex chain $\left(C_{H} \circ \bar{S}_{H}^{-1}\right)(f)=\left(\bar{S}_{H}^{-1} f\right)_{*}^{k}$ to a morphism of graded left A-module $f: M \longrightarrow N$ is additively exact covariant functor.
(iii) For all $n \in \mathbb{Z}$ fixed and for all $M \in G_{r}(A-M o d)$ we have:

$$
\left.\bar{S}_{H}^{-1}\left(\left(H_{n} \circ C\right)(M)\right) \cong H_{n}\left(C_{H} \circ \bar{S}_{H}^{-1}\right)(M)\right)
$$

2020 Mathematics Subject Classifications: 13A02, 16W50, 18C40, 18G35, 13D45
Key Words and Phrases: Duo-ring, graded ring, graded module, multiplicatively closed subset of duo-ring generated by regular homogeneous elements, Category, sequence complex,Complex chain and homology functor

[^0]Email addresses: achbih@gmail.com (A. O. Chbih),
mohamed-ben.maaouia@ugb.edu.sn (M. B. Maaouia), mamadou.sanghare@ucad.edu.sn (M. Sanghare)
(C) 2023 EJPAM All rights reserved.

1. Introduction

In this article A is supposed unitary graded ring and all left A-module is a unitary.
In this article, we study the localization in the category $\operatorname{COMP}\left(G_{r}(A-M o d)\right)$ of complexes of graded left A-modules so for this gaol we used the localization in the category $G_{r}(A-M o d)$, of graded left A-modules, the functor $S_{H}^{-1}: G_{r}(A-M o d) \longrightarrow$ $G_{r}\left(S_{H}^{-1} A-M o d\right)$ with S_{H} is a multiplicatively closed subset satisfying the left conditions of Ore formed of homogeneous elements of a graded ring A and the functor $H_{n}: \operatorname{COMP}\left(G_{r}(A-M o d)\right) \longrightarrow G_{r}(A-M o d)$.
This work finds its roots in particular as regards the functor $S^{-1}: A-\operatorname{Mod} \longrightarrow S^{-1} A-$ Mod in [8], and as regards the graduation of graded module of fractions in [2] and [1]. This article is presented as follows:
In the second section we present a reminder containing the definitions and background results of graded rings and modules and homological algebra extracted in [10], [11],[4] and [9].

In section 3, the following results have been shown, among others:
If $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ is a graded duo-ring, S_{H} is a part formed of regular homogeneous elements of A, \bar{S}_{H} is the homogeneous multiplicatively closed subset of A generated by S_{H}, then we have:
(i)

$$
\begin{aligned}
\bar{S}_{H}^{-1}(f) & : \bar{S}_{H}^{-1} M \longrightarrow \bar{S}_{H}^{-1} N \\
\frac{m}{s} & \longmapsto \bar{S}_{H}^{-1}(f)\left(\frac{m}{s}\right)=\frac{f(m)}{s}
\end{aligned}
$$

is a graded morphism of degree $k \in \mathbb{Z}$ of graded left $\bar{S}_{H}^{-1} A$-module;
(ii) The relation $\bar{S}_{H}^{-1}(-): G_{r}(A-M o d) \longrightarrow G_{r}\left(\bar{S}_{H}^{-1} A-M o d\right)$ which that for any graded left A-module M we made to correspond $\bar{S}_{H}^{-1}(M)$ and for all graded morphism of degree $k \in \mathbb{Z}$ of graded left A-modules $f: M \longrightarrow N$ we correspond $\bar{S}_{H}^{-1}(f)$ of degree $k \in \mathbb{Z}$ is a exact additively covariant functor;
(iii) Furthermore let P a prime ideal of A and S_{H} is a part formed of regular homogeneous elements of $A \backslash P$ and $\bar{S}_{P_{H}}$ is the homogeneous multiplicatively closed subset of A generated by S_{H}, then the relation $\bar{S}_{P_{H}}^{-1}(-): G_{r}(A-M o d) \longrightarrow \bar{S}_{P_{H}}^{-1} A-M o d$ which that for any graded left A-module M we correspond $\bar{S}_{P_{H}}^{-1}(M)$ and for all graded morphism of degree $k \in \mathbb{Z}$ of graded left A-modules $f: M \longrightarrow N$ we correspond $\bar{S}_{P_{H}}^{-1}(f)$ of degree $k \in \mathbb{Z}$ is a exact additively covariant functor.

In the last section the following results among others have been shown: if $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ is a graded duo-ring, S_{H} is a part formed of regular homogeneous elements of A, \bar{S}_{H} is the homogeneous multiplicatively closed subset of A generated by S_{H}, then we have the
following results:
(i) The following complex sequence :

$$
\bar{S}_{H}^{-1}\left(M_{*}\right): \cdots \longrightarrow \bar{S}_{H}^{-1}(M(n+1)) \xrightarrow{\bar{S}_{H}^{-1}\left(d_{n+1}\right)} \bar{S}_{H}^{-1}(M(n)) \xrightarrow{\bar{S}_{H}^{-1}\left(d_{n}\right)} \bar{S}_{H}^{-1}(M(n-1)) \longrightarrow \cdots
$$

with

$$
\begin{gathered}
d_{n}: M(n) \longrightarrow M(n-1) \\
x=y+z \longmapsto y
\end{gathered}
$$

with $(y, z) \in M_{n} \times M(n+1)$;
(ii) The following complex chain :

$$
\begin{aligned}
& \bar{S}_{H}^{-1}\left(M_{*}\right): \cdots \longrightarrow \bar{S}_{H}^{-1}\left(M(n+1)^{\prime} \xrightarrow{\bar{S}_{H}^{-1}\left(d_{n+1}\right)} \bar{S}_{H}^{-1}(M(n)) \xrightarrow{\bar{S}_{H}^{-1}\left(d_{n}\right)_{S}^{-1}}{ }_{H}^{-1}(M(n-1)) \longrightarrow \cdots\right. \\
& \bar{S}_{H}^{-1}\left(f_{*}^{k}\right) \downarrow \quad \bar{S}_{H}^{-1}\left(f^{k}(n+1)\right) \downarrow \quad \bar{S}_{H}^{-1}\left(f^{k}(n)\right) \downarrow \quad \bar{S}_{H}^{-1}\left(f^{k}(n-1)\right) \downarrow \\
& \bar{S}_{H}^{-1}\left(N_{*}\right): \cdots \longrightarrow \bar{S}_{H}^{-1}(N(n+1)) \xrightarrow{\bar{S}_{H}^{-1}\left(d^{\prime}{ }_{n+1}+R_{H}^{-1}\right.} S_{H}^{-1}(N(n)) \xrightarrow{\bar{S}_{H}^{-1}\left(d_{n}^{\prime}\right.}{ }^{n} S_{H}^{2-1}(N(n-1)) \longrightarrow \cdots
\end{aligned}
$$

(iii) The relation $C_{H}(-): G_{r}\left(\bar{S}_{H}^{-1} A-M o d\right) \longrightarrow \operatorname{COMP}\left(G_{r}\left(\bar{S}_{H}^{-1} A-M o d\right)\right)$ which that for all graded left $\bar{S}_{H}^{-1} A$-module $\bar{S}_{H}^{-1} M$ of $G_{r}\left(\bar{S}_{H}^{-1} A-M o d\right)$ we correspond the associate complex sequence $\left(\bar{S}_{H}^{-1} M\right)_{*}$ to a graded $\bar{S}_{H}^{-1} A$-module $\bar{S}_{H}^{-1} M$ and for all graded morphism of graded left $\bar{S}_{H}^{-1} A$-modules $\bar{S}_{H}^{-1} f: \bar{S}_{H}^{-1} M \longrightarrow \bar{S}_{H}^{-1} N$ of degree k we correspond the associate complex chain $\left(\bar{S}_{H}^{-1} f\right)_{*}^{k}$ to a morphism of graded left $\bar{S}_{H}^{-1} A$-module $\bar{S}_{H}^{-1} f: \bar{S}_{H}^{-1} M \longrightarrow \bar{S}_{H}^{-1} N$ is additively exact covariant functor.
(iv) The relation $\left(C_{H} \circ \bar{S}_{H}^{-1}\right)(-): G_{r}(A-M o d) \longrightarrow \operatorname{COMP}\left(G_{r}\left(\bar{S}_{H}^{-1} A-M o d\right)\right)$ which that for all graded left A-module M of $G_{r}(A-M o d)$ we correspond the associate complex sequence $\left(C_{H} \circ \bar{S}_{H}^{-1}\right)(M)=\left(\bar{S}_{H}^{-1} M\right)_{*}$ to a graded A-module M and for all graded morphism of graded left A-modules $f: M \longrightarrow N$ of degree k we correspond the associate complex chain $\left(C_{H} \circ \bar{S}_{H}^{-1}\right)(f)=\left(\bar{S}_{H}^{-1} f\right)_{*}^{k}$ to a morphism of graded left A-module $f: M \longrightarrow N$ is additively exact covariant functor.
(v) We have the composed functor $\mathcal{H}_{n}=H_{n} \circ C, \quad \mathcal{H}_{n}: G_{r}(A-\operatorname{Mod}) \longrightarrow$ $G_{r}(A-M o d)$. With $C(): G_{r}(A-M o d) \longrightarrow C O M P\left(G_{r}(A-M o d)\right)$ and $H_{n}:$ $\operatorname{COMP}\left(G_{r}(A-M o d)\right) \longrightarrow G_{r}(A-M o d)$.
(vi) For all $n \in \mathbb{Z}$ fixed and for all $M \in G_{r}(A-M o d)$ we have:

$$
\left.\bar{S}_{H}^{-1}\left(\left(H_{n} \circ C\right)(M)\right) \cong H_{n}\left(C_{H} \circ \bar{S}_{H}^{-1}\right)(M)\right) .
$$

2. Reminder and preliminary results

Definition 1. Let A be a ring, then we say that A is a graded ring if there exists a suite $\left(A_{n}\right)_{n \in \mathbb{Z}}$ of additive subgroups of A such that
(i) $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$;
(ii) $A_{n} \cdot A_{m} \subset A_{n+m}, \forall n, m \in \mathbb{Z}$.

Definition 2. Let A be a graded ring, and x be a non-zero element of A. then we say that x is homogeneous of degree n, if there exist n such that $x \in A_{n}$ and we note $\operatorname{deg}(x)=n$.

In all that follows, A and M are supposed unitary.
Definition 3. Let $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ be a graded ring and M be a left A-module, we say that M is a graded left A-module if there exists a suite $\left(M_{n}\right)_{n \in \mathbb{Z}}$ of sub-groups of M such that:
(i) $M=\bigoplus_{n \in \mathbb{Z}} M_{n}$;
(ii) $A_{n} \cdot M_{d} \subset M_{n+d}, \forall n, d \in \mathbb{Z}$.

