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Abstract. In this research, we successfully demonstrated the use of the homotopy perturbation
method with Green’s function to find approximate solutions for the fuzzy system of boundary value
problems. Our results showcase the effectiveness of this method in providing accurate and reliable
solutions. The consistent way to reduce the size of the computation gives to reach the exact solution
is one of the best methods adopted to determine the behavior of the solution directly in order to
determine the approximate solution analytically, Finally, the problems that have been addressed
confirmed the validity of the method applied analytically in this research using comparison with
some numerical problems.
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1. Introduction

A multitude of dynamic processes can be represented mathematically as systems of
partial or ordinary differential equations. Differential equations have been widely rec-
ognized as a successful modeling approach. Meanwhile, fuzzy group theory serves as a
potent tool in handling unknown variables and processing fuzzy or subjective information
in mathematical models [1, 5, 9, 18]. It may be necessary to use such mathematical mod-
eling, and to use fuzzy differential equations (FDEs) that involve a system of elementary
value problems. Fuzzy systems of differential equations appear when modeling these prob-
lems are incomplete and questionable in the case of inaccurate data. Fuzzy differential
equation systems are applicable mathematical models [6]. Dynamic models of dynamic
systems with uncertainties or ambiguous models, represented by fuzzy differential equa-
tions, are widely utilized across a spectrum of fields, such as geometry and population
modeling. These models have proven to be versatile and applicable in a diverse range of
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applications, making them a valuable tool for data analysis and modeling [24].
In recent years, the homotopy perturbation method (HPM) has been studied and success-
fully applied by many engineers, scientists and researchers, and used to solve the integral
equations and differential equations. This HPM was introduced first by Dr. Ji Huan
He in 1998 [15, 16]. The HPM is a coupling of the homotopy method, a basic concept
of topology, and the classical perturbation technique. This coupling will provide with a
suitable way to obtain approximate or analytic solution for different problems arising in
various scientific fields [14]. The HPM boasts several advantages, including the ability to
obtain accurate approximate solutions with only a few iterations and a rapid convergence
of the solution series in many instances. This method has proven to be a valuable tool in
solving a wide range of problems, particularly in the realm of integral equations [20].
The integral equations can be used to describe a wide variety of problems in science and
engineering [3]. The HPM is a sophisticated and effective approach for solving system of
linear and nonlinear differential and integral equations [2]. A system of linear and non-
linear differential equations may also be solved using this approach due to the complexity
of finding exact solutions for nonlinear differential equations, any perturbative method
that meets certain criteria is deemed acceptable. The HPM offers an analytical solution
by utilizing the initial conditions and is noteworthy for its ability to produce highly accu-
rate approximate solutions with only a small number of terms required [4]. In most cases,
only approximate solutions, either numerical or analytical, can be obtained for nonlinear
problems. The numerous branches of science have a vast array of nonlinear problems for
which exact solutions cannot be found. As a result, numerous analytical and numerical
approximations have been studied and developed to tackle these complex equations. Thus,
alternative methods become crucial for solving these nonlinear equations effectively [14].
The concept of fuzziness has experienced a surge in popularity and application across
various fields since its inception, including learning theory, automata, decision-making
processes, algorithms, pattern classification, and linguistics. The idea behind fuzzy con-
cepts involves converting differential equations into differential inclusions and accepting
the solution as the α−cut of the fuzzy solution, leading to the transformation of the fuzzy
differential equation (FDE) into a equivalent fuzzy integral equation [6].
In the last years, the researchers Visuvasam et al. [23], Shanthi et al. [19], Vijayalakshmi
et al. [21] and Vijayalakshmi et al. [22] have applied HPM to solve the mathematical
models as (porous rotating disk electrodes, ECE reactions at rotating disk electrodes,
magnetohydrodynamic, etc.).
The main objective of the fuzzy HPM with Green’s function, is to develop a more effec-
tive and efficient method for solving linear and non-linear fuzzy system of boundary value
problems (FSBVPs)

2∑
i=0

ai (x) ỹ
(i)
1 (x, α) +

1∑
i=0

bi (x) ỹ
(i)
2 (x, α) +N1 [ỹ1 (x, α) , ỹ2 (x, α)] = f̃1 (x, α) ,

2∑
i=0

ci (x) ỹ
(i)
2 (x, α) +

1∑
i=0

di (x) ỹ
(i)
1 (x, α) +N2 [ỹ1 (x, α) , ỹ2 (x, α)] = f̃2 (x, α) ,

x ∈ [0, 1]

(1)
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with the boundary conditions

ỹ1 (0, α) = ỹ1 (1, α) = (0, 0) ,

ỹ2 (0, α) = ỹ2 (1, α) = (0, 0) ,
(2)

where ỹ1 (x, α) , ỹ2 (x, α) , f̃1 (x, α) , f̃2 (x, α) and ai (x) , bi (x) , ci (x) , di (x) for i = 0, 1, 2
are analytic functions, and we are seeking the solutions ỹ1 (x, α) , ỹ2 (x, α) satisfying Equa-
tion 1. We assume that for every f̃1 (x, α) , f̃2 (x, α) Equation 1 has one and only one
solution.

By combining the advantages of the HPM and Green’s function, this study aims to
provide a new approach that leverages the strengths of both methods to obtain accurate
approximate solutions for fuzzy ODEs. This research can help to deepen our understand-
ing of fuzzy system of ODEs and provide valuable insights into the development of new
techniques for solving these complex problems.

2. The fundamental concept of HPM

Now, we demonstrate the fundamental concept of the HPM [8, 13, 14], we assume
the following non-linear differential equation.

