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Abstract. Evidence from micro-data shows that capital incomes are exceedingly volatile, which
makes up a disproportionately high contribution to the overall inequality in populations with
the heavy-tailed nature on the income distributions for many countries. The quintile share ratio
(QSR) is a recently introduced measure of income inequality, also forming part of the European
Laeken indicators and which cover four important dimensions of social inclusion (health, education,
employment and financial poverty). In 2001, the European Council decided that income inequality
in the European Union member states should be described using a number of indicators including
the QSR. Non-parametric estimation has been developed on the QSR index for heavy-tailed capital
incomes distributions. However, this method of estimation does not give satisfactory statistical
performances, since it suffers badly from under coverage, and so we cannot rely on the non-
parametric estimator. Hence, we need another estimator in the case of heavy-tailed populations.
This is the reason why we introduce, in this paper, a class of semi-parametric estimators of the
QSR index of economic inequality for heavy-tailed income distributions. Our methodology is based
on the extreme value theory, which offers adequate statistical results for such distributions. We
establish their asymptotic distribution, and through a simulation study, we illustrate their behavior
in terms of the absolute bias and the median squared error. The simulation results clearly show
that our estimators work well.
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1. Introduction

Inequality measurement is an attempt to make sense of comparisons of income distributions
in terms of criteria that can be derived from ethical principles, appealing mathematical
constructions or simple intuition. A serious approach to inequality measurement should
begin with a consideration of the entities to which the tools of distributional judgement
are applied. In the recent decades, the capital income is among the major incomes in a
big number of countries, there are many important studies devoted to the capital income,
mainly dealing with relationships between capital income taxation and welfare benefits,
and in particular with the incidence and efficiency effects of taxes on incomes from capital
in various scenarios of development sectors. For further details see, e.g., [1], [6], [20], [25],
[28], [40].

Measuring and analyzing incomes, risks and other random outcomes has been an active
and fruitful research field. Academics and governmental researchers have been developing
measures that would aid them in understanding income and loss distributions, their differ-
ences with respect to geographic regions and changes over time periods. It is a fascinating
area due to a number of reasons, one of them being the fact that different measures or
indices are needed to reveal different features of capital income distributions. The Gini
index has been widely used by economists and sociologists to measure economic inequality.
It has been also studied extensively and its properties documented in a number of papers
(see e.g. the survey papers [31], [43], ...). Also, [44] suggested the Zenga index of inequal-
ity measure, which aggregates the ratios of lower and upper conditional tail expectations,
and by so doing takes into account the relative nature of the poor and the rich for a given
population. It has been also explored from various points of view, see, eg. [22], [23], [24]
and [25]. Another trend, somewhat different from Zenga’s but equally interesting, which
is based on the Palma index, is considered in, e.g. [7].

The quintile share ratio (QSR) is a recently introduced measure of income inequality, also
forming part of the European Laeken indicators which cover four important dimensions
of social inclusion (Financial poverty, employment, health and education). In 2001, the
European Council decided that income inequality in the European Union (EU) member
states should be described using a number of indicators including the Quintile share ratio
index. Compared to the Gini index, relatively little research is available on the statistical
inference of the QSR index. [32] investigated the QSR and established its variance in a
complex sampling design framework. The authors upgraded on earlier work by [35] and
[36]. As is to be expected from its definition, the influence function of the QSR is un-
bounded. The form of that influence function has been also derived by [30]. Also, [29]
derived the asymptotic distribution of a non-parametric plug-in estimator for the QSR
index. However, this estimation suffers badly from under coverage, and so we cannot
rely on the non-parametric estimator. Hence, we need another estimator in the case of
heavy-tailed populations. This is the reason why we introduce, in this paper, a class of
semi-parametric estimators of the QSR index of inequality measure for heavy-tailed in-
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come distributions. Our consideration is based on the extreme value methodology, which
offers adequate statistical tools for such distributions.

This paper is organised as follows. In Section 2, we shall recall the definition of the
QSR index by presenting it in terms of upper and lower integrals. Also, we shall briefly
consider a non-parametric estimator of the QSR index which is obtained by replacing
the underlying cumulative distribution function (cdf) of the population by its empirical
counterpart. As this estimator does not exhibit, satisfactory performance in heavy-tailed
populations, we introduce, in Section 3, a class of semi-parametric estimators of the QSR
index of economic inequality for heavy-tailed income distributions. Through the extreme
value methodology, we establish their asymptotic distribution, and derived their improved
results in Section 4. Under a simulation study, we illustrate their behavior in terms of the
absolute bias and the median squared error in Section 5.

2. Definitions and empirical estimation

Suppose that we have at our disposal a sample (X1, · · · , Xn), n > 1 of independent and
identically distributed in a population represented by a non-negative random variable
X ≥ 0, with capital income distribution F (x) = P(X ≤ x) and finite mean µF := E[X].
We assume that F is continuous and strictly increasing. The (generalized) inverse Q :
[0, 1) 7→ [0,∞) of the income distribution F , known in the literature as the quantile
function, is defined for all s ∈ [0, 1) by the formula Q(s) = inf{x, F (x) ≥ s}.
Considering two different levels α and β, such that 0 < α < β < 1 as illustrated in [29],
the QSR index at levels α and β of the capital income X denoted by η(Q,α, β), is the
ratio of an upper integral U(Q, β) to a lower integral L(Q,α). More precisely, we have:

η(Q,α, β) :=
U(Q, β)

L(Q,α)
=

∫ 1
β Q(s)ds∫ α
0 Q(s)ds

. (1)

The QSR index is then given by: η(Q, 0.2, 0.8). In what follows, we will consider the more
general QSR index η(Q,α, β) and the results will follow directly from that.

The empirical estimator of the distribution F is defined by Fn(x) = n−1
∑n

i=1 I{Xi≤x} and
its corresponding empirical quantile function is expressed by Qn(s) = inf{x;Fn(x) ≥ s},
where IS is the indicator function of the set S. Denote by X1,n ≤ ... ≤ Xn,n the order
statistics associated with the sample (X1, . . . , Xn). Thus, Qn(s) is equal to the i-th order
statistic Xi,n for all s ∈ ((i − 1)/n, i/n], and for all i = 1, ..., n. For this, one natural
candidate for the empirical estimator of η(Q,α, β) is obtained by replacing in (1) the true
quantile Q(·) with the sample quantiles Qn(·). We arrive at the following ’traditional’
QSR index estimator (see, e.g., [29]):

η̂n(α, β) := η(Qn, α, β) =

∫ 1
β Qn(s)ds∫ α
0 Qn(s)ds

. (2)
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Clearly, the estimator η̂n(α, β) can be rewritten as:

η̂n(α, β) =

n−1
n∑

j=[nβ]+1

Xj,n


/n−1

[nα]∑
j=1

Xj,n

 , (3)

where [x] is the integer part of x. Note that the QSR estimator η̂n(α, β) is the ratio of a
U-statistic to a L-statistic. According to [29]), for a given capital income distribution F
with finite variance, the following result holds:

√
n
(
η̂n(α, β) − η(Q,α, β)

)
d→ N

(
0, σ2

η(α, β)
)
, as n → ∞,

where

σ2
η(α, β) := σ2(β, 1) + (η(Q,α, β))2 σ2(0, α) − 2η(Q,α, β)

∫ α

0
sdQ(s)

∫ 1

β
(1 − t)dQ(t),

with for 0 ≤ s < t ≤ 1 and

σ2(s, t) =

∫ t

s

∫ t

s
(min(u; v) − uv)dQ(u)dQ(v).