Definition 4. Let $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ be a graded ring, $M=\bigoplus_{n \in \mathbb{Z}} M_{n}$ be a graded left A-module and N is a sub-module of M, then we say that N is a graded sub-module of M, if $\forall x \in N$ such that $x=\sum_{n \in \mathbb{Z}} x_{n}$, then $x_{n} \in N, \forall n \in \mathbb{Z}$.
Proposition 1. Let $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ be a graded ring and $M=\bigoplus_{n \in \mathbb{Z}} M_{n}$ is graded left A-module, then for all $n \in \mathbb{Z}$ fixed, we have

$$
M(n)=\bigoplus_{k \geq n} M_{k}
$$

is a graded sub-module of M and we have the descendant sequence:

$$
\cdots M(n+2) \subset M(n+1) \subset M(n) \subset \cdots .
$$

Proof. For all $n \in \mathbb{Z}$ fixed, $M(n)=\bigoplus_{k \geq n} M_{k}$ is a sub-group of M and

$$
A_{s} \cdot M(n)_{k}=A_{s} \cdot M_{n+k} \subset M_{n+k+s}=M_{n+(k+s)}=M(n)_{k+s} .
$$

In the other hand, it suffices to remark that

$$
M(n)=\bigoplus_{k \geq n} M_{k}=M_{n} \bigoplus M(n+1)
$$

Hence $M(n+1) \subset M(n)$. Thus

$$
\cdots M(n+2) \subset M(n+1) \subset M(n) \subset \cdots .
$$

Definition 5. Let $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ be a graded ring, $M=\bigoplus_{n \in \mathbb{Z}} M_{n}$ and $N=\bigoplus_{n \in \mathbb{Z}} N_{n}$ two graded left A-modules and $f: M \longrightarrow N$ is a morphism of left A-modules, then we say that f is a graded morphism of degree $k \in \mathbb{Z}$ if for any $m \in M_{s}$ then $f(m) \in N_{s+k}$.

Theorem 1. Let A be a graded ring, then the following information:
(i) The class of objects are the graded left A-modules;
(ii) The class of morphisms are the graded morphisms of degree $k \in \mathbb{Z}$.
constitute a category called the category of graded left A-module and it is denoted by $G_{r}(A-M o d)$.

Proof. See [3]
Definition 6. A complex sequence $(C, d): \ldots \rightarrow C_{n+1} \xrightarrow{d_{n+1}} C_{n} \xrightarrow{d_{n}} C_{n-1} \xrightarrow{d_{n-1}} \ldots$ is a sequence of morphisms of A - modules satisfying $d_{n} \circ d_{n+1}=0$, for all $n \in \mathbb{Z}$.

Definition 7. A complex chain $f:(C, d) \rightarrow\left(C^{\prime}, d^{\prime}\right)$ is a sequence of homomorphisms $\left(f_{n}: C_{n} \longrightarrow C_{n}^{\prime}\right)_{n \in \mathbb{Z}}$ of $A-$ modules making the following diagram commute:

i.e $d_{n+1}^{\prime} \circ f_{n+1}=f_{n} \circ d_{n+1}$, for all $n \in \mathbb{Z}$.

Proposition 2. We called the category of complexes of A-modules and we denote $C O M P$, the category whose:
(i) The objects are the sequences complex;
(ii) The morphisms are the complex chains.

Proof. See [3]
Proposition 3. We called functor homology H_{n} the functor $H_{n}: C O M P \longrightarrow A b$ defined by:
(i) For all objet (C, d) of $C O M P, H_{n}((C, d))=\operatorname{ker} d_{n} / I m d_{n+1}$
(ii) For all chain $f:(C, d) \rightarrow\left(C^{\prime}, d^{\prime}\right)$ of $C O M P$

$$
\begin{gathered}
H_{n}(f): H_{n}((C, d)) \longrightarrow H_{n}\left(\left(C^{\prime}, d^{\prime}\right)\right) \\
\overline{z_{n}} \longmapsto \overline{f_{n}\left(z_{n}\right)}
\end{gathered}
$$

A. O. Chbih, M. B. Maaouia, M. Sanghare / Eur. J. Pure Appl. Math, 16 (3) (2023), 1913-1939 1918 Proof. See [3]

Theorem 2. Let

$$
(0) \longrightarrow((M, d)) \xrightarrow{f}\left(\left(N, d^{\prime}\right)\right) \xrightarrow{g}\left(\left(L, d^{\prime \prime}\right)\right) \longrightarrow(0)
$$

be a short exact complex sequence, then for all $n \in \mathbb{Z}$ there exist a morphism of left A-module

$$
\delta_{n}: H_{n}\left(\left(L, d^{\prime}\right) \longrightarrow H_{n-1}((M, d))\right.
$$

called connecting morphism such that the following long exact sequence is exact

$$
\begin{aligned}
& \cdots \longrightarrow H_{n}((M, d)) \xrightarrow{H_{n}(f)} H_{n}\left(\left(N, d^{\prime}\right)\right) \xrightarrow{H_{n}(g)} H_{n}\left(\left(L, d^{\prime \prime}\right)\right) \xrightarrow{\delta_{n}} H_{n-1}(M, d) \xrightarrow{H_{n-1}(f)} \\
& H_{n-1}\left(N, d^{\prime}\right) \longrightarrow \cdots
\end{aligned}
$$

Proof. See [3]

Definition 8. Let A be a ring, we say that A is duo ring if every left ideal of A is two-sided, and any right ideal of A is two-sided.

Proposition 4. Let A be a ring, then A is a duo-ring if, and only if, $\forall a \in A, a A=A a$.
Proof. See [6].

Proposition 5. Let A be a duo-ring then, the set of all regular elements of A is a multiplicatively closed subset of A verifies the conditions Ore.

Proof. See [6].

Proposition 6. Let A be a duo-ring and S be a nonempty subset formed of regular elements of A, then there exists a multiplicatively closed subset of A satisfying the left conditions of Ore containing S.

Proof. It suffices to note that the set of all regular elements of A is a multiplicatively closed subset satisfying the conditions Ore and containing S.

Definition 9. Let A be a duo-ring and S be a nonempty subset formed of regular elements of A, then the smaller multiplicatively closed subset of A satisfying the conditions of Ore containing S is called the multiplicatively closed subset of A satisfying the left conditions of Ore generated by S and denoted by \bar{S}.

Proposition 7. Let $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ be a graded duo-ring and S_{H} be a nonempty subset formed of regular homogeneous elements of A, then there exists a homogeneous multiplicatively closed subset of A satisfying the left conditions of Ore containing S, and denoted by \bar{S}_{H}.

Proof. Put \bar{S}_{H} the the smaller multiplicatively closed subset of A satisfying the conditions Ore containing S, \bar{S}_{H} exist because the set of regular elements of A is a multiplicatively closed subset of A satisfying the conditions Ore containing S. Then it is enough to proof that \bar{S}_{H} is homogeneous. We have the elements of \bar{S}_{H} are of the form $\prod_{i} s_{i}, s_{i} \in S$ which $\prod_{i} s_{i}$ is homogeneous.

Corollary 1. Let $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ be a graded duo-ring then the set of all regular homogeneous of A is multiplicatively closed subset satisfying the left conditions of Ore.

Proof. Put S the set of all regular homogeneous of A then $\bar{S}_{H}=S$.
Proposition 8. Let $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ be a graded duo-ring, P is a prime ideal of A and $S_{P_{H}}$ is the set formed of homogeneous regular elements of $A \backslash P$, then $\bar{S}_{P_{H}} \subset(A \backslash P)$.

Proof. The set of regular elements of $A \backslash P$ is a multiplicatively closed subset satisfying the conditions of Ore, (see [5] and [7]) and containing $\bar{S}_{P_{H}}$, then $\bar{S}_{P_{H}} \subset(A \backslash P)$.

Corollary 2. Let $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ be a graded duo-ring and P is a prime ideal of A, then the set of regular homogeneous of $A \backslash P$ is a multiplicatively closed subset satisfying the conditions of Ore.

Proof. Put S the set of all regular homogeneous of $A \backslash P$, then $\bar{S}_{P_{H}}=S$.

3. Functor Graduation \bar{S}_{H}^{-1} and Functorization of graded modules

Theorem 3. Let $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ be a graded ring, $M=\bigoplus_{n \in \mathbb{Z}} M_{n}$ and $N=\bigoplus_{n \in \mathbb{Z}} N_{n}$ be a two graded left A-modules and S is a multiplicatively closed subset satisfying the left conditions of Ore formed of homogeneous elements of a graded ring A.
Let $f: M \longrightarrow N$ be graded morphism of degree $k \in \mathbb{Z}$ of graded left A-modules, then:

$$
\begin{aligned}
S^{-1}(f) & : S^{-1} M \longrightarrow S^{-1} N \\
\frac{m}{s} & \longmapsto S^{-1}(f)\left(\frac{m}{s}\right)=\frac{f(m)}{s}
\end{aligned}
$$

is a graded morphism of degree $k \in \mathbb{Z}$ of graded left $S^{-1} A$-module.
Proof. Since [1], $S^{-1}(f)$ is a morphism of left $S^{-1} A$-module.
Show that $S^{-1}(f)$ is graded morphism of degree $k \in \mathbb{Z}$, let $m \in M$ homogeneous such that $\frac{m}{s} \in S^{-1} M$ is of degree d, then $d=\operatorname{deg}\left(\frac{m}{s}\right)=\operatorname{deg}(m)-\operatorname{deg}(s)$, on the other hand

$$
\operatorname{deg}\left(S^{-1}(f)\left(\frac{m}{s}\right)\right)=\operatorname{deg}\left(\frac{f(m)}{s}\right)
$$

A. O. Chbih, M. B. Maaouia, M. Sanghare / Eur. J. Pure Appl. Math, 16 (3) (2023), 1913-1939 1920

$$
\begin{aligned}
& =\operatorname{deg}(f(m))-\operatorname{deg}(s) \\
& =\operatorname{deg}(f(m))-\operatorname{deg}(s) \\
& =(\operatorname{deg}(m)+k)-\operatorname{deg}(s) \\
& =d+k
\end{aligned}
$$

because f is graded of degree $k \in \mathbb{Z}$, thus $S^{-1}(f)$ has degree k, hence $S^{-1}(f)$ is graded morphism of degree k of graded left $S^{-1} A$-module.

Proposition 9. Let $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ be a graded duo-ring, $M=\bigoplus_{n \in \mathbb{Z}} M_{n}$ and $N=\bigoplus_{n \in \mathbb{Z}} N_{n}$ be a two graded left A-modules and S_{H} be a part formed of regulars homogeneous elements of A.