D (y)− g (r) = 0, r ∈ Ω (3)

with the condition

B

(
y,

∂y

∂n

)
= 0, r ∈ Γ (4)

where D is a general differential operator, which can be divided into linear parts L and N
nonlinear term of Equation 4, B is a boundary operator, g(r) is a known analytic function,
Γ is the boundary of the domain Ω. can be rewritten as

L(y) +N(y)− g(r) = 0. (5)

By the homotopy technique, we construct a homotopy v(r, p) : Ω × [0, 1] → R which
satisfies

H(v, p) = (−p)[L(v)− L(v0)] + p[A(v)− g(r)] = 0, p ∈ [0, 1], r ∈ Ω) (6)

or
H(v, p) = L(v)− L(v0) + pL(v0) + p[N(v)− g(r)] = 0, (7)

where p ∈ [0, 1] is an embedding parameter, v0 is an initial approximation of Equation 6
which satisfies the boundary conditions. Obviously, from Equation 7 we have

H(v, 0) = L(v)− L(v0) = 0, (8)

H(v, 1) = D(v)− g(r) = 0. (9)
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The changing process of p from zero to unity is just that of y(r, p) from y0(r) to y(r). In
topology, this is called deformation, and L(y)− L(v0), B(y)− f(r) are called homptopic.

In this paper, the authors will first use the imbedding parameter p as a “small pa-
rameter”, and assume that the solution of Equation 7 can be written as a power series in
p :

y =

∞∑
n=0

pnyn = y0 + py1 + p2y2 + · · · , (10)

and the nonlinear term Ny can be decomposed as

Ny =
∞∑
n=0

pnHn (y) , (11)

where the Hn are He’s polynomials of y0, y1, . . . , yn and are calculated by the definitional
formula [11]

Hn (y0, y1, . . . , yn) =
1

n!

∂n

∂pn

[
N

( ∞∑
i=0

piyi

)]
p=0

, n = 0, 1, 2, . . . .

Setting p = 1 results in the approximate solution of Equation 3

y = lim
p→1

∞∑
n=0

pnyn = y0 + y1 + y2 + y3 + · · · . (12)

The convergence of the series solution (10) is given in [12].

3. HPM with Green’s function

The Green’s function G(x, ξ) corresponding to linear operator
d2

dx2
ỹi (x, α) , i = 1, 2 in

Eq. (1) is

G(x, ξ) =

 C1 (ξ)x+ C2 (ξ) , 0 ≤ ξ ≤ x,

C3 (ξ)x+ C4 (ξ) , x ≤ ξ ≤ 1,
(13)

where x ̸= ξ, C1 (ξ) , C2 (ξ) , C3 (ξ) and C4 (ξ) are linearly independent solutions of
d2

dx2
ỹi (x, α) with a2 (x) = 1 and c2 (x) = 1. We follow three conditions to find the Green’s

function of the second-order BVP.

– G(x, ξ) is continuous at x = ξ :

[C1 (ξ)x+ C2 (ξ)]x=ξ = [C3 (ξ)x+ C4 (ξ)]x=ξ (14)

–
∂

∂x
G(x, ξ) is discontinuous at x = ξ :{

∂

∂x
[C1 (ξ)x+ C2 (ξ)]−

∂

∂x
[C3 (ξ)x+ C4 (ξ)]

}
x=ξ

= −1 (15)
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– G(x, ξ) satisfies the homogeneous boundary conditions (2):

[C1 (ξ)x+ C2 (ξ)]x=0 = 0, [C3 (ξ)x+ C4 (ξ)]x=1 = 0. (16)

By solving the above three equations (14)-(16) to find C1 (ξ) , C2 (ξ) , C3 (ξ) and C4 (ξ),
therefore, the Green’s function (13) of Eqs. (1) and (2) can be written as

G(x, ξ) =

 ξ (1− x) , 0 ≤ ξ ≤ x,

x (1− ξ) , x ≤ ξ ≤ 1.
(17)

Now, we costruct the HPM with Green’s function, we have

ỹ1 (x, α) = h̃1 (x, α)−
∫ 1
0 G (x, ξ) f̃1 (ξ, α) dξ

+p
∫ 1
0 G (x, ξ)

1∑
i=0

ai (ξ) ỹ
(i)
1 (ξ, α) dξ

+p
∫ 1
0 G (x, ξ)

1∑
i=0

bi (ξ) ỹ
(i)
2 (ξ, α) dξ

+p
∫ 1
0 G (x, ξ)N1 [ỹ1 (ξ, α) , ỹ2 (ξ, α)] dξ,

ỹ2 (x, α) = h̃2 (x, α)−
∫ 1
0 G (x, ξ) f̃2 (ξ, α) dξ

+p
∫ 1
0 G (x, ξ)

1∑
i=0

ci (ξ) ỹ
(i)
2 (ξ, α) dξ,

+p
∫ 1
0 G (x, ξ)

1∑
i=0

di (ξ) ỹ
(i)
1 (ξ, α) dξ

+p
∫ 1
0 G (x, ξ)N2 [ỹ1 (ξ, α) , ỹ2 (ξ, α)] dξ,

(18)

where h̃i (x, α) is the solution of y′′i (x, α) = 0, i = 1, 2 with the boundary conditions (2).
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Substituting Eqs. 10 and 11 into Equation 18, we obtain

∞∑
n=0

pnỹ1,n (x, α) = h̃1 (x, α)−
∫ 1
0 G (x, ξ) f̃1 (ξ, α) dξ

+p
∫ 1
0 G (x, ξ)