This result is violated when capital incomes have heavy-tailed distributions with infinite
variance, since the asymptotic variance σ2

η(α, β) is also infinite. For more detail; refer to
[29]).

However, micro-data show that capital incomes account for a large part of disparity in
populations. Furthermore, in some countries, capital incomes have been making up a
disproportionately high contribution to the overall inequality (see, e.g., [17]). The present
research has been motivated by the need for better understanding the distribution and
inequality of capital incomes, which in many countries appear to be heavy-tailed (see, eg.
[25]).

To this aim, we assume that the income distribution F is heavy-tailed. This is equivalent
to the fact that the survival function F := 1 − F associated to F is regularly varying at
infinity with index −1/γ < 0. More precisely,

F (x) = x−1/γℓF (x), x > 0, (4)

where ℓF is a slowly varying function at infinity, i.e for all x > 0, ℓF (tx)/ℓF (t) → 1, as
t → ∞. The relation (4) is also equivalent to Q(1 − s) = s−γℓQ(s), s ∈ (0, 1), where
ℓQ(zs)/ℓQ(s) → 1, as s → 0, for all z ∈ (0, 1). From (4), one can easily see that for all
x > 0 and z ∈ (0, 1):

lim
t→∞

F (tx)

F (t)
= x−1/γ and lim

s→0

Q(1 − zs)

Q(1 − s)
= z−γ . (5)
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The relation in (5) is namely called the first order regularly varying condition. The param-
eter γ is called the tail index (or the extreme value index) and governs the tail behavior,
with larger values indicating heavier tails. Its estimation has received a great attention
in the extreme value literature (see, e.g., [10]). This kind of models and its unidentified
parameters have been previously used by various authors such as [15], [25], [29] to assess
inequality measure of capital incomes.

Next, we also note that:

• When γ > 1, the QSR index η(Q,α, β) and thus its estimator η̂n(α, β) are not
defined.

• When 0 < γ ≤ 1/2 (the lower half of the unit interval), then E[X2+ϵ] < ∞ for some
ϵ > 0, and so we can use the available asymptotically normal estimator η̂n(α, β),
(see, [29]).

• When 1/2 < γ < 1 (The upper half of the unit interval), then the second moment is
infinite, and so the asymptotic normality of the estimator η̂n(α, β) is violated (see,
[29]).

The last situation motivate the need of a specific estimator of the QSR index for heavy-
tailed income distributions with infinite second moments. The class of heavy-tailed dis-
tributions (the so-called Pareto-type distributions) includes distributions such as Pareto,
Burr, Student, Lévy-stable, and log-gamma which are known to be appropriate models
in Extreme Value Theory for fitting large insurance claims, large fluctuations of prices,
log-returns, incomes of countries with very high economic inequality, etc. (see, e.g., [2];
[3]; [4]; [11] ; [13]; [14]; [15]; [25]; [34]; [39]; [41]).

To better understand the heavy-tailed distribution and the inequality of capital incomes,
which are governed by the unknown extreme value index γ, we make use, in this paper, of
the extreme value methodology and propose asymptotically normal estimators of the QSR
index η(Q,α, β). The following section concerns a class of semi-parametric estimators of
the QSR index η(Q,α, β) for heavy-tailed income distributions with infinite second order
moments.

3. Kernel estimation of the Quintile Share Ratio index

In the rest of this paper, we shall be concerned with heavy-tailed capital income distribu-
tions with index in the upper half of the unit interval. More precisely, we will deal with
the case where F satisfies

F (x) = x−1/γℓF (x), x > 0, 1/2 < γ < 1. (6)

We have mentioned above that the tail index γ controls the behavior of income distri-
bution F and its finite variance. In this spirit, we shall take into account the estimation
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of γ in the construction of our class of semi-parametric estimators for QSR index η(Q,α, β).

Now, Let k = k(n) be an intermediate sequence of integers, i.e., a sequence such that:

1 < k < n, k → ∞ and k/n → 0 as n → ∞. (7)

Using the same arguments as in [34], the QSR index can be decomposed for 0 < α < β <
1 − k/n as follows:

η(Q), α, β) :=
1

L(Q,α)

{∫ 1−k/n

β
Q(s)ds +

∫ 1

1−k/n
Q(s)ds

}
. (8)

As mentioned above, one can estimate the moderate quantile Q(s), β ≤ s ≤ 1 − k/n by
its empirical estimator Qn(s). But the case where 1 − k/n < s < 1 corresponds to high
quantiles i.e Q(s), s → 1 and it is not possible to use the empirical estimation Qn(s).
Under the first order regularly varying condition (5), we have Q(1−zs) ≈ z−γQ(1−s), s →
0. By setting zs = 1 − u and s = k/n, we obtain the following approximation:

Q(u) ≈ (n(1 − u)/k)−γQ(1 − k/n), u → 1. (9)

This leads to the following Weissman’s type estimator ([42]) of high quantile Q(u), u → 1:

Q
(K)
n,k (u) =

(n
k

(1 − u)
)−γ̂

(K)
n,k

Xn−k,n, (10)

with γ̂Kn,k, the kernel class of estimators for the tail index γ, introduced in [9] and given
by:

γ̂
(K)
n,k =

1

k

k∑
j=1

jK

(
j

k + 1

)
log

(
Xn−j+1,n

Xn−j,n

)
, (11)

where K is a kernel integrating to one. Note that in the particular case where K = K :=
I(0,1), the estimator γ̂

K
n,k corresponds to the well-known Hill’s estimator ([27]) of the tail

index γ defined by:

γ̂n,k := γ̂
(K)
n,k =

1

k

k∑
j=1

j log

(
Xn−j+1,n

Xn−j,n

)
. (12)

The estimator γ̂n,k is the most popular estimator of the tail index γ in the framework
of heavy-tailed distributions. The Weissman’s estimator ([42]) of high quantile is thus

defined as Q
(K)
n,k (u).