Let $f: M \longrightarrow N$ be graded morphism of degree $k \in \mathbb{Z}$ of graded left A-modules, then:

$$
\begin{aligned}
\bar{S}_{H}^{-1}(f): & \bar{S}_{H}^{-1} M \longrightarrow \bar{S}_{H}^{-1} N \\
\frac{m}{s} & \longmapsto \bar{S}_{H}^{-1}(f)\left(\frac{m}{s}\right)=\frac{f(m)}{s}
\end{aligned}
$$

is a graded morphism of degree $k \in \mathbb{Z}$ of graded left $\bar{S}_{H}^{-1} A$-module.
Proof. Since the proposition $6, \bar{S}_{H}$ is a multiplicatively closed subset satisfying the left conditions of Ore formed of homogeneous elements of A and from $9, \bar{S}_{H}^{-1}(f)$ is graded morphism of degree k of graded left $\bar{S}_{H}^{-1} A$-module.

Proposition 10. Let $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ be a graded ring, $M=\bigoplus_{n \in \mathbb{Z}} M_{n}, N=\bigoplus_{n \in \mathbb{Z}} N_{n}$ and $L=$ $\bigoplus L_{n}$ be three graded left A-modules and S be a multiplicatively closed subset satisfying $n \in \mathbb{Z}$
the left conditions of Ore formed of homogeneous elements of A, then for every short sequences of a graded morphisms of degree $k \in \mathbb{Z}$ of a graded left A-module

$$
0 \longrightarrow M \xrightarrow{\varphi} N \xrightarrow{\phi} L \longrightarrow 0,
$$

we have the following short exact sequences of a graded morphisms of degree $k \in \mathbb{Z}$ of a graded left $S^{-1} A-$ modules:

$$
0 \longrightarrow S^{-1} M \xrightarrow{S^{-1}(\varphi)} S^{-1} N \xrightarrow{S^{-1}(\phi)} S^{-1} L \longrightarrow 0
$$

Proof. Since the theorem 3.4 of [8], if $0 \longrightarrow M \xrightarrow{\varphi} N \xrightarrow{\phi} L \longrightarrow 0$ is a short exact sequences of a morphisms of degree $k \in \mathbb{Z}$ of a left A-modules, then

$$
0 \longrightarrow S^{-1} M \xrightarrow{S^{-1}(\varphi)} S^{-1} N \xrightarrow{S^{-1}(\phi)} S^{-1} L \longrightarrow 0
$$

is a short exact sequences of a morphisms of degree $k \in \mathbb{Z}$ of a left $S^{-1} A$-modules, and as S is a set formed of no null homogeneous elements of A and $S^{-1}(-)$ preserve degree, then we have

$$
0 \longrightarrow S^{-1} M \xrightarrow{S^{-1}(\varphi)} S^{-1} N \xrightarrow{S^{-1}(\phi)} S^{-1} L \longrightarrow 0
$$

is a short exact sequences of a graded morphisms of degree $k \in \mathbb{Z}$ of a graded left $S^{-1} A$-modules.

Corollary 3. Let $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ be a graded duo-ring, $M=\bigoplus_{n \in \mathbb{Z}} M_{n}, N=\bigoplus_{n \in \mathbb{Z}} N_{n}$ and $L=\bigoplus_{n \in \mathbb{Z}} L_{n}$ be three graded left A-modules and S_{H} be part formed of regulars homogeneous elements of A, then for every short exact sequences of a graded morphisms of degree $k \in \mathbb{Z}$ of a graded left A-module

$$
0 \longrightarrow M \xrightarrow{\varphi} N \xrightarrow{\phi} L \longrightarrow 0
$$

we have the following short exact sequences of a graded morphisms of degree $k \in \mathbb{Z}$ of a graded left $\bar{S}_{H}^{-1} A$-modules:

$$
0 \longrightarrow \bar{S}_{H}^{-1} M \xrightarrow{\bar{S}_{H}^{-1}(\varphi)} \bar{S}_{H}^{-1} N \xrightarrow{\bar{S}_{H}^{-1}(\phi)} \bar{S}_{H}^{-1} L \longrightarrow 0
$$

Proof. Since the proposition $6, \bar{S}_{H}$ is a multiplicatively closed subset satisfying the left conditions of Ore formed of homogeneous elements of A.

Corollary 4. Let $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ be a graded duo-ring, $M=\bigoplus_{n \in \mathbb{Z}} M_{n}, N=\bigoplus_{n \in \mathbb{Z}} N_{n}$ and $L=\bigoplus_{n \in \mathbb{Z}} L_{n}$ be three graded left A-modules and S_{H} the set of all regular homogeneous of A, then for every short exact sequences of a graded morphisms of degree $k \in \mathbb{Z}$ of a graded left A-module

$$
0 \longrightarrow M \xrightarrow{\varphi} N \xrightarrow{\phi} L \longrightarrow 0
$$

we have the following short exact sequences of a graded morphisms of degree $k \in \mathbb{Z}$ of a graded left $S_{H}^{-1} A$-modules:

$$
0 \longrightarrow S_{H}^{-1} M \xrightarrow{S_{H}^{-1}(\varphi)} S_{H}^{-1} N \xrightarrow{S_{H}^{-1}(\phi)} S_{H}^{-1} L \longrightarrow 0
$$

Proof. Similarly to the proof of the corollary precedent 3 with $\bar{S}_{H}=S_{H}$

Theorem 4. Let $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ be a graded ring and S be a multiplicatively closed subset satisfying the left conditions of Ore formed of homogeneous elements of A, then the relation $S^{-1}(-): G_{r}(A-M o d) \longrightarrow G_{r}\left(S^{-1} A-M o d\right)$ which that for any graded left A-module M we correspond $S^{-1}(M)$ and for all graded morphism of degree $k \in \mathbb{Z}$ of graded left A-modules $f: M \longrightarrow N$ we correspond $S^{-1}(f)$ of degree $k \in \mathbb{Z}$ is a exact additively covariant functor.

Proof. Let $f: M \longrightarrow N$ be a graded morphism of degree $k \in \mathbb{Z}$ of a graded left A-modules, then

$$
\begin{aligned}
S^{-1}(f): S^{-1} M & \longrightarrow S^{-1} N \\
\frac{m}{s} & \longmapsto \frac{f(m)}{s}
\end{aligned}
$$

is a morphism of degree $k \in \mathbb{Z}$ of left $S^{-1} A$-modules.
So
(i) Let $M \in G_{r}(A-M o d)$, then $S^{-1} M$ is a graded left $S^{-1} A$-module, thus $S^{-1} M \in$ $G_{r}\left(S^{-1} A-M o d\right)$.
(ii) Let $f: M \longrightarrow N$ be a graded morphism of the graded left A-modules, then

$$
\begin{aligned}
S^{-1}(g \circ f) & : S^{-1} M \longrightarrow S^{-1} N \\
S^{-1}(g \circ f)\left(\frac{m}{s}\right) & =\frac{(g \circ f)(m)}{s} \\
& =\frac{g(f(m))}{s} \\
& =g\left(\frac{f(m)}{s}\right) \\
& =S^{-1}(g)\left(\frac{f(m)}{s}\right) \\
& =S^{-1}(g) \circ S^{-1}(f)\left(\frac{m}{s}\right)
\end{aligned}
$$

Thus $\forall \frac{m}{s} \in S^{-1} M, S^{-1}(g \circ f)=S^{-1}(g) \circ S^{-1}(f)$.

$$
\begin{aligned}
& S^{-1}\left(1_{M}\right): S^{-1} M \longrightarrow S^{-1} M \\
& \frac{m}{s} \longmapsto \frac{1_{M}(m)}{s}=\frac{m}{s}=1_{S^{-1} M}\left(\frac{m}{s}\right)
\end{aligned}
$$

so $\forall \frac{m}{s} \in S^{-1} M$ we have $S^{-1}\left(1_{M}\right)=1_{S^{-1} M}$,
so $S^{-1}(-): G_{r}(A-M o d) \longrightarrow G_{r}\left(S^{-1} A-M o d\right)$ is a covariant functor.

Furthermore $\operatorname{deg}\left(\frac{m}{s}\right)=\operatorname{deg}(m)-\operatorname{deg}(s)$ or f is graded of degree $k \in \mathbb{Z}$, then $\operatorname{deg}(m)+k=$ $\operatorname{deg}(f(m))$ so

$$
\begin{aligned}
\operatorname{deg}\left(S^{-1}(f)\left(\frac{m}{s}\right)\right) & =\operatorname{deg}\left(\frac{f(m)}{s}\right)=\operatorname{deg}(f(m))-\operatorname{deg}(s) \\
& =(\operatorname{deg}(m)+k)-\operatorname{deg}(s) \\
& =\operatorname{deg}\left(\frac{m}{s}\right)+k .
\end{aligned}
$$

Thus $S^{-1}(-)$ is additively exact covariant functor. Or $S^{-1}(-)$ is exact then additively exact covariant functor.

Proposition 11. Let $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ be a graded duo-ring and S_{H} be the part formed of all regulars homogeneous elements of A, then the relation $\bar{S}_{H}^{-1}(-): G_{r}(A-M o d) \longrightarrow$ $G_{r}\left(\bar{S}_{H}^{-1} A-M o d\right)$ which that for any graded left A-module M we correspond $\bar{S}_{H}^{-1}(M)$ and for all graded morphism of degree $k \in \mathbb{Z}$ of graded left A-modules $f: M \longrightarrow N$ we correspond $\bar{S}_{H}^{-1}(f)$ of degree $k \in \mathbb{Z}$ is a exact additively covariant functor.

Proof.
Similarly to the proof of the theorem precedent 4.
Corollary 5. Let $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ be a graded duo-ring and S_{H} the set of all regular homogeneous of A, then the relation $S_{H}^{-1}(-): G_{r}(A-M o d) \longrightarrow S_{H}^{-1} A-M o d$ which that for any graded left A-module M we correspond $S_{H}^{-1}(M)$ and for all graded morphism of degree $k \in \mathbb{Z}$ of graded left A-modules $f: M \longrightarrow N$ we correspond $S_{H}^{-1}(f)$ is additively exact covariant functor.

Proof. S_{H} is the set of regular homogeneous of A then S_{H} is homogeneous multiplicatively closed subset so $\bar{S}_{H}=S_{H}$ then according to proposition precedent 11.

Proposition 12. Let $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ be a graded duo-ring, P be a prime ideal of A and $S_{P_{H}}$ be a set formed of homogeneous regular elements of $A \backslash P$, then the relation $\bar{S}_{P_{H}}^{-1}(-): G_{r}(A-M o d) \longrightarrow G_{r}\left(\bar{S}_{P_{H}}^{-1} A-M o d\right)$ which that for any graded left A-module M we correspond $\bar{S}_{P_{H}}^{-1}(M)$ and for all graded morphism of degree $k \in \mathbb{Z}$ of graded left A-modules $f: M \longrightarrow N$ we correspond $\bar{S}_{P_{H}}^{-1}(f)$ of degree $k \in \mathbb{Z}$ is additively exact covariant functor.