1∑
i=0

ai (ξ)
∞∑
n=0

pnỹ
(i)
1,n (ξ, α) dξ

+p
∫ 1
0 G (x, ξ)

1∑
i=0

bi (ξ)
∞∑
n=0

pnỹ
(i)
2,n (ξ, α) dξ

+p
∫ 1
0 G (x, ξ)

∞∑
n=0

pnH̃1,ndξ

ỹ2 (x, α) = h̃2 (x, α)−
∫ 1
0 G (x, ξ) f̃2 (ξ, α) dξ

+p
∫ 1
0 G (x, ξ)

1∑
i=0

ci (ξ)
∞∑
n=0

pnỹ
(i)
2,n (ξ, α) dξ,

+p
∫ 1
0 G (x, ξ)

1∑
i=0

di (ξ)
∞∑
n=0

pnỹ
(i)
1,n (ξ, α) dξ

+p
∫ 1
0 G (x, ξ)

∞∑
n=0

pnH̃2,ndξ.

(19)

Using the fuzzy HPM, according to Equation 19, the lower iterations (L) are then deter-
mined in the following recursive way:

p0 :

 y
1,0

(x, α) = h1 (x, α)−
∫ 1
0 G (x, ξ) f

1
(ξ, α) dξ,

y
2,0

(x, α) = h2 (x, α)−
∫ 1
0 G (x, ξ) f

2
(ξ, α) dξ,

pn :



y
1,n+1

(x, α) =
∫ 1
0 G (x, ξ)

1∑
i=0

ai (ξ) y
(i)
1,n (ξ, α) dξ,

+
∫ 1
0 G (x, ξ)

[
1∑

i=0
bi (ξ) y

(i)
2,n (ξ, α) +H1,n

]
dξ,

y
2,n+1

(x, α) =
∫ 1
0 G (x, ξ)

1∑
i=0

ci (ξ) y
(i)
2,n (ξ, α) dξ,

+
∫ 1
0 G (x, ξ)

[
1∑

i=0
di (ξ) y

(i)
1,n (ξ, α) +H2,n

]
dξ,

, n ≥ 1

(20)
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and the upper iterations (U) are

p0 :

{
y1,0 (x, α) = h1 (x, α)−

∫ 1
0 G (x, ξ) f1 (ξ, α) dξ,

y2,0 (x, α) = h2 (x, α)−
∫ 1
0 G (x, ξ) f2 (ξ, α) dξ,

pn :



y1,n+1 (x, α) =
∫ 1
0 G (x, ξ)

1∑
i=0

ai (ξ) y
(i)
1,n (ξ, α) dξ,

+
∫ 1
0 G (x, ξ)

[
1∑

i=0
bi (ξ) y

(i)
2,n (ξ, α) +H1,n

]
dξ,

y2,n+1 (x, α) =
∫ 1
0 G (x, ξ)

1∑
i=0

ci (ξ) y
(i)
2,n (ξ, α) dξ,

+
∫ 1
0 G (x, ξ)

[
1∑

i=0
di (ξ) y

(i)
1,n (ξ, α) +H2,n

]
dξ.

, n ≥ 1

(21)

By solving the system (20) and (21), we obtain the iterations ỹi,0 (x, α),
ỹi,1 (x, α) , . . . , ỹi,n (x, α) , i = 1, 2. Thus, the approximated solution in a series form is
given by

ỹi (x, α) = lim
p→1

∞∑
n=0

pnỹi,n (x, α) =

∞∑
n=0

ỹi,n (x, α) .

4. Basic Concepts

Definition 1. [10] A fuzzy number ũ : R → [0, 1] satisfying the properties:

(i) ũ is normal, if ũ (x0) = 1, x0 ∈ R.

(ii) ũ is fuzzy convex set if ũ (λx+ (1− λ) y) ≥ min {ũ (x) , ũ (y)}, ∀ x, y ∈ R, λ ∈ [0, 1] .

(iii) ũ is upper semi-continuous on R.

(iv) ũ (x),closure of ũ (x) x ∈ R and is called a compact set.

The set of all fuzzy numbers is denoted by RF . For 0 < α ≤ 1, denote [ũ]α =
{x ∈ R, ũ (x) ≥ α} and [ũ]0 = {x ∈ R, ũ (x) > 0}. Then, it is well-known that for any
α ∈ [0, 1] , [ũ]α is a bounded closed interval. A triangular fuzzy numbers are very popular
and denoted by A = (a1, a2, a3) and defined by

µA (x) =



0, x < a1

x− a1
a2−a1

, a1 ≤ x ≤ a2

a3 − x

a3 − a2
, a2 ≤ x ≤ a3

0, x > a3
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where a1, a3 > 0.

Definition 2. [10, 24] An arbitrary fuzzy number ũ in the parametric form is represented
by an ordered pair of functions

(
y (x, α) , y (x, α)

)
, 0 ≤ α ≤ 1; which satisfy the following

requirements .

(i) y (x, α) is a bounded left continuous non-decreasing function over [0, 1] .

(ii) y (x, α)is a bounded left continuous non-increasing function over [0, 1] .

(iii) y (x, α) ≤ y (x, α) , 0 ≤ α ≤ 1.