Next, replacing in (8), Q(s) by its empirical quantile estimator Qn(s), for β ≤ s ≤ 1−k/n

and by its high quantiles estimator Q
(K)
n,k (s), for 1−k/n < s < 1, we arrive at the following

kernel-type estimators of η(Q,α, β), 0 < α < β < 1 − k/n:

η̂
(K)
n,k (α, β) =

1

Ln(α)

{∫ 1−k/n

β
Qn(s)ds +

∫ 1

1−k/n
Q

(K)
n,k (s)ds

}
, (13)
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where Ln(α) = n−1

[nα]∑
j=1

Xj,n is the above empirical estimator of the lower integral L(α),

which can be rewritten as:

η̂
(K)
n,k (α, β) =

1

Ln(α)

{
n−k∑
j=1

[(
j

n
− β

)
+

−
(
j − 1

n
− β

)
+

]
Xj,n +

(k/n)

1 − γ̂
(K)
n,k

Xn−k,n

}
, (14)

where (s − t)+ is the classical notation for the positive part of (s − t). The estimator

η̂
(K)
n,k (α, β) generalizes the one proposed in [15], when we use a general kernel instead of K.

In the above definitions and in what follows we indicate by Q(·) and Qn(·) the quantile
function and its empirical counterpart (both functions are left-continuous).

Let us now state an asymptotic normality result for η̂
(K)

n,k (α, β). As it exhibit a bias, we
will introduce a bias reduction method to estimate the QSR index.

4. Main results

In extreme value analysis, one can easily achieve asymptotic normality results by impos-
ing a second order regularly varying condition (RU), (see, e.g., [10], Page 48), which is
necessary to quantify the speed of convergence in (5). This condition can be formulated in
different ways, below we state it in terms of the tail quantile functions U(x) = Q(1−1/x):
(RU): There exist a function a(x) → 0 as x → ∞ of constant sign for large values of x
and a second order parameter ρ < 0 such that, for any x > 0,

lim
t→∞

logU(tx) − logU(t) − γ log x

a(t)
=

xρ − 1

ρ
. (15)

Note that the condition (RU) implies that |a| is regularly varying with index ρ (see, e.g.,
[10];[18]; [33]). As an example of heavy-tailed distributions satisfying the second order
regularly varying condition (RU), we have the so called and frequently used Hall’s model
which is a class of cdf’s, such that U(t) = ctγ(1 + dρ−1a(t) + o(tρ)), as t → ∞, where
γ > 0, ρ ≤ 0, c > 0, and d ∈ R∗. This sub-class of heavy-tailed models contains the distri-
butions such as Pareto, Burr, Fréchet and Student-t. For statistical inference concerning
the second-order parameter ρ, we refer, for example, to [12] and [38].

Section 4.1 below gives the asymptotic normality of our proposed estimator η̂
(K)
n,k (α, β).

4.1. Asymptotic normality of the kernel estimator η̂
(K)
n,k (α, β).

To establish the asymptotic normality of the kernel-type estimator η̂
(K)
n,k (α, β), some clas-

sical assumptions about the kernel K are needed.
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Condition (K). Let K be a function defined on (0, 1] such that
(i) K(s) ≥ 0, whenever, 0 < s ≤ 1 and K(1) = 0; (ii) K(·) is differentiable, non increas-
ing and right continuous on (0, 1]; (iii) K and K ′ are bounded; (iv)

∫ 1
0 K(u)du = 1;

(v)
∫ 1
0 u−1/2K(u)du < 1.

These conditions are not restrictive but are satisfied by the usual weight functions used
in the literature, including the power kernel K(s) = (1 + τ)sτ I{0<s<1}, τ ≥ 0, and the
log-weight function K(s) = (− log s)τ/Γ(τ + 1)I{0<s<1}, {τ ≥ 1}. In particular, we note
that the classical Hill’s estimator in (12) can be viewed as a particular case of our power
kernel-type estimator corresponding to τ = 0 and K(s) := K(s) = I{0<s<1}.

Under the second order regularly varying assumption (RU) and the condition (K),
[13] showed that

γ̂
(K)
n,k

d
= γ + a(n/k)

∫ 1

0
s−ρK(s)ds + k−1/2 ξn,k + oP(k−1/2), (16)

where ξn,k is asymptotically a centred normal distribution with variance γ2
∫ 1
0 K2(s)ds.

In this spirit, we establish in Theorem 1 below the asymptotic normality of the class of

kernel type estimators η̂
(K)
n,k (α, β) for the QSR index.

Theorem 1. Let K be a kernel satisfying (K) and assume that the distribution F satisfies
(RU) with γ ∈ (1/2, 1). Then for any sequence of integers k = k(n) satisfying k → ∞,
k/n → 0 and

√
ka(n/k) → λ ∈ R as n → ∞, we have, for 0 < α < β < 1 − k/n,

√
n
(
η̂
(K)
n,k (α, β) − η(Q,α, β)

)
(k/n)1/2Xn−k,n

d→ N
(
λAB(η)

K (γ, ρ, α),AV(η)
K (γ, α)

)
,

where

AB(η)
K (γ, ρ, α) :=

1

(1 − γ)L(Q,α)

(
1

γ + ρ− 1
+

1

1 − γ

∫ 1

0
s−ρK(s)ds

)
and

AV(η)
K (γ, α) :=

γ2

(1 − γ)2 L2(Q,α)

(
1

2γ − 1
+

1

(1 − γ)2

∫ 1

0
K2(s)ds

)
.

Proof of Theorem 1.
Let Y1, ..., Yn be independent and identically distributed random variables from the unit
Pareto distribution G, defined as G(y) = 1 − y−1, y ≥ 1. For each n ≥ 1, let Y1,n ≤ ... ≤
Yn,n be the order statistics pertaining to Y1, ..., Yn. Clearly Xj,n

d
= U(Yj,n), j = 1, ..., n.

In order to use the results from [8], a probability space (Ω,A,P) is constructed carrying a
sequence ξ1, ξ2, ... of independent random variables uniformly distributed on (0, 1) and a
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sequence of Brownian bridges Bn(s), 0 ≤ s ≤ 1, n = 1, 2... such that for all 0 ≤ ν < 1/2
and λ1 > 0

sup
λ1/n≤ s≤1−λ1/n

|βn(s) − Bn(s)|
(s(1 − s))1/2−ν

= OP(n−ν), (17)

where βn is the resulting empirical quantile function denoted by:

βn(t) =
√
n (t− Vn(t))

with Vn(s) = ξj,n,
j−1
n < s ≤ j

n , j = 1, ..., n and Vn(0) = 0.