Proof. Since the proposition $8 \bar{S}_{P_{H}}$ homogeneous multiplicatively closed subset, so $\bar{S}_{P_{H}}^{-1}(-): G_{r}(A-M o d) \longrightarrow G_{r}\left(\bar{S}_{P_{H}}^{-1} A-M o d\right)$ is a covariant functor indeed. Let M, N two graded left A-modules and $f: M \longrightarrow N$ is a graded morphism of degree $k \in \mathbb{Z}$, then

$$
\bar{S}_{P_{H}}^{-1}(-)(f): \bar{S}_{P_{H}}^{-1} M \longrightarrow \bar{S}_{P_{H}}^{-1} N
$$

$$
\frac{m}{s} \longmapsto \frac{f(m)}{s}
$$

is a graded morphism of degree $k \in \mathbb{Z}$ of $\bar{S}_{P_{H}}^{-1} A$-modules and for any graded left A-module $M, S_{P_{H}}^{-1}(-)(M)=\bar{S}_{P_{H}}^{-1} M$ is a graded left $\bar{S}_{P_{H}}^{-1} A$-module, so $S_{P_{H}}^{-1}(-)$ is a functor covariant for the category $G_{r}(A-M o d)$ to the category $G_{r}\left(\bar{S}_{P_{H}}^{-1} A-M o d\right)$.
Furthermore $\bar{S}_{P_{H}}^{-1}(-)$ is of degree $k \in \mathbb{Z}$, indeed let $(s, m) \in S \times M$ such that $\operatorname{deg}\left(\frac{m}{s}\right)=$ $\operatorname{deg}(m)-\operatorname{deg}(s)=d_{1}$ so $\bar{S}_{P_{H}}^{-1}(-)(f)\left(\frac{m}{s}\right)=\frac{f(m)}{s}$, and

$$
\begin{aligned}
\operatorname{deg}\left(\bar{S}_{P_{H}}^{-1}(f)\left(\frac{m}{s}\right)\right) & =\operatorname{deg}\left(\frac{f(m)}{s}\right) \\
& =\operatorname{deg}(f(m))-\operatorname{deg}(s) \\
& =(\operatorname{deg}(m)+k)-\operatorname{deg}(s) \\
& =\operatorname{deg}\left(\frac{m}{s}\right)+k \\
& =d_{1}+k
\end{aligned}
$$

Thus $\bar{S}_{P_{H}}^{-1}(-)$ is additively exact covariant functor, since $\bar{S}_{P_{H}}^{-1}(-)$ preserve the exactness.
Definition 10. Let $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ is a graded duo-ring, $M=\bigoplus_{n \in \mathbb{Z}} M_{n}$ be a left graded A-module, P is a prime ideal of A and S_{H} be the set of homogeneous regular elements of $A \backslash P$ then:
(i) $S_{P_{H}}^{-1} A$ is called homogeneous localized to A in P. and denoted by $A_{P H}$;
(ii) $S_{P_{H}}^{-1} M$ is called homogeneous localized to M in P. and denoted by $M_{P H}$.

Corollary 6. Let $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ be a graded duo-ring, P be a prime ideal of A and $S_{P_{H}}$ be the set of all homogeneous regular elements of $A \backslash P$, then the relation
$S_{P_{H}}^{-1}(-): G_{r}(A-M o d) \longrightarrow A_{P H}-M o d$ which that for any graded left $A-\operatorname{module} M$ we correspond $M_{P H}$ and for all graded morphism of degree $k \in \mathbb{Z}$ of graded left A-modules $f: M \longrightarrow N$ we correspond $S_{P_{H}}^{-1}(f)$ of degree $k \in \mathbb{Z}$ is additively exact covariant functor.

Proof. It is enough to note that $\overline{S_{P_{H}}}=S_{P_{H}}$ since the corollary 2.

4. Localization of complex in $\operatorname{COMP}\left(G_{r}(A-M o d)\right)$ over a duo-ring

Proposition 13. Let $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ be a graded ring, $M=\bigoplus_{n \in \mathbb{Z}} M_{n}$ and $N=\bigoplus_{n \in \mathbb{Z}} N_{n}$ are two graded left A-module $f: M \longrightarrow N$ is a graded morphism of degree $k \in \mathbb{Z}$ of a graded left A-modules, then for all $n \in \mathbb{Z}$

$$
f^{k}(n): M(n) \longrightarrow N(n)
$$

$$
m \quad \longmapsto \quad f^{k}(n)(m)=f(m)
$$

is graded morphism of degree $k \in \mathbb{Z}$ of graded left A-modules.
Proof. We have $f: M \longrightarrow N$ is graded morphism of degree $k \in \mathbb{Z}$ of graded left A-modules, and $M(n)$ is a sub-module of graded left A-module M then let $m \in M(n)$, so

$$
m=\sum_{i \in \mathbb{Z}} m_{i+n} \Longrightarrow f^{k}(n)(m)=f(m)=f\left(\sum_{i \in \mathbb{Z}} m_{i+n}\right)=\sum_{i \in \mathbb{Z}} f\left(m_{i+n}\right)
$$

or $f\left(m_{i+n}\right) \in N_{i+n+k}=(N(n))_{i+k}$ thus f is graded morphism of degree $k \in \mathbb{Z}$ of a graded left A-modules.

Corollary 7. Let $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ be a graded ring, $M=\bigoplus_{n \in \mathbb{Z}} M_{n}$ and $N=\bigoplus_{n \in \mathbb{Z}} N_{n}$ are two graded left A-module $f: M \longrightarrow N$ is a graded morphism of degree $k \in \mathbb{Z}$ of a graded left A-modules, then $f: M \longrightarrow N(k)$ is graded morphism of graded left A-modules.

Proof. We have $f: M \longrightarrow N$ is graded morphism of degree $k \in \mathbb{Z}$ of graded left A-modules, and $N(k)$ is a sub-module of graded left A-module N then let $m \in M$, so

$$
m=\sum_{i \in \mathbb{Z}} m_{i} \Longrightarrow f(m)=f\left(\sum_{i \in \mathbb{Z}} m_{i}\right)=\sum_{i \in \mathbb{Z}} f\left(m_{i}\right)
$$

Or $f\left(m_{i}\right) \in N_{i+k}=(N(k))_{i}$ thus f is graded morphism of a graded left A-modules.

Theorem 5. Let A be a graded ring and $G_{r}(A-M o d)$ the category of a graded left A-modules, then for all $n \in \mathbb{Z}$ the relation $(-)(n): G_{r}(A-M o d) \longrightarrow G_{r}(A-M o d)$ which that for any $M \in G_{r}(A-M o d)$ we made to correspond $M(n)$ and for all graded morphism of degree $k \in \mathbb{Z}$ of a graded left A-modules $f: M \longrightarrow N$ we correspond $f^{k}(n)$ is a additively exact covariant functor.

Proof. Let $f: M \longrightarrow N$ be a graded morphism of degree $k \in \mathbb{Z}$ of a graded left A-modules, we denote by $(-)(n)(f)=f^{k}(n)$ the morphism of left A-modules of $M(n)$ to $N(n)$ thus $(-)(n)(M)=M(n)$ is in $A-M o d$, furthermore $M(n)$ and $N(n)$ are both graded left A-module then $M(n), N(n) \in G_{r}(A-M o d)$. Thus $(-)(n): M(n) \longrightarrow N(n)$ has a sense.
(i) Let $f: M \longrightarrow N$ is graded morphism of degree $k \in \mathbb{Z}$ of graded left A-modules, then

$$
\begin{gathered}
(-)(n)(f): M(n) \longrightarrow N(n) \\
f^{k}(n): M(n) \longrightarrow N(n) \\
m \longmapsto f^{k}(n)(m)=f(m)
\end{gathered}
$$

is a graded morphism of a graded left A-modules. Furthermore

$$
(-)(n)(g \circ f)(m)=(g \circ f)^{k}(n)(m)=(g \circ f)(m)=g[f(m)]=g\left[f^{k}(n)(m)\right]
$$

A. O. Chbih, M. B. Maaouia, M. Sanghare / Eur. J. Pure Appl. Math, 16 (3) (2023), 1913-1939 1926

$$
=g^{k}(n)\left[f^{k}(n)(m)\right]=\left(g^{k}(n) \circ f^{k}(n)\right)(m)=(-)(n)(g) \circ(-)(n)(f)(m)
$$

So

$$
(-)(n)(g \circ f)(m)=(-)(n)(g) \circ(-)(n)(f)(m) \forall m \in M(n)
$$

Thus

$$
(-)(n)(g \circ f)=(-)(n)(g) \circ(-)(n)(f)
$$

On the other hand

$$
\begin{aligned}
&(-)(n)\left(1_{M(n)}\right): M(n) \longrightarrow M(n) \\
& 1_{M}(n): M(n) \longrightarrow M(n) \\
& m \mapsto 1_{M(n)}(n)(m)=1_{M(n)}(m)=m=1_{(-)(n)(M)}(m)
\end{aligned}
$$

so $(-)(n)\left(1_{M(n)}\right)=1_{(-)(n)(M(n))}, \forall m \in M(n)$, so $(-)(n)$ is a functor of $G_{r}(A-M o d)$ to $G_{r}(A-M o d)$.
Thus $(-)(n): G_{r}(A-M o d) \longrightarrow G_{r}(A-M o d)$ is a functor covariant.
Let $m \in M$ be homogeneous of degree d, then $(-)(n)(f)(m)=f^{k}(n)(m)=f(m)$ is of degree $k+n$ thus $(-)(n)$ is a additively exact covariant functor of degree $k \in \mathbb{Z}$.