Definition 3. [24] For arbitrary fuzzy numbers ũ (x, α) = (u (x, α) , u (x, α)) and ṽ (x, α) =
(v (x, α) , v (x, α)) ,
we define the distance between ũ (x, α) and ṽ (x, α) by the quantity

D (ũ (x, α) , ṽ (x, α)) = sup
α∈[0,1]

max {|u (x, α)− v (x, α)| , |u (x, α)− v (x, α)|}

5. Applications

In this section, we demonstrate the exceptional precision and accuracy of the results
obtained through this method. By showcasing the solutions of two distinct problems.we
give a comparison the approximate solution by the (HPM with Green’s function) with the
exact solution given. Moreover, the absolute errors between them are defined as follows:

AEL =
∣∣∣y

i,E
(x, α)− y

i,n
(x, α)

∣∣∣
AEU =

∣∣yi,E (x, α)− yi,n (x, α)
∣∣ ,

i = 1, 2

n = 1, 2, . . .

where
y
i,E

(x, α) : Lower exact solution,

y
i,n

(x, α) : Lower approximate solution (HPM),

yi,E (x, α) : Upper exact solution,

yi,n (x, α) : Upper approximate solution (HPM).

The computations associated with the problems were performed using a Maple 18 package
with a precision of 20 digits.

Problem 1. We first consider the linear FSBVPs [7, 9, 17]:{
ỹ′′1 (x, α) + (2x− 1) ỹ′1 (x, α) + cos (πx) ỹ′2 (x, α) = f̃1 (x, α) ,

ỹ′′2 (x, α) + xỹ1 (x, α) = f̃2 (x, α) ,
(22)
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with the boundary conditions

ỹ1 (0, α) = ỹ1 (1, α) = (0, 0) ,

ỹ2 (0, α) = ỹ2 (1, α) = (0, 0) ,
(23)

where f̃1 (x, α) =
[
f
1
(x, α) , f1 (x, α)

]
and f̃2 (x, α) =

[
f
2
(x, α) , f2 (x, α)

]
are given by

f
1
(x, α) = −α sin (πx)π2 + [(2απ + α+ 1)x] cos (πx) ,

−
[
απ +

1

2
α+

1

2

]
cos (πx) ,

f1 (x, α) = (α− 2)π2 sin (πx) + [(4π − 2απ − 4α+ 6)x] cos (πx) ,

+ [απ + 2α− 2π − 3] cos (πx) ,

f
2
(x, α) = xα sin (πx) + α+ 1,

f2 (x, α) = (2− α)x sin (πx)− 4α+ 6.

(24)

The exact solutions of the FSBVPs (22) and (23) are

ỹ1,E (x, α) = [α sin (πx) , (2− α) sin (πx)] ,

ỹ2,E (x, α) =

[(
α

2
+

1

2

)(
x2 − x

)
, (3− 2α)

(
x2 − x

)]
.

Constructing the HPM with Green’s function, we have

ỹ1 (x, α) = h̃1 (x, α)−
∫ 1
0 G (x, ξ) f̃1 (ξ, α) dξ

+p
∫ 1
0 G (x, ξ) [(2ξ − 1) ỹ′1 (ξ, α) + cos (πx) ỹ′2 (ξ, α)] dξ,

ỹ2 (x, α) = h̃2 (x, α)−
∫ 1
0 G (x, ξ) f̃2 (ξ, α) dξ

+p
∫ 1
0 G (x, ξ) [ξỹ1 (ξ, α)] dξ,

(25)

where h̃i (x, α) is the solution of y′′i (x, α) = 0, i = 1, 2 with the boundary conditions (23)
and G(x, ξ) is the Green’s function given by (17). Substituting Equation 10 into Equation
25, we obtain

∞∑
n=0

pnỹ1,n (x, α) = h̃1 (x, α)−
∫ 1
0 G (x, ξ) f̃1 (ξ, α) dξ

+p
∫ 1
0 G (x, ξ)

[
(2ξ − 1)

∞∑
n=0

pnỹ′1,n (ξ, α) + cos (πx)
∞∑
n=0

pnỹ′2,n (ξ, α)

]
dξ,

∞∑
n=0

pnỹ2,n (x, α) = h̃2 (x, α)−
∫ 1
0 G (x, ξ) f̃2 (ξ, α) dξ

+p
∫ 1
0 G (x, ξ)

[
ξ

∞∑
n=0

pnỹ1,n (ξ, α)

]
dξ.

(26)
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Using the fuzzy HPM, according to Equation 26, the lower iterations (L) are then deter-
mined in the following recursive way:

p0 :

 y
1,0

(x, α) = h1 (x, α)−
∫ 1
0 G (x, ξ) f

1
(ξ, α) dξ,

y
2,0

(x, α) = h2 (x, α)−
∫ 1
0 G (x, ξ) f

2
(ξ, α) dξ,

pn :

 y
1,n+1

(x, α) =
∫ 1
0 G (x, ξ)

[
(2ξ − 1) y′

1,n
(ξ, α) + cos (πx) y′

2,n
(ξ, α)

]
dξ,

y
2,n+1

(x, α) =
∫ 1
0 G (x, ξ)

[
ξy

1,n
(ξ, α)

]
dξ,

(27)

and the upper iterations (U) are

p0 :

{
y1,0 (x, α) = h1 (x, α)−

∫ 1
0 G (x, ξ) f1 (ξ, α) dξ,

y2,0 (x, α) = h2 (x, α)−
∫ 1
0 G (x, ξ) f2 (ξ, α) dξ,

pn :

{
y1,n+1 (x, α) =

∫ 1
0 G (x, ξ)

[
(2ξ − 1) y′1,n (ξ, α) + cos (πx) y′2,n (ξ, α)

]
dξ,

y2,n+1 (x, α) =
∫ 1
0 G (x, ξ)

[
ξy1,n (ξ, α)

]
dξ.