Before we establish the asymptotic results in Theorem ‘1, let’s introduce the following
notations. Next, from (8), (13), (14) and (42), the QSR index η(Q,α, β) and its biased

estimator η̂
(K)
n,k (α, β), 0 < α < β < 1 − k/n, can be respectively rewritten as:

η(Q,α, β) :=
Un,k,1(Q, β)

L(Q,α)
+

Un,k,2(Q)

L(Q,α)
,

and

η̂
(K)
n,k (α, β) :=

Un,k,1(Qn, β)

Ln(α)
+

Un,k,2

(
Q

(K)
n,k

)
Ln(α)

,

where Ln(α) :=
∫ α
0 Qn(s)ds = n−1

∑[nα]
j=1 Xj,n is the empirical estimator of the lower

integral L(Q,α) =
∫ α
0 Q(s)ds and the U -functional integrals are defined as:

Un,k,1(Q, t) :=

∫ 1−k/n

t
Q(s)ds, for 0 ≤ t < 1 − k/n

Un,k,2(Q) :=

∫ 1

1−k/n
Q(s)ds,

Un,k,1(Qn, t) :=

∫ 1−k/n

t
Qn(s)ds, for 0 ≤ t < 1 − k/n,

Un,k,2

(
Q

(K)
n,k

)
:=

∫ 1

1−k/n
Q

(K)
n,k (s)ds =

(k/n)Xn−k,n

1 − γ̂
(K)
n,k

.

with Qn(·) (respectively, Q
(K)
n,k is the empirical estimator (respectively, the Weissman’s

type estimator) of the quantile function Q(·) and k = k(n) is a sequence of integers satis-
fying k → ∞, k/n → 0 and as n → ∞.

To simplify the proof, we need the following preliminary results whose proofs are given
after this one.

Lemma 1. Assume that the distribution F satisfies the regularly varying condition (5)
with γ ∈ (1/2, 1). If k = k(n) is a sequence of integers satisfying k → ∞, k/n → 0, as
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n → ∞, then for 0 < α < 1 − k/n, we have:

√
n
(
Ln(α) − L(Q,α)

)
(k/n)1/2Xn−k,n

= oP(1), as n → ∞. (18)

Lemma 2. Assume that the distribution F satisfies the regularly varying condition (5)
with γ ∈ (1/2, 1). If k = k(n) is a sequence of integers satisfying k → ∞, k/n → 0, as
n → ∞, then for 0 < α < β < 1 − k/n, we have:

√
n

{
Un,k,1(Qn, β)

Ln(α)
−

Un,k,1(Q, β)

L(Q,α)

}
(k/n)1/2Xn−k,n

d
= Wn,α,1 + oP(1), (19)

as n → ∞, where

Wn,α,1 := −
∫ 1−k/n
0 Bn(s)dQ(s)

L(Q,α) (k/n)1/2Q(1 − k/n)
.

Lemma 3. Under the assumptions of Theorem 1, we have for 0 < α < 1 − k/n:

√
n

Un,k,2

(
Q

(K)
n,k

)
Ln(α)

−
Un,k,2(Q)

L(Q,α)


(k/n)1/2Xn−k,n

d
= λAB(η)

K (γ, ρ, α) + Wn,α,2 + Wn,α,3 + oP(1), (20)

as n → ∞, where AB(η)
K (γ, ρ, α) is defined in Theorem 1 and

Wn,α,2 := − γ

(1 − γ) L(Q,α)

√
n

k
Bn(1 − k/n),

Wn,α,3 :=
γ

(1 − γ)2 L(Q,α)

√
n

k

∫ 1

0
s−1Bn(1 − sk/n)d(sK(s)).

Now, coming back to the proof of the theorem, under assumptions, we have:

η̂
(K)
n,k (α, β) − η(Q,α, β) =

{
Un,k,1(Qn, β)

Ln(α)
−

Un,k,1(Q, β)

L(Q,α)

}

+

Un,k,2

(
Q

(K)
n,k

)
Ln(α)

−
Un,k,2(Q)

L(Q,α)


:= An,1 + An,2. (21)

For all values of n large enough, we get respectively from Lemma 2 and Lemma 3:

√
n An,1

(k/n)1/2Xn−k,n

d
= Wn,α,1 + oP(1),
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and √
nAn,2

(k/n)1/2Xn−k,n

d
= λAB(η)

K (γ, ρ, α) + Wn,α,2 + Wn,α,3 + oP(1).

This leads to
√
n
(
η̂
(K)
n,k (α, β) − η(Q,α, β)

)
(k/n)1/2Xn−k,n

d
= λAB(η)

K (γ, ρ, α) + Wn,α,1

+Wn,α,2 + Wn,α,3 + oP(1). (22)

Now, our next step is to compute the asymptotic variance of the process Wn,α,1+ Wn,α,2+
Wn,α,3. The computations quite direct and we give below the main arguments, i.e.

EW 2
n,α,1 =

∫ 1−k/n
0 (1 − t)

(∫ t
0 sdQ(s)

)
dQ(t)

L2(Q,α) k/nQ2(1 − k/n)
+

∫ 1−k/n
0 t

(∫ 1−k/n
t (1 − s)dQ(s)

)
dQ(t)

L2(Q,α) k/nQ2(1 − k/n)

=

∫ 1
k/n u

(∫ 1
u dQ(1 − v)

)
dQ(1 − u)

L2(Q,α) k/nQ2(1 − k/n)
−

∫ 1
k/n u

(∫ 1
u vdQ(1 − v)

)
dQ(1 − u)

L2(Q,α) k/nQ2(1 − k/n)

+

∫ 1
k/n

(∫ u
k/n vdQ(1 − v)

)
dQ(1 − u)

L2(Q,α) k/nQ2(1 − k/n)
−

∫ 1
k/n u

(∫ u
k/n vdQ(1 − v)

)
dQ(1 − u)

L2(Q,α) k/nQ2(1 − k/n)

=: Qn,α,1 + Qn,α,2 + Qn,α,3 + Qn,α,4.

Recall now that Q(1−s) = s−γℓQ(s) with ℓQ a slowly varying function at 0. By integration
by parts and using Lemma 6 in [13]

Qn,α,1 =
1

2L2(Q,α)

[
1 +

∫ 1
k/nQ

2(1 − u)du

k/nQ2(1 − k/n)

]
−→ γ

(2γ − 1)L2(Q,α)
.