Proposition 14. Let $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ be a graded ring and $M=\bigoplus_{n \in \mathbb{Z}} M_{n}$ be a graded left A-module, then we have the following associate complex sequence M_{*} of a graded A-module $M=\bigoplus_{n \in \mathbb{Z}} M_{n}:$

$$
M_{*}: \cdots \rightarrow M(n+1) \xrightarrow{d_{n+1}} M(n) \xrightarrow{d_{n}} M(n-1) \rightarrow \cdots
$$

with $M(n)=\bigoplus_{k \in \mathbb{Z}} M_{n+k}$ and

$$
\begin{gathered}
d_{n}: M(n) \longrightarrow M(n-1) \\
x=y+z \longmapsto y
\end{gathered}
$$

with $(y, z) \in M_{n} \times M(n+1)$.
Proof. We have $M(n)=\bigoplus_{k \in \mathbb{Z}} M_{n+k}=\bigoplus_{k \geq n} M_{k}=M_{n} \bigoplus M_{n+1}$ and

$$
M(n-1)=M_{n-1} \bigoplus M(n)=M_{n-1} \bigoplus M_{n} \bigoplus M(n+1)
$$

Let $x \in M(n)$, then it is exist a unique $(y, z) \in M_{n} \times M(n+1)$ such that $x=y+z$. Put

$$
\begin{gathered}
d_{n}: M(n) \longrightarrow M(n-1) \\
x=y+z \longmapsto y,
\end{gathered}
$$

A. O. Chbih, M. B. Maaouia, M. Sanghare / Eur. J. Pure Appl. Math, 16 (3) (2023), 1913-1939 1927 so $\operatorname{Im}\left(d_{n}\right)=M_{n}$; On the other hand

$$
\begin{gathered}
d_{n-1}: M(n-1) \longrightarrow M(n-2) \\
w=u+v \longmapsto v
\end{gathered}
$$

with $(u, v) \in M_{n-1} \times M(n)$, so $\operatorname{ker}\left(d_{n-1}\right)=M(n)$ so $\operatorname{Im}\left(d_{n}\right) \subset \operatorname{ker}\left(d_{n-1}\right)$, so

$$
d_{n-1} \circ d_{n}=0
$$

,thus

$$
M_{*}: \cdots \rightarrow M(n+1) \xrightarrow{d_{n+1}} M(n) \xrightarrow{d_{n}} M(n-1) \rightarrow \cdots
$$

is a complex sequence.
Proposition 15. Let $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ be a graded ring, $M=\bigoplus_{n \in \mathbb{Z}} M_{n}, N=\bigoplus_{n \in \mathbb{Z}} N_{n}$ are two graded left A-modules and $f: M=\bigoplus_{n \in \mathbb{Z}} M_{n} \longrightarrow N=\bigoplus_{n \in \mathbb{Z}} N_{n}$ is a graded morphism of degree $k \in \mathbb{Z}$ of a graded A-modules, then we have the following associate complex f_{*}^{k} of graded morphism $f: M=\bigoplus_{n \in \mathbb{Z}} M_{n} \longrightarrow N=\bigoplus_{n \in \mathbb{Z}} N_{n}$ of a graded A - modules :

Proof. Prove that for all $n \in \mathbb{Z}$,

$$
f^{k}(n) \circ d_{n+1}=d_{n+1+k}^{\prime} \circ f^{k}(n+1)
$$

Let $x \in M(n+1)$, then there exist the unique couple $(y, z) \in M_{n+1} \times M(n+2)$ such that $x=y+z$, so

$$
\left(f^{k}(n) \circ d_{n+1}\right)(x)=f^{k}(n)\left[d_{n+1}(x)\right]=f\left[d_{n+1}(x)\right]=f[y]=f(y)
$$

and
$\left(d_{n+1+k}^{\prime} \circ f^{k}(n+1)\right)(x)=d_{n+1+k}^{\prime}\left[f^{k}(n+1)(x)\right]=d_{n+1+k}^{\prime}[f(x)]=d_{n+1+k}^{\prime}[f(y+z)]=$ $d_{n+1+k}^{\prime}[f(y)+f(z)]=f(y)$,
because $f(y) \in N_{n+1+k}$ and $f(z) \in N(n+2+k)$,

$$
\Longrightarrow\left(f^{k}(n) \circ d_{n+1}\right)(x)=\left(d_{n+1+k}^{\prime} \circ f^{k}(n+1)\right)(x), \quad \forall x \in M(n+1),
$$

so

$$
f^{k}(n) \circ d_{n+1}=d_{n+1+k}^{\prime} \circ f^{k}(n+1)
$$

thus f_{*}^{k} is a complex chain.

Theorem 6. Let $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ be a graded ring, then the following information:
(i) The objets are the associate complex sequences of a graded left A-modules;
(ii) The morphisms are the associate complex chains of a graded morphism of a graded left A-modules.
formed a category called the category of associate complex of a graded left A-modules and denoted by $\operatorname{COMP}\left(G_{r}(A-M o d)\right)$.

Proof. Let M_{*} and N_{*} two objets of $\operatorname{COMP}\left(G_{r}(A-M o d)\right)$,then:
(i) $\operatorname{Hom}_{\operatorname{COMP(G}\left(G_{r}(A-M o d)\right)}\left(M_{*}, N_{*}\right)=\left\{\right.$ the set of associate complex chains f_{*}^{k}, of M_{*} to $\left.N_{*}\right\}$;
(ii) The morphisms are the associate complex chains of a graded morphism of degrees k of a graded left A-modules. then we have :
(a) $\forall f_{*}^{k} \in \operatorname{Hom}_{\operatorname{COMP}\left(G_{r}(A-M o d)\right)}\left(M_{*}, N_{*}\right) ; \forall g_{*}^{r} \in \operatorname{Hom}_{\operatorname{COMP}\left(G_{r}(A-M o d)\right)}\left(N_{*}, P_{*}\right)$; $\forall h_{*}^{s} \in \operatorname{Hom}_{C O M P\left(G_{r}(A-M o d)\right)}\left(P_{*}, Q_{*}\right)$ on a :

So $\left(h_{*}^{s} \circ g_{*}^{r}\right) \circ f_{*}^{k}=h_{*}^{s} \circ\left(g_{*}^{r} \circ f_{*}^{k}\right)$;
(b) Let M_{*} the object of $\operatorname{COMP}\left(G_{r}(A-M o d)\right)$, we have:

$$
1_{M_{*}}: M_{*} \longrightarrow M_{*}
$$

$1_{M_{*}}$ verified $f_{*} \circ 1_{M_{*}}=f_{*} \quad \forall f_{*} \in \operatorname{Hom}_{C O M P\left(G_{r}(A-M o d)\right)}\left(M_{*}, N_{*}\right)$. Furthermore $1_{M_{*}} \circ g_{*}=g_{*} \quad \forall g_{*} \in \operatorname{Hom}_{C O M P\left(G_{r}(A-M o d)\right)}\left(N_{*}, M_{*}\right)$.
A. O. Chbih, M. B. Maaouia, M. Sanghare / Eur. J. Pure Appl. Math, 16 (3) (2023), 1913-1939 1929 Thus $\operatorname{COMP}\left(G_{r}(A-M o d)\right)$ is a category.

Proposition 16. Let $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ be a graded ring, $M=\bigoplus_{n \in \mathbb{Z}} M_{n}$ and $N=\bigoplus_{n \in \mathbb{Z}} N_{n}$ are two graded left A-modules, $f: M \longrightarrow N$ is a graded morphism of degree k and S be a multiplicatively closed subset satisfying the left conditions of Ore formed of homogeneous elements of A, then we have:
(i) The following complex sequence:

$$
\begin{aligned}
& S^{-1}\left(M_{*}\right): \cdots \longrightarrow S^{-1}(M(n+1)) \xrightarrow{S^{-1}\left(d_{n+1}\right)} S^{-1}(M(n)) \xrightarrow{S^{-1}\left(d_{n}\right)} \\
& S^{-1}(M(n-1)) \longrightarrow \cdots
\end{aligned}
$$

(ii) The following complex chain:

$$
\begin{aligned}
& S^{-1}\left(M_{*}\right): \cdots \longrightarrow S^{-1}(M(n+1)) \xrightarrow{S-1} \xrightarrow{\left(d_{n+1}\right)} S^{-1}(M(n)) \xrightarrow{S^{-1}\left(d_{n}\right)} S^{-1}(M(n-1)) \longrightarrow \cdots \\
& S^{-1}\left(f_{*}^{k}\right) \downarrow \quad S^{-1}\left(f^{k}(n+1)\right) \downarrow \quad S^{-1}\left(f^{k}(n)\right) \downarrow S^{-1}\left(d^{\prime} S^{-1}\left(f^{k}(n-1)\right) \downarrow\right. \\
& S^{-1}\left(N_{*}\right): \cdots \longrightarrow S^{-1}\left(N\left(n+S^{-1}\right)\right) \xrightarrow{\left(d^{\prime}{ }_{n+1+k}\right.} S^{-1}(N(n)) \xrightarrow{S^{-1}\left(d^{\prime}{ }_{n}+k\right)} S^{2}(N(n-1)) \longrightarrow \cdots
\end{aligned}
$$

Proof. As for all $n \in \mathbb{Z}, M_{*}$ and N_{*} are two complex sequences of graded left A-module, then $S^{-1}\left(M_{*}\right)$ and $S^{-1}\left(N_{*}\right)$ are two complex sequences of a graded left $S^{-1} A$-module.
Prove that for all $n \in \mathbb{Z}$,

$$
S^{-1}\left(f^{k}(n)\right) \circ S^{-1}\left(d_{n+1}\right)=S^{-1}\left(d_{n+1+k}^{\prime}\right) \circ S^{-1}\left(f^{k}(n+1)\right)
$$

Let $\frac{x}{s} \in S^{-1}(M(n+1))$, then it is exist a unique couple $\left(\frac{y}{t}, \frac{z}{r}\right) \in S^{-1} M_{n+1} \times S^{-1} M(n+2)$ such that $\frac{x}{s}=\frac{y}{t}+\frac{z}{r}$, so

$$
\left(S^{-1} f^{k}(n) \circ S^{-1} d_{n+1}\right)\left(\frac{x}{s}\right)=S^{-1} f^{k}(n)\left[S^{-1} d_{n+1}\left(\frac{x}{s}\right)\right]=S^{-1} f^{k}(n)\left[\frac{y}{t}\right]=S^{-1} f\left[\frac{y}{t}\right]=\frac{f(y)}{t}
$$

and

$$
\begin{aligned}
\left(S^{-1} d_{n+1+k}^{\prime} \circ S^{-1} f^{k}(n+1)\right)\left(\frac{x}{s}\right) & =S^{-1} d_{n+1+k}^{\prime}\left[S^{-1} f^{k}(n+1)\left(\frac{y}{t}+\frac{z}{r}\right)\right] \\
& =S^{-1} d_{n+1+k}^{\prime}\left[S^{-1} f\left(\frac{y}{t}+\frac{z}{r}\right)\right] \\
& =S^{-1} d_{n+1+k}^{\prime}\left[S^{-1} f\left(\frac{y}{t}\right)+S^{-1} f\left(\frac{z}{r}\right)\right] \\
& =S^{-1} f\left(\frac{y}{t}\right) \\
& =\frac{f(y)}{t}
\end{aligned}
$$ because $S^{-1} f\left(\frac{y}{t}\right) \in S^{-1} N_{n+1+k}$ and $S^{-1} f\left(\frac{z}{r}\right) \in S^{-1} N(n+2+k)$

$$
\Longrightarrow\left(S^{-1} d_{n+1+k}^{\prime} \circ S^{-1} f^{k}(n+1)\right)\left(\frac{x}{s}\right)=\left(S^{-1} f^{k}(n) \circ S^{-1} d_{n+1}\right)\left(\frac{x}{s}\right) \quad \forall \frac{x}{s} \in S^{-1} M(n+1)
$$

so

$$
\left.\left(S^{-1} d_{n+1+k}^{\prime} \circ S^{-1} f^{k}(n+1)\right)\right)=\left(S^{-1} f^{k}(n) \circ S^{-1} d_{n+1}\right)
$$

thus $S^{-1}\left(f_{*}^{k}\right)$ is a complex chain.
Corollary 8. Let $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ be a graded duo-ring, $M=\bigoplus_{n \in \mathbb{Z}} M_{n}$ and $N=\bigoplus_{n \in \mathbb{Z}} N_{n}$ are two graded left A-modules, $f: M \longrightarrow N$ is a graded morphism of degree k and S_{H} be a part formed of regulars homogeneous elements of A, then we have:
(i) The following complex sequence:

$$
\bar{S}_{H}^{-1}\left(M_{*}\right): \cdots \longrightarrow \bar{S}_{H}^{-1}(M(n+1)) \xrightarrow{\bar{S}_{H}^{-1}\left(d_{n+1}\right)} \bar{S}_{H}^{-1}(M(n)) \xrightarrow{\bar{S}_{H}^{-1}\left(d_{n}\right)} \bar{S}_{H}^{-1}(M(n-1)) \longrightarrow \cdots
$$