(28)

By solving the system (27) and (28), we obtain the iterations ỹi,0 (x, α),
ỹi,1 (x, α) , . . . , ỹi,n (x, α) , i = 1, 2. Thus, the approximated solution in a series form is
given by

ỹi (x, α) =
5∑

n=0

ỹi,n (x, α) .

We compare the approximated solution using the HPM (n = 5) with the exact solution
and the error produced in Tables 1–4. Table 5 demonstrate the maximum errors on the
interval 0 ≤ x ≤ 1.
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Table 1: Comparison of the numerical results for y
1
(x, α) (Problem 1)

α x y
1,E

(x, α) y
1,5

(x, α) AEL

0.25 0.1 0.0772542 0.0772587 4.531E − 06
0.3 0.2022542 0.2022542 6.846E − 06
0.5 0.2500000 0.2500069 6.923E − 06
0.7 0.2022542 0.2022610 6.771E − 06
0.9 0.0772542 0.0772589 4.728E − 06

0.50 0.1 0.1545084 0.1545163 7.849E − 06
0.3 0.4045084 0.4045203 1.185E − 05
0.5 0.5000000 0.5000119 1.198E − 05
0.7 0.4045084 0.4045202 1.172E − 05
0.9 0.1545084 0.1545166 8.188E − 06

0.75 0.1 0.2317627 0.2317739 1.116E − 05
0.3 0.6067627 0.6067796 1.685E − 05
0.5 0.7500000 0.7500170 1.704E − 05
0.7 0.6067627 0.6067794 1.667E − 05
0.9 0.2317627 0.2317743 1.164E − 05

1.00 0.1 0.3090169 0.3090314 1.448E − 05
0.3 0.8090169 0.8090388 2.186E − 05
0.5 1.0000000 1.0000221 2.210E − 05
0.7 0.8090169 0.8090386 2.162E − 05
0.9 0.3090169 0.3090321 1.510E − 05

Table 2: Comparison of the numerical results for y1 (x, α) (Problem 1)

α x y1,E (x, α) y1,5 (x, α) AEU

0.25 0.1 0.5407797 0.5408069 2.716E − 05
0.3 1.4157797 1.4158207 4.101E − 05
0.5 1.75000000 1.7500414 4.147E − 05
0.7 1.4157797 1.4158203 4.056E − 05
0.9 0.5407797 0.5408080 2.834E − 05

0.50 0.1 0.4635254 0.4635484 2.294E − 05
0.3 1.2135254 1.2135601 3.463E − 05
0.5 1.5000000 1.5000350 3.501E − 05
0.7 1.2135254 1.2135597 3.425E − 05
0.9 0.4635254 0.4635494 2.393E − 05

0.75 0.1 0.3862712 0.3862899 1.871E − 05
0.3 1.0112712 1.0112994 2.824E − 05
0.5 1.2500000 1.2500285 2.855E − 05
0.7 1.0112712 1.0112991 2.793E − 05
0.9 0.3862712 0.3862907 1.952E − 05

1.00 0.1 0.3090169 0.3090314 1448E − 05
0.3 0.8090169 0.8090388 2.186E − 05
0.5 1.0000000 1.0000221 2.210E − 05
0.7 0.8090169 0.8090386 2.162E − 05
0.9 0.3090169 0.3090321 1.510E − 05
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Table 3: Comparison of the numerical results for y
2
(x, α) (Problem 1)

α x y
2,E

(x, α) y
2,5

(x, α) AEL

0.25 0.1 −0.056250 −0.0562509 9.101E − 07
0.3 −0.131250 −0.1312525 2.542E − 06
0.5 −0.156250 −0.1562534 3.486E − 06
0.7 −0.131250 −0.1312532 3.256E − 06
0.9 −0.056250 −0.0562514 1.452E − 06

0.50 0.1 −0.067500 −0.6750158 1.583E − 05
0.3 −0.157500 −0.1575044 4.423E − 06
0.5 −0.187500 −0.1875060 6.065E − 06
0.7 −0.157500 −.01575056 5.665E − 06
0.9 −0.067500 −0.0675025 2.527E − 06

0.75 0.1 −0.787500 −0.7875225 2.256E − 06
0.3 −0.183750 −0.1837563 6.304E − 06
0.5 −0.218750 −0.2187586 8.644E − 06
0.7 −0.183750 −0.1837580 8.074E − 06
0.9 −0.787500 −0.7875360 3.601E − 06

1.00 0.1 −0.900000 −0.9000292 2.929E − 06
0.3 −0.210000 −0.2100081 8.186E − 06
0.5 −0.250000 −0.2500112 1.122E − 05
0.7 −0.210000 −0.2100104 1.048E − 05
0.9 −0.900000 −0.9000467 4.675E − 06

Table 4: Comparison of the numerical results for y2 (x, α) (Problem 1)

α x y2,E (x, α) y2,5 (x, α) AEU

0.25 0.1 −0.2250 −0.2250054 5.048E − 06
0.3 −0.5250 −0.5250153 1.531E − 05
0.5 −0.6250 −0.6250210 2.100E − 05
0.7 −0.5250 −0.5250196 1.961E − 05
0.9 −0.2250 −0.2250087 8.750E − 06

0.50 0.1 −0.1800 −0.1800046 4.631E − 06
0.3 −0.3200 −0.3200090 9.056E − 06
0.5 −0.5000 −0.5000177 1.774E − 05
0.7 −0.4200 −.04200165 1.657E − 05
0.9 −0.1800 −0.1800073 7.392E − 06