Remark that d
(∫ 1

u vdQ(1 − v)
)

= −u dQ(1 − u) which implies that

Qn,α,2 = − 1

2L2(Q,α)

k

n

[∫ 1
k/n vdQ(1 − v)

k/nQ(1 − k/n)

]2
= o(1) (23)

this last result coming from the fact that, according to Proposition 1.3.6 in [5] for all ε > 0,
x−εℓ(x) −→ ∞ as x → 0. Thus, choosing 0 < ε < γ − 1

2 entails

0 ≤ s

(∫ 1
s td(Q(1 − t))

sQ(1 − s)

)2

= s

(
1 +

∫ 1
s t−γℓQ(t)dt

s1−γℓQ(s)

)2

≤ s
(
1 + Csγ−1−ε

)2
= O

(
s1+2[γ−1−ε]

)
= o(1)

where C is a suitable constant. Consequently, Qn,α,2 −→ 0. The two others terms, Qn,α,3

and Qn,α,4, can be treated similarly, leading to

Qn,α,3 = Qn,α,1 −→ γ

(2γ − 1)L2(Q,α)
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Qn,α,4 = Qn,α,2 −→ 0.

Finally,

EW 2
n,α,1 −→

2γ

(2γ − 1)L2(Q,α)
,

and direct computations now lead to

E(W 2
n,α,2) −→ γ2

(1 − γ)2 L2(Q,α)

EW 2
n,α,3 −→ γ2

(1 − γ)4 L2Q,α)

∫ 1

0
K2(s)ds by Corollary 1 in [13]

E(Wn,α,1Wn,α,2) −→ γ

(1 − γ)L2(Q,α)
by (23),

E(Wn,α,1Wn,α,3) = 0 and E(Wn,α,2Wn,α,3) = 0.

Combining all these results, Theorem 1 follows.

Proof of Lemma 1. Let t ∈ |0, 1 − k/n), we have:

√
n
(
Un,k,1(Qn, t) − Un,k,1(Q, t)

)
(k/n)1/2Xn−k,n

=

∫ 1−k/n
t

√
n
(
Qn(s) −Q(s)

)
ds

(k/n)1/2Xn−k,n
.

Since Q(1 − ·) is a regularly varying function at zero with index −γ, then from Theorem
2.4.1 in [10], Xn−k,n = Qn(1 − k/n) = Q(1 − k/n)(1 + oP(1)), as n → ∞. Using the
approach in (17) and the Vervaat process (see [45]), [34] showed in Statement 4.3, p. 8,
for all t ∈ (0; 1), that∫ 1−k/n

t

√
n(Qn(s) −Q(s))ds

(k/n)1/2Xn−k,n

d
= −

∫ 1−k/n
0 Bn(s)dQ(s)

(k/n)1/2Q(1 − k/n)
+ oP(1). (24)

Also note that this result in (24) [when t = 0] is equivalent to that of [37]. More precisely,
we have ∫ 1−k/n

0

√
n(Qn(s) −Q(s))ds

(k/n)1/2Xn−k,n

d
= −

∫ 1−k/n
0 Bn(s)dQ(s)

(k/n)1/2Q(1 − k/n)
+ oP(1). (25)

This concludes that for 0 ≤ t < 1 − k/n, we have, as n → ∞ :

√
n
(
Un,k,1(Qn, t) − Un,k,1(Q, t)

)
(k/n)1/2Xn−k,n

d
= −

∫ 1−k/n
0 Bn(s)dQ(s)

(k/n)1/2Q(1 − k/n)
+ oP(1). (26)

Next, we remark also that, L(Q,α) := Un,k,1(Q, 0)−Un,k,1(Q,α) and Ln(α) := Un,k,1(Qn, 0)−
Un,k,1(Q,α). This leads to:

√
n
(
Ln(α) − L(Q,α)

)
(k/n)1/2Xn−k,n

=

√
n
(
Un,k,1(Qn, 0) − Un,k,1(Q, 0)

)
(k/n)1/2Xn−k,n
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−

√
n
(
Un,k,1(Qn, α) − Un,k,1(Q,α)

)
(k/n)1/2Xn−k,n

.

From (26), we get for all large values of n:

√
n
(
Ln(α) − L(Q,α)

)
(k/n)1/2Xn−k,n

= oP(1). (27)

The Lemma 1 follows.

Proof of Lemma 2. We first have:

Un,k,1(Qn, β)

Ln(α)
−

Un,k,1(Q, β)

L(Q,α)
=
Un,k,1(Qn, β)

Ln(α)
−

Un,k,1(Qn, β)

L(Q,α)

+
Un,k,1(Qn, β)

L(Q,α)
−

Un,k,1(Q, β)

L(Q,α)

=
1

L(Q,α)

(
Un,k,1(Qn, β) − Un,k,1(Q, β)

)
−

Un,k,1(Qn, β)

Ln(α)L(Q,α)

(
Ln(α) − L(Q,α)

)
.

This leads to:

√
n

{
Un,k,1(Qn, β)

Ln(α)
−

Un,k,1(Q, β)

L(Q,α)

}
(k/n)1/2Xn−k,n

=
1

L(Q,α)
×

√
n (Un,k,1(Qn, β) − Un,k,1(Q, β))

(k/n)1/2Xn−k,n

−
Un,k,1(Qn, β)

Ln(α)L(Q,α)
×

√
n (Ln(α) − L(Q,α))

(k/n)1/2Xn−k,n
.

Next, from (26), we have for all large values of n,

√
n (Un,k,1(Qn, β) − Un,k,1(Q, β))

L(Q,α)(k/n)1/2Xn−k,n

d
=

∫ 1−k/n
0 Bn(s)dQ(s)

L(Q,α)(k/n)1/2Q(1 − k/n)
+ oP(1). (28)

Since the right term in (28) is bounded in probability, we get for all large values of n,

Un,k,1(Qn, β) = Un,k,1(Q, β) + oP(1).

Remarking that Un,k,1(Q, β) =
∫ 1−k/n
β Q(s)ds and k/n → 0, as n → ∞, we have

Un,k,1(Qn, β) =

∫ 1

β
Q(s)ds

{
1 + oP(1)

}
.
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In the other hand, from Lemma 1, we have Ln(α) = L(Q,α)+oP(1), as n → ∞. Therefore,
using again the Lemma 1 and the fact that the lower integral  L(Q,α) and the upper integral∫ 1
β Q(s)ds are finite, we get for all n large enough:

Un,k,1(Qn, β)

Ln(α)L(Q,α)
×

√
n (Ln(α) − L(Q,α))

(k/n)1/2Xn−k,n
= oP(1). (29)

Finally, combining (28) and (29), the Lemma 2 follows.

Proof of Lemma 3.
We use the following decomposition:

Un,k,2

(
Q

(K)
n,k

)
Ln(α)

−
Un,k,2(Q)

L(Q,α)
=
Un,k,2

(
Q

(K)
n,k

)
Ln(α)

−
Un,k,2

(
Q

(K)
n,k

)
L(Q,α)

+
Un,k,2

(
Q

(K)
n,k

)
L(Q,α)

−
Un,k,2(Q)

L(Q,α)

=
1

L(Q,α)

(
Un,k,2

(
Q

(K)
n,k

)
− Un,k,2(Q)

)
−

Un,k,2

(
Q

(K)
n,k

)
Ln(α)L(Q,α)

(
Ln(α) − L(Q,α)

)
.