(ii) The following complex chain:

$$
\begin{aligned}
& \bar{S}_{H}^{-1}\left(M_{*}\right): \cdots \longrightarrow \bar{S}_{H}^{-1}(M(n+1))^{\bar{S}^{-1}} \xrightarrow{\left(d_{n+1}\right)} \bar{S}_{H}^{-1}(M(n)) \xrightarrow{\bar{S}_{H}^{-1}\left(d_{n}\right)} S_{H}^{-1}(M(n-1)) \longrightarrow \cdots \\
& \bar{S}_{H}^{-1}\left(f_{*}^{k}\right) \downarrow \quad \bar{S}_{H}^{-1}\left(f^{k}(n+1)\right) \downarrow \quad \bar{S}_{H}^{-1}\left(f^{k}(n)\right) \downarrow \quad \bar{S}_{H}^{-1}\left(f^{k}(n-1)\right) \downarrow \\
& \bar{S}_{H}^{-1}\left(N_{*}\right): \cdots \longrightarrow \bar{S}_{H}^{-1}\left(N\left(n+\bar{S}^{H}\right)\right) \xrightarrow{-1} \xrightarrow{\left(d^{\prime}{ }_{n+1+} S^{-1}\right.}{ }_{H}^{-1}(N(n))^{\bar{S}_{H}^{-1}\left(d^{\prime}{ }_{n}+\hbar^{2}\right)-1}(N(n-1)) \longrightarrow \cdots
\end{aligned}
$$

Proof. Since the proposition $6 \bar{S}_{H}$ is multiplicatively closed subset satisfying the left conditions of Ore formed of homogeneous elements of A, and the rest is similarly to the proof of the proposition 16 .

Proposition 17. Let $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ be a graded ring, $M=\bigoplus_{n \in \mathbb{Z}} M_{n}$ and $N=\bigoplus_{n \in \mathbb{Z}} N_{n}$ two graded left A-modules, $f: M \longrightarrow N$ is graded morphism of degree $k \in \mathbb{Z}$ and S be a multiplicatively closed subset satisfying the left conditions of Ore formed of homogeneous elements of A, then we have:
(i) The following complex sequence:

$$
\begin{aligned}
& B^{*}: \cdots \longrightarrow S^{-1} A \otimes(M(n+1)) \xrightarrow{S^{-1} A \otimes\left(d_{n+1}\right)} S^{-1} A \otimes(M(n)) \xrightarrow{S^{-1} A \otimes\left(d_{n}\right)} \\
& S^{-1} A \otimes(M(n-1)) \longrightarrow \cdots
\end{aligned}
$$

(ii) The following complex chain:
A. O. Chbih, M. B. Maaouia, M. Sanghare / Eur. J. Pure Appl. Math, 16 (3) (2023), 1913-1939 1931 With $B^{*}=S^{-1} A \otimes\left(M_{*}\right)$ and $D_{*}=S^{-1} A \bigotimes_{A}\left(N_{*}\right)$.

Proof. We have the functor $S^{-1}()$ and the functor $S^{-1} A \bigotimes_{A}()$ are isomorphs. On the other hand it suffices to prove that the following diagram is commutative

i.e. prove that for all $n \in \mathbb{Z}$ we have

$$
\lambda_{n} \circ S^{-1} f^{k}(n) \circ \gamma_{n} \circ S^{-1} A \bigotimes d_{n+1}=S^{-1} A \bigotimes d_{n+1+k}^{\prime} \circ \lambda_{n+1} \circ S^{-1} f^{k}(n+1) \circ \gamma_{n+1}
$$

or for all $n \in \mathbb{Z}$, we have $\lambda_{n} \circ S^{-1} f^{k}(n) \circ \gamma_{n}=1_{S^{-1} A} \otimes f^{k}(n)$.
Let $\frac{1}{s} \otimes m \in S^{-1} A \bigotimes_{A} M(n+1)$, then it is exist an unique couple $(x, y) \in M_{n+1} \times M(n+2)$ such that $m=x+y$ so

$$
\begin{gathered}
\lambda_{n} \circ S^{-1} f^{k}(n) \circ \gamma_{n} \circ S^{-1} A \bigotimes d_{n+1}\left[\frac{1}{s} \otimes m\right]=\lambda_{n} \circ S^{-1} f^{k}(n) \circ \gamma_{n} \circ S^{-1} A \bigotimes d_{n+1}\left[\frac{1}{s} \otimes(x+y)\right]= \\
\lambda_{n} \circ S^{-1} f^{k}(n) \circ \gamma_{n}\left[\frac{1}{s} \otimes x\right]=1_{S^{-1} A} \bigotimes f^{k}(n)\left[\frac{1}{s} \otimes x\right]=\frac{1}{s} \otimes f(x)
\end{gathered}
$$

On the other hand we have

$$
\begin{gathered}
S^{-1} A \bigotimes d_{n+1+k}^{\prime} \circ \lambda_{n+1} \circ S^{-1} f^{k}(n+1) \circ \gamma_{n+1}\left[\frac{1}{s} \otimes m\right]= \\
S^{-1} A \bigotimes{d^{\prime}}_{n+1+k} \circ \lambda_{n+1} \circ S^{-1} f^{k}(n) \circ \gamma_{n+1}\left[\frac{1}{s} \otimes(x+y)\right]= \\
S^{-1} A \bigotimes{d^{\prime}}_{n+1+k}\left[\frac{1}{s} \otimes f(x+y)\right]=\frac{1}{s} \otimes f(x)
\end{gathered}
$$

thus $S^{-1} A \otimes f_{*}^{k}$ is a complex the chain.

Corollary 9. Let $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ be a graded duo-ring, $M=\bigoplus_{n \in \mathbb{Z}} M_{n}$ and $N=\bigoplus_{n \in \mathbb{Z}} N_{n}$ two graded left A-modules, $f: M \longrightarrow N$ is graded morphism of degree $k \in \mathbb{Z}$ and S_{H} be a part formed of regulars homogeneous elements of A, then we have :
A. O. Chbih, M. B. Maaouia, M. Sanghare / Eur. J. Pure Appl. Math, 16 (3) (2023), 1913-1939 1932
(i) The following complex sequence:

$$
\begin{aligned}
& B^{*}: \cdots \longrightarrow \bar{S}_{H}^{-1} A \otimes(M(n+1)) \xrightarrow{\bar{S}_{H}^{-1} A \otimes\left(d_{n+1}\right)} \bar{S}_{H}^{-1} A \otimes(M(n)) \stackrel{\bar{S}_{H}^{-1} A \otimes\left(d_{n}\right)}{\longrightarrow} \\
& \bar{S}_{H}^{-1} A \otimes(M(n-1)) \longrightarrow \cdots
\end{aligned}
$$

(ii) The following complex chain:

With $B^{*}=\bar{S}_{H}^{-1} A \otimes\left(M_{*}\right)$ and $D_{*}=\bar{S}_{H}^{-1} A \otimes_{A}\left(N_{*}\right)$.
Proof.
it is sufficient to note that \bar{S}_{H} is a multiplicatively closed subset satisfying the left conditions of Ore formed of homogeneous elements of A.

Corollary 10. Let $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ be a graded duo-ring, $M=\bigoplus_{n \in \mathbb{Z}} M_{n}$ and $N=\bigoplus_{n \in \mathbb{Z}} N_{n}$ two graded left A-modules, $f: M \longrightarrow N$ is graded morphism of degree k and S_{H} be the set of all regulars homogeneous elements of A, then we have:
(i) The following complex sequence:

$$
B^{*}: \cdots \longrightarrow S^{-1} A \otimes(M(n+1)) \xrightarrow{S^{-1}} \xrightarrow{A \otimes\left(d_{n+1}\right)} S^{-1} A \otimes(M(n)){ }^{S^{-1} A \otimes\left(d_{n}\right)} S^{-1} A \otimes(M(n-1)) \longrightarrow \cdots
$$

(ii) The following complex chain:

With $B^{*}=S_{H}^{-1} A \otimes\left(M_{*}\right)$ and $D_{*}=S_{H}^{-1} A \otimes_{A}\left(N_{*}\right)$.
Proof. it is sufficient to note that $S_{H}=\bar{S}_{H}$.
Theorem 7. Let $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ be a graded ring and $G_{r}(A-M o d)$ the category of graded left A-modules, then the relation $C(-): G_{r}(A-M o d) \longrightarrow C O M P\left(G_{r}(A-M o d)\right)$ which that for all graded left A-module $M=\bigoplus_{n \in \mathbb{Z}} M_{n}$ of $G_{r}(A-M o d)$ we correspond the associate complex sequence M_{*} to a graded A-module $M=\bigoplus_{n \in \mathbb{Z}} M_{n}$ and for all graded morphism of graded left A-modules $f: M=\bigoplus_{n \in \mathbb{Z}} M_{n} \longrightarrow N=\bigoplus_{n \in \mathbb{Z}} N_{n}$ of degree k we correspond the associate complex chain f_{*}^{k} to a morphism of graded left $A-\operatorname{module} f: M=\bigoplus_{n \in \mathbb{Z}} M_{n} \longrightarrow$ $N=\bigoplus_{n \in \mathbb{Z}} N_{n}$ is exact additively covariant functor.