0.75 0.1 −0.1350 −0.1350037 3.780E − 06
0.3 −0.3150 −0.3150105 1.056E − 05
0.5 −0.3750 −0.3750144 1.448E − 05
0.7 −0.3150 −0.3150135 1.352E − 05
0.9 −0.1350 −0.1350060 6.034E − 06

1.00 0.1 −0.9000 −0.9000292 2.929E − 06
0.3 −0.2100 −0.2100081 8.186E − 06
0.5 −0.2500 −0.2500112 1.122E − 05
0.7 −0.2100 −0.2100104 1.048E − 05
0.9 −0.9000 −0.9000467 4.675E − 06
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Table 5: Maximum errors (Problem 1)

ỹ1 (x, α) ỹ2 (x, α)
α n y

1
(x, α) y1 (x, α) y

2
(x, α) y2 (x, α)

0.25 5 6.957E − 06 4.167E − 05 3.546E − 06 2.136E − 05
0.50 5 1.204E − 05 3.519E − 05 6.169E − 06 1.804E − 05
0.75 5 1.712E − 05 2.870E − 05 8.793E − 06 1.473E − 05
1.00 5 2.221E − 05 2.221E − 05 1.141E − 05 1.141E − 05

In Figures 1–4, a very good agreement is shown between the exact solution
(
ỹi,E(x, 0.5),

i = 1, 2
)
with a continuous line and the approximate solution by the HPM with Green’s

function
(
ỹi,5(x, 0.5), i = 1, 2

)
with the symbol o.

We present the contour plot in 2D on the (x, α)-plane for the exact solutions
(
ỹi,E(x, 0.5),

i = 1, 2
)
with a continuous line and the approximate solution by the HPM with Green’s

function (ỹi,5(x, 0.5), i = 1, 2) with the symbol o in Figures 5–8.

Figure 1: Plot of y
1,E

(x, 0.5) and y
1,5

(x, 0.5).

Figure 2: Plot of y1,E(x, 0.5) and y1,5(x, 0.5).
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Figure 3: Plot of y
2,E

(x, 0.5) and y
2,5

(x, 0.5).

Figure 4: Plot of y2,E(x, 0.5) and y2,5(x, 0.5).

Figure 5: The contour plot in 2D (x, α)-plane for y
1,E

(x, α) and y
1,5

(x, α).
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Figure 6: The contour plot in 2D (x, α)-plane for y1,E(x, α) and y1,5(x, α).

Figure 7: The contour plot in 2D (x, α)-plane for y
2,E

(x, α) and y
2,5

(x, α).

Figure 8: The contour plot in 2D (x, α)-plane for y2,E(x, α) and y2,5(x, α).
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Problem 2 Now, we turn to a non-linear FSBVPs [7, 9, 17]:{
ỹ′′1 (x, α) + xỹ′1 (x, α) + cos (πx) ỹ′2 (x, α) = f̃1 (x, α) ,

ỹ′′2 (x, α) + xỹ′1 (x, α) + xy21 (x, α) = f̃2 (x, α) ,
(29)

with the boundary conditions

ỹ1 (0, α) = ỹ1 (1, α) = (0, 0) ,

ỹ2 (0, α) = ỹ2 (1, α) = (0, 0) ,
(30)

where f̃1 (x, α) =
[
f
1
(x, α) , f1 (x, α)

]
and f̃2 (x, α) =

[
f
2
(x, α) , f2 (x, α)

]
are given by

f
1
(x, α) = α2 sin (x) + (α2x2 − α2x+ 2α2) cos (x)

+(−α3x− x+
α3

2
+

1

2
) cos (πx) ,

f1 (x, α) = (3− 2α) sin (x) + (−2αx2 + 3x2 + 2αx− 3x− 4α+ 6) cos (x)

+(2α3x− 4x− α3 + 2) cos (πx) ,

f
2
(x, α) =

(
α4x3 − 2α4x2 + α4x

)
sin (x)2 + α2x sin(x)

+(α2x2 − α2x) cos (x)− α3 − 1,

f2 (x, α) = +
(
4α2 − 12α+ 9

)
x3 sin (x)2 + (−8α2 + 24α− 18)x2 sin (x)2

+
(
4α2 − 12α+ 9

)
x sin (x)2 + (−2α+ 3)x sin (x)

+(−2α+ 3)x2 cos (x) + (2α− 3)x cos (x)− 4 + 2α3.

(31)

The exact solutions of the FSBVPs (29) and (30) are

ỹ1,E (x, α) =
[
α2(x− 1) sin (x) , (3− 2α) (x− 1) sin (x)

]
,

ỹ2,E (x, α) =

[
(α3 + 1)

2

(
x− x2

)
,
(
2− α3

) (
x− x2

)]
.