This implies that:

√
n

Un,k,2

(
Q

(K)
n,k

)
Ln(α)

−
Un,k,2(Q)

L(Q,α)


(k/n)1/2Xn−k,n

=
1

L(Q,α)
×

√
n
(
Un,k,2

(
Q

(K)
n,k

)
− Un,k,2(Q)

)
(k/n)1/2Xn−k,n

−
Un,k,2

(
Q

(K)
n,k

)
Ln(α)L(Q,α)

×

√
n
(
Ln(α) − L(Q,α)

)
(k/n)1/2Xn−k,n

.(30)

Recall that

Un,k,2

(
Q

(K)
n,k

)
=

k/n

1 − γ̂
(K)
n,k

Xn−k,n.

According to Theorem 1 in [13], we have as n → ∞:

√
k
(
γ̂
(K)
n,k − γ

)
d
=

√
k a (n/k)

∫ 1

0
s−ρK(s)ds+γ

√
n

k

∫ 1

0
s−1Bn

(
1 − s

k

n

)
d (sK(s))+oP(1)

(31)

This leads to the weak consistency of γ̂
(K)
n,k to γ. Since Q(1−·) is a regularly varying function

at zero with index −γ, then from Theorem 2.4.1 in [10], Xn−k,n = Q(1 − k/n)(1 + oP(1)),
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as n → ∞ and (k/n)Q(1 − k/n) = (k/n)1−γℓQ(k/n). Since γ ∈ (1/2, 1), we have from

Proposition 1.3.6 in [5], (k/n)1−γℓQ(k/n) → 0, as n → ∞. Therefore Un,k,2

(
Q

(K)
n,k

)
P→ 0,

as n → ∞.

Finally, according to the Lemma 1 in this paper, the second right term of the Equation
30 is equal to oP(1).

Now, it allows us to look at the first right term of the Equation 30. Clearly Xn−k,n
d
=

U(Yn−k,n) with U(x) = Q(1 − 1/x) and

Un,k,2

(
Q

(K)
n,k

)
d
=

k/n

1 − γ̂
(K)
n,k

U (Yn−k,n) .

By remarking that Xn−k,n = U(n/k)(1 + oP(1)) with U (n/k) = Q(1 − k/n), we have:

√
n
(
Un,k,2

(
Q

(K)
n,k

)
− Un,k,2(Q)

)
L(Q,α)(k/n)1/2Xn−k,n

d
=

√
n
(
Un,k,2

(
Q

(K)
n,k

)
− Un,k,2(Q)

)
L(Q,α)(k/n)1/2U (n/k)

{
1 + oP(1)

}
.

As a consequence, the following expansion holds:

√
n
(
Un,k,2

(
Q

(K)
n,k

)
− Un,k,2(Q)

)
L(Q,α)(k/n)1/2U (n/k)

d
=

4∑
j=1

Tn,j ,

where

Tn,1 :=

√
k

L(Q,α) (1 − γ̂
(K)
n,k )

[
U (Yn−k,n)

U(n/k)
−
(
k

n
Yn−k,n

)γ]
,

Tn,2 :=

√
k

L(Q,α)(1 − γ̂
(K)
n,k )

[(
k

n
Yn−k,n

)γ

− 1

]
,

Tn,3 :=
1

L(Q,α) (1 − γ̂
(K)
n,k )(1 − γ)

√
k
(
γ̂
(K)
n,k − γ

)
,

Tn,4 :=

√
n

L(Q,α) (k/n)1/2U(n/k)

[
k/n

1 − γ
U(n/k) − Un,k,2(Q, β)

]
.

We study each term separately.
Term Tn,1. According to the Theorem 2.3.9 in [10], for any δ > 0, we have

√
k

(
U (Yn−k,n)

U(n/k)
−
(
k

n
Yn−k,n

)γ)
=

√
k a
(n
k

){(k

n
Yn−k,n

)γ
(
k
nYn−k,n

)ρ − 1

ρ
+ oP(1)

(
k

n
Yn−k,n

)γ+ρ±δ
}
,

We study each term separately.
Term Tn,1. According to [10] Theorem 2.3.9) , for any δ > 0, we have

√
k

(
U (Yn−k,n)

U(n/k)
−
(
k

n
Yn−k,n

)γ)
=

√
k a
(n
k

){(k

n
Yn−k,n

)γ
(
k
nYn−k,n

)ρ − 1

ρ
+ oP(1)

(
k

n
Yn−k,n

)γ+ρ±δ
}
,
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Thus, since kYn−k,n/n → 1,
√
k a(n/k) → λ ∈ R and γ̂

(K)
n,k

P→ γ, as n → ∞, it readily
follows that

Tn,1 = oP(1). (32)

Term Tn,2. The equality Yn−k,n
d
= (1 − ξn−k,n)−1 yields

√
k

[(
k

n
Yn−k,n

)γ

− 1

]
d
=

√
k

((n
k

(1 − ξn−k,n)
)−γ

− 1

)
= −γ

√
k
(n
k

(1 − ξn−k,n) − 1
)

(1 + oP(1)) by a Taylor expansion

= −γ

√
n

k
βn

(
1 − k

n

)
(1 + oP(1))

= −γ

√
n

k

(
Bn

(
1 − k

n

)
+ OP(n−ν)

(
k

n

)1/2−ν
)

(1 + oP(1)),

for 0 ≤ ν < 1/2, by [8]. Thus, using again the fact that γ̂
(K)
n,k

P→ γ, it follows that

Tn,2
d
= − γ

L(Q,α)(1 − γ)

√
n

k
Bn

(
1 − k

n

)
(1 + oP(1)) = Wn,α,2 + oP(1). (33)

Term Tn,3. By using again the weak consistency of γ̂
(K)
n,k to γ and the equation 31, we get

Tn,3
d
=

1

L(Q,α)(1 − γ)2

{√
k a (n/k)

∫ 1

0
s−1K(s)ds + γ

√
n

k

∫ 1

0
s−1Bn

(
1 − s

k

n

)
d (sK(s))

}
+ oP(1)

=
1

L(Q,α) (1 − γ)2

√
k a (n/k)

∫ 1

0
s−1K(s)ds + Wn,α,3 + oP(1). (34)

Term Tn,4. A change of variables and an integration by parts yield

Tn,4 =

√
k

L(Q,α)

{
1

1 − γ
−
∫ ∞

1
x−2U(nx/k)

U(n/k)
dx

}
= −

√
k

L(Q,α)

∫ ∞

1
x−2

(
U(nx/k)

U(n/k)
− xγ

)
dx.