Proof. Let M, N two graded left A-modules and $f: M \longrightarrow N$ graded morphism of graded A-modules, we note that $C(M)=M_{*}$ (respectively $C(N)=N_{*}$) the associate complex sequence M_{*} (respectively N_{*}) to a graded A-module $M=\bigoplus_{n \in \mathbb{Z}} M_{n}$ (respectively to a graded A-module $\left.N=\bigoplus_{n \in \mathbb{Z}} N_{n}\right)$ so $M_{*}, N_{*} \in \operatorname{COMP}\left(G_{r}(A-M o d)\right)$.
So $C(f): M_{*} \longrightarrow N_{*}$ has a sense.
(i) Let $M \in G_{r}(A-M o d)$ then $C(M)=M_{*}$ is the associate complex sequence to a graded A-module $M=\bigoplus_{n \in \mathbb{Z}} M_{n}$ then $M_{*} \in \operatorname{COMP}\left(G_{r}(A-M o d)\right)$.
(ii) Let $f: M \longrightarrow N$ graded morphism of degree k of graded A-modules then :

$$
C(f)=f_{*}^{k}: M_{*} \longrightarrow N_{*}
$$

the associate complex chain to a graded morphism of degree k of graded left A-module. Furthermore

$$
C(g \circ f)=(g \circ f)_{*}^{k}=g[f]_{*}^{k}=g\left[f_{*}^{k}\right]_{*}^{k}=g_{*}^{k} \circ f_{*}^{k}=C(g) \circ C(f) .
$$

On other hand

$$
\begin{gathered}
C\left(1_{M(n)}\right): M(n)_{*} \longrightarrow M(n)_{*} \\
1_{M(n)_{*}}=1_{C(M)}
\end{gathered}
$$

Thus $C()$ is a covariant functor of $G_{r}(A-M o d)$ to $\operatorname{COMP}\left(G_{r}(A-M o d)\right)$.
Let

$$
0 \longrightarrow M \xrightarrow{f} N \xrightarrow{g} L \longrightarrow 0
$$

be the short exact sequence of graded left A-modules then we make the functor $C()$ then we have

is a short exact complex chain associate to short exact sequence of graded left A-modules then

$$
0 \longrightarrow M_{*} \xrightarrow{f_{x}^{k}} N_{*} \xrightarrow{g_{*}^{k}} L_{*} \longrightarrow 0
$$

is exact complex chain. Thus $C()$ is exact additively covariant functor of $G_{r}(A-M o d)$ to $\operatorname{COMP}\left(G_{r}(A-M o d)\right)$.

Theorem 8. Let $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ be a graded ring, S is a multiplicatively closed subset satisfying the left conditions of Ore formed of homogeneous elements of A and $G_{r}\left(S^{-1} A-\right.$ Mod) the category of graded left $S^{-1} A$-modules, then the relation $C_{H}(-): G_{r}\left(S^{-1} A-\right.$ Mod $) \longrightarrow \operatorname{COMP}\left(G_{r}\left(S^{-1} A-M o d\right)\right)$ which that for all graded left $S^{-1} A-$ module $S^{-1} M$ of $G_{r}\left(S^{-1} A-M o d\right)$ we correspond the associate complex sequence $\left(S^{-1} M\right)_{*}$ to a graded $S^{-1} A$-module $S^{-1} M$ and for all graded morphism of graded left $S^{-1} A$-modules $S^{-1} f$: $S^{-1} M \longrightarrow S^{-1} N$ of degree k we correspond the associate complex chain $\left(S^{-1} f\right)_{*}^{k}$ to a morphism of graded left $S^{-1} A$-module $S^{-1} f: S^{-1} M \longrightarrow S^{-1} N$ is additively exact covariant functor.

Proof. Similarly to the proof of theorem precedent 7
Theorem 9. Let $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ be a graded duo-ring, S_{H} is a part formed of regulars homogeneous elements of A and $G_{r}\left(\bar{S}_{H}^{-1} A-M o d\right)$ the category of graded left $\bar{S}_{H}^{-1} A$-modules, then the relation $C_{H}(-): G_{r}\left(\bar{S}_{H}^{-1} A-M o d\right) \longrightarrow \operatorname{COMP}\left(G_{r}\left(\bar{S}_{H}^{-1} A-M o d\right)\right)$ which that for all graded left $\bar{S}_{H}^{-1} A$-module $\bar{S}_{H}^{-1} M$ of $G_{r}\left(\bar{S}_{H}^{-1} A-M o d\right)$ we correspond the associate complex sequence $\left(\bar{S}_{H}^{-1} M\right)_{*}$ to a graded $\bar{S}_{H}^{-1} A$-module $\bar{S}_{H}^{-1} M$ and for all graded morphism of graded left $\bar{S}_{H}^{-1} A$-modules $\bar{S}_{H}^{-1} f: \bar{S}_{H}^{-1} M \longrightarrow \bar{S}_{H}^{-1} N$ of degree k we correspond the associate complex chain $\left(\bar{S}_{H}^{-1} f\right)_{*}^{k}$ to a morphism of graded left $\bar{S}_{H}^{-1} A-\operatorname{module} \bar{S}_{H}^{-1} f: \bar{S}_{H}^{-1} M \longrightarrow \bar{S}_{H}^{-1} N$ is additively exact covariant functor.

Proof. Similarly to the proof of theorem precedent 7
Theorem 10. Let $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ be a graded ring, S is a multiplicatively closed subset satisfying the left conditions of Ore formed of homogeneous elements of A and $G_{r}\left(S^{-1} A-\right.$ Mod) the category of graded left $S^{-1} A$-modules, then the relation $\left(C_{H} \circ S^{-1}\right)(-): G_{r}(A-$ $M o d) \longrightarrow C O M P\left(G_{r}\left(S^{-1} A-M o d\right)\right)$ which that for all graded left A-module M of $G_{r}(A-M o d)$ we correspond the associate complex sequence $\left(C_{H} \circ S^{-1}\right)(M)=\left(S^{-1} M\right)_{*}$ to a graded A-module M and for all graded morphism of graded left A-modules $f: M \longrightarrow N$ of degree k we correspond the associate complex chain $\left(C_{H} \circ S^{-1}\right)(f)=\left(S^{-1} f\right)_{*}^{k}$ to a morphism of graded left A-module $f: M \longrightarrow N$ is additively exact covariant functor.

Proof. Similarly to the proof of theorem precedent 7
Theorem 11. Let $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ be a graded duo-ring, S_{H} is a part formed of regulars homogeneous elements of A and $G_{r}\left(\bar{S}_{H}^{-1} A-M o d\right)$ the category of graded left $\bar{S}_{H}^{-1} A$-modules, then the relation $\left(C_{H} \circ \bar{S}_{H}^{-1}\right)(-): G_{r}(A-M o d) \longrightarrow C O M P\left(G_{r}\left(\bar{S}_{H}^{-1} A-M o d\right)\right)$ which that for all graded left A-module M of $G_{r}(A-M o d)$ we correspond the associate complex sequence $\left(C_{H} \circ \bar{S}_{H}^{-1}\right)(M)=\left(\bar{S}_{H}^{-1} M\right)_{*}$ to a graded $A-$ module M and for all graded morphism of graded left A-modules $f: M \longrightarrow N$ of degree k we correspond the associate complex chain $\left(C_{H} \circ \bar{S}_{H}^{-1}\right)(f)=\left(\bar{S}_{H}^{-1} f\right)_{*}^{k}$ to a morphism of graded left A-module $f: M \longrightarrow N$ is additively exact covariant functor.

Proof. Similarly to the proof of theorem precedent7
Lemma 1. Let $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ be a graded ring, $M=\bigoplus_{n \in \mathbb{Z}} M_{n}$ and a graded left $A-$ module then for all $n \in \mathbb{Z} H_{n}\left(M_{*}\right) \cong M(n+2)$.

Proof. Let $M_{*}: \cdots \rightarrow M(n+1) \xrightarrow{d_{n} 1} M(n) \xrightarrow{d_{n}} M(n-1) \rightarrow \cdots$ the complex sequence, then $\operatorname{ker}\left(d_{n}\right)=M(n+1)$ and $\operatorname{Im}\left(d_{n}\right)=M_{n}$ so
$H_{n}\left(M_{*}\right)=\operatorname{ker}\left(d_{n}\right) / \operatorname{Im}\left(d_{n+1}\right)=M(n+1) / M_{n+1}=\left(M_{n+1} \oplus M(n+2)\right) / M_{n+1} \cong M(n+2)$.

Theorem 12. Let $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ be a graded ring, we have the induced functor of
$H_{n}: \operatorname{COMP}\left(G_{r}(A-M o d)\right) \longrightarrow G_{r}(A-M o d)$ which that for all associate complex sequence M_{*} to a graded A-module $M=\bigoplus_{n \in \mathbb{Z}} M_{n}$ we correspond $H_{n}\left(M_{*}\right)=M(n+2)$ and for all associate complex chain f_{*}^{k} to a morphism of graded left A-module $f: M=$ $\bigoplus_{n \in \mathbb{Z}} M_{n} \longrightarrow N=\bigoplus_{n \in \mathbb{Z}} N_{n}$ we correspond $H_{n}\left(f_{*}\right)=f^{k}(n+2)$, is a covariant functor.

Theorem 13. Let $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ be a graded ring, For all $n \in \mathbb{Z}$ and for all short exact sequence

$$
0 \longrightarrow M \xrightarrow{f} N \xrightarrow{g} L \longrightarrow 0
$$

of a graded left A-modules of graded morphism of degree $k \in \mathbb{Z}$ we have the following long exact sequence
$\cdots \longrightarrow M(n+2) \xrightarrow{f^{k}(n+2)} N(n+2) \xrightarrow{g^{k}(n+2)} L(n+2) \xrightarrow{\delta_{n}} M(n+1) \xrightarrow{f^{k}(n+1)} N(n+1) \longrightarrow$
of a graded left A-modules of graded morphism of degree $k \in \mathbb{Z}$.
Furthermore, if
S is a multiplicatively closed subset satisfying the left conditions of Ore formed of homogeneous elements of A, we have the following longs exacts sequences of a graded left $S^{-1} A$-modules

$$
\begin{gathered}
\cdots S^{-1} M(n+2) \xrightarrow{S^{-1} f^{k}(n+2)} S^{-1} N(n+2) \xrightarrow{S^{-1} g^{k}(n+2)} S^{-1} L(n+2) \xrightarrow{S^{-1} \delta_{n}} S^{-1} M(n+1) \cdots \\
\cdots S^{-1} \otimes M(n+2) \xrightarrow{S^{-1} \otimes f^{k}(n+2)} S^{-1} \otimes N(n+2) \xrightarrow{S^{-1} \otimes g^{k}(n+2)} S^{-1} \otimes L(n+2) \xrightarrow{S^{-1} \otimes \delta_{n}} S^{-1} \otimes M(n+1) \cdots
\end{gathered}
$$