Constructing the HPM with Green’s function, we have

ỹ1 (x, α) = h̃1 (x, α)−
∫ 1
0 G (x, ξ) f̃1 (ξ, α) dξ

+p
∫ 1
0 G (x, ξ) [ξỹ′1 (ξ, α) + cos (πx) ỹ′2 (ξ, α)] dξ,

ỹ2 (x, α) = h̃2 (x, α)−
∫ 1
0 G (x, ξ) f̃2 (ξ, α) dξ

+p
∫ 1
0 G (x, ξ)

[
ξỹ′1 (ξ, α) + ξỹ21 (ξ, α)

]
dξ,

(32)

where h̃i (x, α) is the solution of y′′i (x, α) = 0, i = 1, 2 with the boundary conditions (30)
and G(x, ξ) is the Green’s function given by (17). Substituting Eqs. (10) and (11) into
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Equation 32, we obtain

∞∑
n=0

pnỹ1,n (x, α) = h̃1 (x, α)−
∫ 1
0 G (x, ξ) f̃1 (ξ, α) dξ

+p
∫ 1
0 G (x, ξ)

[
ξ

∞∑
n=0

pnỹ′1,n (ξ, α) + cos (πx)
∞∑
n=0

pnỹ′2,n (ξ, α)

]
dξ,

∞∑
n=0

pnỹ2,n (x, α) = h̃2 (x, α)−
∫ 1
0 G (x, ξ) f̃2 (ξ, α) dξ

+p
∫ 1
0 G (x, ξ)

[
ξ

∞∑
n=0

pnỹ′1,n (ξ, α) + ξ
∞∑
n=0

pnH1,n

]
dξ.

(33)

Using the fuzzy HPM, according to Equation 33, the lower iterations (L) are then deter-
mined in the following recursive way:

p0 :

 y
1,0

(x, α) = h1 (x, α)−
∫ 1
0 G (x, ξ) f

1
(ξ, α) dξ,

y
2,0

(x, α) = h2 (x, α)−
∫ 1
0 G (x, ξ) f

2
(ξ, α) dξ,

pn :

 y
1,n+1

(x, α) =
∫
01G (x, ξ)

[
ξy′

1,n
(ξ, α) + cos (πx) y′

2,n
(ξ, α)

]
dξ,

y
2,n+1

(x, α) =
∫
01G (x, ξ)

[
ξy′

1,n
(ξ, α) + ξH1,n

]
dξ,

(34)

and the upper iterations (U) are

p0 :

{
y1,0 (x, α) = h1 (x, α)−

∫ 1
0 G (x, ξ) f1 (ξ, α) dξ,

y2,0 (x, α) = h2 (x, α)−
∫ 1
0 G (x, ξ) f2 (ξ, α) dξ,

pn :

{
y1,n+1 (x, α) =

∫ 1
0 G (x, ξ)

[
ξy′1,n (ξ, α) + cos (πx) y′2,n (ξ, α)

]
dξ,

y2,n+1 (x, α) =
∫ 1
0 G (x, ξ)

[
ξy′1,n (ξ, α) + ξH1,n

]
dξ.

(35)

where the nonlinear terms defined by the series

y2
1,n

(ξ, α) =
∑∞

n=0H1,n, y21,n (ξ, α) =
∑∞

n=0H1,n,

and the corresponding He’s polynomials
[
H1,n, H1,n

]
[11] are

H1,n =
∑∞

n=0 y1,iy1,n−i
, H1,n =

∑∞
n=0 y1,iy1,n−i, n ≥ i, n = 0, 1, 2, . . .

By solving the system (34) and (35), we obtain the iterations ỹi,0 (x, α),
ỹi,1 (x, α) , . . . , ỹi,n (x, α) , i = 1, 2. Thus, the approximated solution in a series form is
given by

ỹi (x, α) =
2∑

n=0

ỹi,n (x, α) .
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We compare the approximated solution using the HPM (n = 2) with the exact solution
and the error produced in Tables 6–9. Table 10 demonstrates the maximum errors on the
interval 0 ≤ x ≤ 1.

Table 6: Comparison of the numerical results for y
1
(x, α) (Problem 2)

α x y
1,E

(x, α) y
1,2

(x, α) AEL

0.25 0.1 −0.0056156 −0.0056463 3.067E − 05
0.3 −0.0129290 −0.0128439 8.503E − 05
0.5 −0.0149820 −0.0146152 3.667E − 04
0.7 −0.0120790 −0.0113873 6.917E − 04
0.9 −0.0048957 −0.0042341 6.615E − 04

0.50 0.1 −0.0224625 −0.0226306 1.681E − 04
0.3 −0.0517160 −0.0519550 2.389E − 04
0.5 −0.0599281 −0.0598771 5.100E − 05
0.7 −0.0483163 −0.0477882 5.280E − 03
0.9 −0.0195831 −0.0189384 6.447E − 04

0.75 0.1 −0.0505406 −0.0509607 4.200E − 04
0.3 −0.1163610 −0.1171638 8.027E − 04
0.5 −0.1348384 −0.1353070 4.685E − 04
0.7 −0.1087117 −0.1084163 2.953E − 04
0.9 −0.0440621 −0.0433940 6.680E − 04

1.00 0.1 −0.0898500 −0.0906715 8.214E − 04
0.3 −0.2068641 −0.2085212 1.657E − 03
0.5 −0.2397127 −0.2409320 1.219E − 03
0.7 −0.1932653 −0.1932705 5.257E − 06
0.9 −0.0783326 −0.0775769 7.557E − 04
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Table 7: Comparison of the numerical results for y1 (x, α) (Problem 2)

α x y1,E (x, α) y1,2 (x, α) AEU

0.25 0.1 −0.2246251 −0.2272738 2.648E − 03
0.3 −0.5171603 −0.5226018 5.441E − 03
0.5 −0.5992819 −0.6039739 4.691E − 03
0.7 −0.4831632 −0.4850771 1.913E − 03
0.9 −.01958317 −0.1952747 5.569E − 04

0.50 0.1 −0.1797001 −0.1816565 1.956E − 03
0.3 −0.4137282 −0.4176773 3.949E − 03
0.5 −0.4794255 −0.4825976 3.172E − 03
0.7 −0.3865306 −0.3873276 7.970E − 04
0.9 −0.1566653 −0.1556608 1.004E − 03