Theorem 2.3.9 in [10] entails that, for γ ∈ (1/2, 1),

Tn,4 = −
√
ka
(
n
k

)
L(Q,α)

∫ ∞

1
xγ−2 x

ρ − 1

ρ
dx (1 + oP(1))

=

√
ka
(
n
k

)
L(Q,α)

1

(1 − γ)(γ + ρ− 1)
(1 + oP(1)). (35)

Combining (32)-(35), Lemma 3 follows.
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Remark 1. Since Q(1 − ·) is a regularly varying function at zero with index −γ, then
from Theorem 2.4.1 in [10], Xn−k,n = Q(1−k/n)(1+oP(1)), as n → ∞ and (k/n)1/2Q(1−
k/n) = (k/n)1/2−γℓQ(k/n), for k → ∞, k/n → 0, as n → ∞. Remarking that n1/2/(k/n)1/2Q(1−
k/n) is equal to k1/2/(k/n)1−γℓQ(k/n) and since γ ∈ (1/2, 1), we have from Proposition
1.3.6 in [5], (k/n)1−γℓQ(k/n) → 0, as n → ∞. and the rate of convergence in Theorem 1
tends to infinity as n goes to infinity.

From Theorem 1, it is clear that the estimator η̂
(K)
n,k (α, β) exhibits a bias due to the

fact that we use in its construction a symptomatic estimator of Q(·) derived from the

Weissman’s type estimator Q
(K)
n,k (·), which is known to have such a problem. To solve this

issue, we propose in the next section to use a bias reduction method and to introduce an
improved estimator of the QSR index η(Q,α, β).

4.2. Reduced bias estimation of the QSR index

In this section, we propose to substitute in (13), the Weissman’s estimator Q
(K)
n,k with

an asymptotically unbiased estimator of the extreme quantile. Our approach is similar to
the bias reduction procedure introduced in [19] and [26].

In order to find an asymptotically unbiased estimator of the extreme quantile, we use the
second order condition (RU), for which the following approximation holds:

Q(u) ≈
(n
k

(1 − u)
)−γ

Q(1 − k/n)

{
1 − a(n/k)

ρ

[
1 −

(n
k

(1 − u)
)−ρ

]}
, u → 1, (36)

where γ, a(·) and ρ are unknown. The first part
(
n
k (1 − u)

)−γ
Q(1 − k/n) in the right

side of (36) is exactly estimated by the Weissman’s type estimator Q
(K)
n,k (u) and defined in

(9). Clearly, the estimator Q
(K)
n,k exhibits a potential bias because it depends on the Kernel

type estimator γ̂
(K)
n,k of the tail index γ, which from (16) has such problem. The expression

1 − ρ−1a(n/kn)[1 −
(
n
k (1 − u)

)−ρ
] can be viewed as a correcting term since a(n/kn) tends

to 0. This leads to the necessity to find good estimators for γ, a(n/kn) and ρ.

We first propose to introduce an asymptotically unbiased estimator for γ by following an
approach similar to [19]. To this end, consider two kernel functions K1 and K2 satisfying
(K) and define a mixture of them in the form K∆ (s) = ∆K1 (s) + (1 − ∆)K2 (s), for
∆ ∈ R. Clearly K∆ also satisfies the condition (K) and hence by the result given in (16),

the asymptotic bias λ
∫ 1
0 s−ρK∆(s)ds of γ̂

(K∆)
n,k is such that

λ

∫ 1

0
s−ρK∆(s)ds = λ∆

∫ 1

0
s−ρK1(s)ds + λ(1 − ∆)

∫ 1

0
s−ρK2(s)ds.

Equating the right-hand side of the above equation to zero leads to the value of eliminating
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the asymptotic bias

∆∗ =

∫ 1
0 s−ρK2(s)ds∫ 1

0 s−ρ
{
K2(s) −K1(s)

}
ds

, (37)

provided
∫ 1
0 s−ρ

{
K2(s)−K1(s)

}
ds ̸= 0. Clearly, the tail index estimator γ̂

(K∆∗ )
n,k is shown

to be asymptotically unbiased in the sense that the mean of its limiting distribution is
zero, whatever the value of λ. More precisely, we have from (16):

k1/2
(
γ̂
(K∆∗ )
n,k − γ

)
d→ N

(
0, γ2

∫ 1

0
K2

∆∗(s)ds

)
. (38)

An open problem is to determine whether among this class of unbiased estimators γ̂
(K∆∗ )
n,k ,

we can find the asymptotically unbiased estimator with minimum variance. Clearly, the
asymptotic variance γ2

∫ 1
0 K2

∆∗(s)ds is minimal for a minimum value of
∫ 1
0 K2

∆∗(s)ds. Ac-

cording to [19] and [13], the minimum of
∫ 1
0 K2

∆∗(s)ds is obtained at the “optimal” function
given by:

K∆∗
opt

(s) =

(
1 − ρ

ρ

)2

− (1 − ρ) (1 − 2ρ)

ρ2
s−ρ, for s ∈ (0, 1) , (39)

and K∆∗
opt

(s) = 0 otherwise. Note that this unction can be viewed as a mixture between

two power kernels: K1(s) := K(s) = I(0<s<1) and K2(s) := K2,ρ(s) := (1 − ρ) s−ρI(0<s<1)

and ∆∗ = (1 − ρ)2/ρ2 is as in (37). In that case, the minimal variance γ2
∫ 1
0 K2

∆∗
opt

(s)ds

equals to γ2(1 − ρ)2/ρ2.

From a practical point of view, the unbiased tail index estimator with minimum variance

γ̂
(K∆∗

opt
)

n,k cannot be obtained directly, since it depends on the unknown parameters and
expressions: γ, ρ, a(n/k) and K∆∗

opt
are unknown. To solve this issue, we propose to

replace ρ by ρ̂, where ρ̂ is either a canonical negative value ρ̂ = ρ = ρ0 or an external
estimator ρ̂ = ρ̂kρ , consistent in probability to ρ, with kρ := kρ(n) an intermediate sequence
of integers greater than k, satisfying kρ → ∞ and kρ/n → 0, as n → ∞. Finally, as in
(11), we arrive to the following tail index estimator:

γ̂
(K

∆̂∗
opt

)

n,k =
1

k

k∑
j=1

jK
∆̂∗

opt

(
j

k + 1

)
log

(
Xn−j+1,n

Xn−j,n

)
,

where K
∆̂∗

opt
is defined as K∆∗

opt
in (39) with ρ replaced by ρ̂.