Proof. Let

$$
0 \longrightarrow M \xrightarrow{f} N \xrightarrow{g} L \longrightarrow 0
$$

be the short exact sequence of graded left A-modules then we make the functor $C()$ to the short exact sequence of graded A-modules then we have

$$
0 \longrightarrow M_{*} \xrightarrow{f_{*}^{k}} N_{*} \xrightarrow{g_{*}^{k}} L_{*} \longrightarrow 0
$$

the associate short exact complex to a of graded A-modules or since precedent theorem 12 , it exist a morphism of left A-module $H_{n}\left(L_{*}\right) \xrightarrow{\delta_{n}} H_{n-1}\left(M_{*}\right)$ such that we have the following long exact sequence of graded left A-modules

$$
\cdots \longrightarrow H_{n}\left(M_{*}\right) \xrightarrow{H_{n}\left(f_{*}^{k}\right)} H_{n}\left(N_{*}\right) \xrightarrow{H_{n}\left(g_{*}^{k}\right)} H_{n}\left(L_{*}\right) \xrightarrow{\delta_{n}} H_{n-1}\left(M_{*}\right) \xrightarrow{H_{n-1}\left(f_{*}^{k}\right)} H_{n-1}\left(N_{*}\right) \longrightarrow \cdots
$$

i.e
$\cdots \longrightarrow M(n+2) \xrightarrow{f^{k}(n+2)} N(n+2) \xrightarrow{g^{k}(n+2)} L(n+2) \xrightarrow{\delta_{n}} M(n+1) \xrightarrow{f^{k}(n+1)} N^{k}(n+1) \longrightarrow$
We have the functor $S^{-1}()$ is exact then we have
$\cdots S^{-1} M(n+2) \xrightarrow{S^{-1}} \xrightarrow{f^{k}(n+2)} S^{-1} N(n+2) \xrightarrow{S^{-1} g^{k}(n+2)} S^{-1} L(n+2) \xrightarrow{S^{-1} \delta_{n}} S^{-1} M(n+1) \cdots$
Or the functor $S^{-1}()$ and the functor $S^{-1} A \bigotimes_{A}$ are isomorph then we have also
$\cdots S^{-1} \otimes M(n+2) \xrightarrow{S^{-1} \otimes f^{k}(n+2)} S^{-1} \otimes N(n+2) \xrightarrow{S^{-1} \otimes g^{k}(n+2)} S^{-1} \otimes L(n+2) \xrightarrow{S^{-1} \otimes \delta_{n}} S^{-1} \otimes M(n+1) \cdots$

Proposition 18. Let $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ be a graded ring, For all $n \in \mathbb{Z}$ and for all short exact sequence

$$
0 \longrightarrow M \xrightarrow{f} N \xrightarrow{g} L \longrightarrow 0
$$

of a graded left A-modules of graded morphism of degree $k \in \mathbb{Z}$ we have the following long exact sequence
$\cdots \longrightarrow M(n+2) \xrightarrow{f^{k}(n+2)} N(n+2) \xrightarrow{g^{k}(n+2)} L(n+2) \xrightarrow{\delta_{n}} M(n+1) \xrightarrow{f^{k}(n+1)} N(n+1) \longrightarrow \cdots$
of a graded left A-modules of graded morphism of degree $k \in \mathbb{Z}$.
Furthermore, if S is a multiplicatively closed subset satisfying the left conditions of Ore formed of homogeneous elements of A, we have the following longs exacts sequences of a graded left $S^{-1} A$-modules

$$
\begin{aligned}
& \cdots S^{-1} M(n+2) \xrightarrow{S^{-1} \xrightarrow{f}(n+2)} S^{-1} N(n+2) \xrightarrow{S^{-1} g^{k}(n+2)} S^{-1} L(n+2) \xrightarrow{S^{-1} \delta_{n}} S^{-1} M(n+1) \cdots \\
& \cdots S^{-1} \otimes M(n+2) \xrightarrow{S^{-1} \otimes f^{k}(n+2)} S^{-1} \otimes N(n+2) \xrightarrow{S^{-1} \otimes g^{k}(n+2)} S^{-1} \otimes L(n+2) \xrightarrow{S^{-1} \otimes \delta_{n}} S^{-1} \otimes M(n+1) \cdots
\end{aligned}
$$

Proof. Similarly to the proof of theorem precedent13
Corollary 11. Let $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ be a graded duo-ring, For all $n \in \mathbb{Z}$ and for all short exact sequence

$$
0 \longrightarrow M \xrightarrow{f} N \xrightarrow{g} L \longrightarrow 0
$$

of a graded left A-modules we have the following long exact sequence
$\cdots \longrightarrow M(n+2) \xrightarrow{f^{k}(n+2)} N(n+2) \xrightarrow{g^{k}(n+2)} L(n+2) \xrightarrow{\delta_{n}} M(n+1) \xrightarrow{f^{k}(n+1)} N(n+1) \longrightarrow \cdots$
of a graded left A-modules.
Furthermore, if S_{H} is the part of regulars homogeneous elements of A, we have the following longs exacts sequences of a graded left $\bar{S}_{H}^{-1} A$-modules

$$
\begin{aligned}
& \cdots \bar{S}_{H}^{-1} M(n+2) \xrightarrow{\bar{S}_{H}^{-1} \xrightarrow{f^{k}(n+2)} \bar{S}_{H}^{-1} N(n+2) \xrightarrow{\bar{S}_{H}^{-1} \xrightarrow{g^{k}(n+2)}} \bar{S}_{H}^{-1} L(n+2) \xrightarrow{\bar{S}_{H}^{-1} \delta_{n}} \bar{S}_{H}^{-1} M(n+1) \cdots} \\
& \cdots \bar{S}_{H}^{-1} \otimes M(n+2) \xrightarrow{\bar{S}_{H}^{-1} \otimes f^{k}(n+2)} \bar{S}_{H}^{-1} \otimes N(n+2) \xrightarrow{\bar{S}_{H}^{-1} \otimes g^{k}(n+2)} \bar{S}_{H}^{-1} \otimes L(n+2) \xrightarrow{\bar{S}_{H}^{-1} \otimes \delta_{n}} \bar{S}_{H}^{-1} \otimes M(n+1) \cdots
\end{aligned}
$$

Proof. it is sufficient to note that \bar{S}_{H} is a multiplicatively closed subset satisfying the left conditions of Ore formed of homogeneous elements of A and according to proposition 18

Proposition 19. Let $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ be a graded duo-ring, $M=\bigoplus_{n \in \mathbb{Z}} M_{n}$ a graded left A-module and S_{H} be the part formed of regulars homogeneous elements of A, then for all $n \in \mathbb{Z}$

$$
\bar{S}_{H}^{-1}\left(H_{n}\left(M_{*}\right)\right) \cong \bar{S}_{H}^{-1}(A) \bigotimes M(n+2)
$$

Moreover $\bar{S}_{H}^{-1}\left(H_{n}\left(M_{*}\right)\right) \cong H_{n}\left(\left(\bar{S}_{H}^{-1}(M)_{*}\right)\right.$.
Proof. We have $H_{n}\left(M_{*}\right) \cong M(n+2)$ and as \bar{S}_{H} is a multiplicatively closed subset satisfying the left conditions of Ore formed of homogeneous elements of A then $\bar{S}_{H}^{-1}\left(H_{n}\left(M_{*}\right)\right) \cong$ $\bar{S}_{H}^{-1}(M(n+2))$ or $\bar{S}_{H}^{-1} A \bigotimes M(n) \cong \bar{S}_{H}^{-1} M(n)$ so

$$
\bar{S}_{H}^{-1}\left(H_{n}\left(M_{*}\right)\right) \cong \bar{S}_{H}^{-1} A \bigotimes(M(n+2))
$$

On other hand $H_{n}\left(\left(\bar{S}_{H}^{-1}(M)\right)_{*}\right) \cong\left(\bar{S}_{H}^{-1}(M)\right)(n+2) \cong \bar{S}_{H}^{-1}(M(n+2)) \cong \bar{S}_{H}^{-1}\left(H_{n}\left(M_{*}\right)\right)$ Thus

$$
\bar{S}_{H}^{-1}\left(H_{n}\left(M_{*}\right)\right) \cong H_{n}\left(\left(\bar{S}_{H}^{-1}(M)\right)_{*}\right)
$$

Corollary 12. Let $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ be a graded duo-ring, $M=\bigoplus_{n \in \mathbb{Z}} M_{n}$ and be a graded left A-modules and S_{H} be the set of all regular homogeneous of A, then for all $n \in \mathbb{Z}$

$$
S_{H}^{-1}\left(H_{n}\left(M_{*}\right)\right) \cong S_{H}^{-1}(A) \bigotimes M(n+2)
$$

Moreover $S_{H}^{-1}\left(H_{n}\left(M_{*}\right)\right) \cong H_{n}\left(\left(S_{H}^{-1}(M)_{*}\right)\right.$.
Proof. it is sufficient to note that $S_{H}=\bar{S}_{H}$.

5. Conclusion

In this article, we study the localization in the category $\operatorname{COMP}\left(G_{r}(A-M o d)\right)$ and we used the localization in the category $G_{r}(A-M o d)$, and we proof that for all $n \in \mathbb{Z}$ fixed and for all $M \in G_{r}(A-M o d)$ we have:

$$
\left.\bar{S}_{H}^{-1}\left(\left(H_{n} \circ C\right)(M)\right) \cong H_{n}\left(C_{H} \circ \bar{S}_{H}^{-1}\right)(M)\right)
$$

References

[1] O C Ahmed. Graduation et filtration des modules de fractions sur des anneaux non nécessairement commutatifs. PhD thesis, 2016.
[2] O C Ahmed, M F Maaouia, and M Sanghare. Graduation of module of fraction on a graded domain ring not necessarily commutative. International Journal of Algebra, 10:457-474, 2015.
[3] E C Dade. Group graded rings and modules. Math. Z., pages 241-262, 1980.
[4] D Faye, M F Maaouia, and M Sanghare. Localization in a duo-ring and polynomials algebra. Non-Associative Algebra and Operator Theory, Springer Proceedings in Mathematics and Statistics, Switzerland, 160:183-191, 2016.
[5] M F Maaouia. Localisation et enveloppe plate dans un duo-anneau. PhD thesis, 2003.
[6] M F Maaouia. Les anneaux et modules de fractions, enveloppe et couverture plate dans un duo-anneaux. PhD thesis, Faculté des Sciences et Techniques, UCAD, Dakar, thèse d'état, 2011.
[7] M F Maaouia and M Sanghare. Localisation dans les duo-anneaux. Afrika Mathematika, 20:163-179, 2009.
[8] M F Maaouia and M Sanghare. Module de fractions, sous-modules s-saturée et foncteur s^{-1}. International Journal of Algebra, 6, 2012.
[9] M Mendelson. Graded rings, modules and algebras. 1970.
[10] C Nastasescu. Strongly graded rings of finite groups. Comm. Algebra, 10:1033-1071, 1981.
[11] C Nastasescu and F V Oystaeyen. Graded ring theory. Mathematical Library 28, North Holland, Amesterdam,, 1982.

[^0]: *Corresponding author.
 DOI: https://doi.org/10.29020/nybg.ejpam.v16i3.4753