0.75 0.1 −0.1347751 −0.1361216 1.346E − 03
0.3 −0.3102962 −0.3129718 2.675E − 03
0.5 −0.3595691 −0.3615538 1.984E − 03
0.7 −0.2898979 −0.2900114 1.134E − 04
0.9 −0.1174990 −0.1163858 1.113E − 03

1.00 0.1 −0.0898500 −0.0906715 8.214E − 04
0.3 −0.2068641 −0.2085212 1.657E − 03
0.5 −0.2397127 −0.2409320 1.219E − 03
0.7 −0.1932653 −0.1932705 5.257E − 06
0.9 −0.0783326 −0.0775769 7.557E − 04

Table 8: Comparison of the numerical results for y
2
(x, α) (Problem 2)

α x y
2,E

(x, α) y
2,2

(x, α) AEL

0.25 0.1 0.0457031 0.0457084 5.327E − 06
0.3 0.1066406 0.1068146 1.740E − 04
0.5 0.1269531 0.1274189 4.657E − 04
0.7 0.1066406 0.1074269 7.862E − 04
0.9 0.0457031 0.0464363 7.332E − 04

0.50 0.1 0.0506250 0.0506059 1.900E − 05
0.3 0.1181250 0.1182502 1.252E − 04
0.5 0.1406250 0.1410804 4.554E − 04
0.7 0.1181250 0.1190405 9.155E − 04
0.9 0.0506250 0.0515624 9.374E − 04

0.75 0.1 0.0639843 0.0639516 3.277E − 05
0.3 0.1492968 0.1494366 1.397E − 04
0.5 0.1777343 0.1783339 5.995E − 04
0.7 0.1492968 0.1506143 1.317E − 03
0.9 0.0639843 0.0653802 1.395E − 03

1.00 0.1 0.0900000 0.0900165 1654E − 05
0.3 0.2100000 0.2103843 3843E − 04
0.5 0.2500000 0.2511554 1155E − 03
0.7 0.2100000 0.2122592 2259E − 03
0.9 0.0900000 0.0922510 2251E − 03
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Table 9: Comparison of the numerical results for y2 (x, α) (Problem 2)

α x y2,E (x, α) y2,2 (x, α) AEU

0.25 0.1 0.1785937 0.1793249 7.311E − 04
0.3 0.4167187 0.4195254 2.806E − 03
0.5 0.4960937 0.5014287 5.335E − 03
0.7 0.4167187 0.4243124 7.593E − 03
0.9 0.1785937 0.1846205 6.026E − 03

0.50 0.1 0.16875 0.1692397 4.897E − 04
0.3 0.39375 0.3958039 2.053E − 03
0.5 0.46875 0.4728440 4.094E − 03
0.7 0.39375 0.3998311 6.081E − 03
0.9 0.16875 0.1737862 5.036E − 03

0.75 0.1 0.1420312 0.1422721 2.408E − 04
0.3 0.3314062 0.3326319 1.225E − 03
0.5 0.3945312 0.3972166 2.685E − 03
0.7 0.3314062 0.3357163 4.310E − 03
0.9 0.1420312 0.1458354 3.804E − 03

1.00 0.1 0.0900000 0.0900165 1654E − 05
0.3 0.2100000 0.2103843 3843E − 04
0.5 0.2500000 0.2511554 1155E − 03
0.7 0.2100000 0.2122592 2259E − 03
0.9 0.0900000 0.0922510 2251E − 03

Table 10: Maximum errors (Problem 2)

ỹ1 (x, α) ỹ2 (x, α)
α n y

1
(x, α) y1 (x, α) y

2
(x, α) y2 (x, α)

0.25 2 7.879E − 04 5.445E − 03 8.800E − 04 7.809E − 03
0.50 2 7.074E − 04 3.949E − 03 1.084E − 03 6.395E − 03
0.75 2 8.027E − 04 2.675E − 03 1.595E − 03 4.694E − 03
1.00 2 1.657E − 03 1.657E − 03 2.639E − 03 2.639E − 03

In Figures 9–12, a very good agreement is shown between the exact solution
(
ỹi,E(x, 0.5),

i = 1, 2
)
with a continuous line and the approximate solution by the HPM with Green’s

function (ỹi,2(x, 0.5), i = 1, 2) with the symbol o.
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Figure 9: Plot of y
1,E

(x, 0.5) and y
1,2

(x, 0.5).

Figure 10: Plot of Plot of y1,E(x, 0.5) and y1,2(x, 0.5).

Figure 11: Plot of y
2,E

(x, 0.5) and y
2,2

(x, 0.5).
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Figure 12: Plot of y2,E(x, 0.5) and y2,2(x, 0.5).

6. Conclusions

The HPM with Green’s function has been used to solve linear and nonlinear fuzzy
system of BVPs in this paper. The HPM we proved to be highly effective in address-
ing problems we describe an efficient method for solving fuzzy system of boundary value
problem. We employed the HPM technique using Green functions to simplify the compu-
tation of the problem into linear and nonlinear fuzzy system of boundary value problem.
This method is computationally efficient, as demonstrated by illustrative in two prob-
lems. Moreover, we tested our approach through numerical simulations, and the results
show that our method effectively solve the problems at hand. Overall, our findings sug-
gest that the HPM approach with Green functions can be a valuable tool for addressing
similar problems in the future. The results obtained when (α = 1) are compatible with
those methods in the literature such as the Variational iteration method, Sinc-collocation
method, and Boundary value methods.
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