Next, for the estimation of the rate a(·), we use the result in (16) from which we have,
as n → ∞,

γ̂
(K)
n,k − γ̂

(K2,ρ)
n,k = −a(n/k)

ρ2

(1 − ρ)(1 − 2ρ)
+ oP(1).
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Thus, we can approximate

a(n/k)
ρ2

(1 − ρ)(1 − 2ρ)
by −

{
γ̂
(K)
n,k − γ̂

(K2,ρ)
n,k

}
,

which mean that a(n/k) can be estimated by;

ân,k(ρ̂ ) := −(1 − ρ̂)(1 − 2ρ̂)

ρ̂ 2

{
γ̂
(K)
n,k − γ̂

(K2,ρ̂)

n,k

}
.

Clearly, the estimators γ̂
(K

∆̂∗
opt

)

n,k and ân,k(ρ̂ ) can be easily viewed as the least squared
based estimators of γ and a(n/k) studied in [16]; [3]; [4] and [13]. This approach is based
on the following exponential regression model:

j log

(
Xn−j+1,n

Xn−j,n

)
∼

(
γ + A(n/k)

(
j

k + 1

)−ρ
)

+ εj,k, 1 ≤ j ≤ k, (40)

where εj,k are zero-centered error terms and in which ρ is substituted by ρ̂.

Finally, using the relation in (36), we arrive at the following unbiased estimator of the
extreme quantile Q(u), u → 1 :

Q
(K

∆̂∗
opt

)

n,k,ρ̂ (u) =
(n
k

(1 − u)
)−γ̂

(K
∆̂∗
opt

)

n,k
Xn−k,n

{
1 −

ân,k
ρ

[
1 −

(n
k

(1 − u)
)−ρ̂

]}
. (41)

In the spirit of (2), substituting the extreme quantile Q(u) with Q
(K

∆̂∗
opt

)

n,k,ρ̂ (u), we obtain
the following unbiased estimator of the QSR index

η̃
(K

∆̂∗
opt

)

n,k, ρ̂ (α, β) : =
1

Ln(α)

n−k∑
j=1

[(
j

n
− β

)
+

−
(
j − 1

n
− β

)
+

]
Xj,n

+
(k/n) Xn−k,n

Ln(α)

(
1 − γ̂

(K
∆̂∗
opt

)

n,k

)
1 −

ân,k(ρ̂ )

γ̂
(K

∆̂∗
opt

)

n,k + ρ̂− 1

 . (42)

A possible choice for ρ̂kρ is one of the most performed estimator among those studied in
[21], generalized in [12]) and defined by:

ρ̂kρ =
6S

(2)
kρ

− 4 +
√

3S
(2)
kρ

− 2

4S
(2)
kρ

− 3
, provided S

(2)
kρ

∈
(

2

3
,

3

4

)
, (43)
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where

S
(2)
kρ

=
3

4

[
M

(4)
kρ

− 24
(
M

(1)
kρ

)4] [
M

(2)
kρ

− 2
(
M

(1)
kρ

)2]
[
M

(3)
kρ

− 6
(
M

(1)
kρ

)3]2 ,

and

M
(r)
kρ

:=
1

kρ

kρ∑
j=1

(
log

Xn−j+1,n

Xn−kρ,n

)r

, r > 0.

The consistency of ρ̂
(∗)
kρ

to ρ have been established in [21] and [12]) under the second order

condition (RU) and the assumptions kρ → ∞, kρ/n → 0 and k
1/2
ρ a(n/kρ) → ∞, as n → ∞.

Our next goal is to establish, under suitable assumptions, the asymptotic normality of

η̃
(K

∆̂∗
opt

)

n,k,ρ̂ (α, β). This is done in the following theorem.

Theorem 2. Under the assumptions of Theorem 1, if ρ̂ is either a canonical negative
value ρ̂ = ρ = ρ0 or an external estimator ρ̂ = ρ̂kρ, consistent in probability to ρ, with
kρ := kρ(n), an intermediate sequence of integers greater than k, satisfying kρ → ∞ and
kρ/n → 0, as n → ∞, then we have:

√
n
(
η̃
(K

∆̂∗
opt

)

n,k, ρ̂ (α, β) − η(Q,α, β)
)

(k/n)1/2Xn−k,n

d→ N
(

0, ÃV(γ, ρ, α)
)
,

where

ÃV(γ, ρ, α) =
γ4(γ − ρ)2

(2γ − 1)(1 − γ)4(γ + ρ− 1)2 L2(Q,α)
.

Proof of Theorem 2
For simplify the proof, we introduce the following Lemmas, whose proofs are given just
after this one.

Lemma 4. Suppose that the distribution F satisfies the second order condition (RU). If
k → ∞, k/n → 0 and

√
k a(n/k) → λ ∈ R, as n → ∞ and ρ̂ is either a canonical negative

value ρ̂ = ρ = ρ0 or an external estimator ρ̂ = ρ̂kρ, consistent in probability to ρ, with
kρ := kρ(n) an intermediate sequence of integers greater than k, satisfying kρ → ∞ and
kρ/n → 0, as n → ∞, then we have

√
k

γ̂

(
K

∆̂∗
opt

)
n,k − γ

 d
= γ

√
n/k

∫ 1

0
s−1Bn(1 − sk/n)d(sK∆∗

opt
(s)) + oP (1)

and

√
k (ân,k(ρ̂ ) − a(n/k))

d
= γ (1 − ρ)

√
n/k

∫ 1

0
s−1Bn(1−sk/n)d(s(K1(s)−K∆∗

opt
(s)))+oP (1) .
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Lemma 5. Under the assumptions of Theorem 2, we have for 0 < α < 1 − k/n:

√
n


Un,k,2

(
Q

(K
∆̂∗
opt

)

n,k,ρ̂

)
Ln(α)

−
Un,k,2(Q)

L(Q,α)


(k/n)1/2Xn−k,n

d
= Wn,α,1 + Wn,α,2 + Wn,α,4 + Wn,α,5 + oP(1),(44)

as n → ∞, where
Wn,α,4 :=

ργ2

(γ + ρ− 1)(1 − γ)2 L(Q,α)

√
n/k

∫ 1

0
s−1Bn(1 − sk/n)d(sK∆∗

opt
(s))

Wn,α,5 := −(1 − γ)(1 − ρ)

(γ + ρ− 1)
Wn,α,3.

Now coming back to this proof, under the assumptions, we have:

η̂
(K

∆̂∗
opt

)

n,k (α, β) − η(Q,α, β) =

{
Un,k,1(Qn, β)

Ln(α)
−

Un,k,1(Q, β)

L(Q,α)

}

+


Un,k,2

(
Q

K
∆̂∗
opt

)

n,k

)
Ln(α)

−
Un,k,2(Q)

L(Q,α)


:= Bn,1 + Bn,2. (45)

For all values of n large enough, we get respectively from Lemma 4 and Lemma 5:

√
n Bn,1

(k/n)1/2Xn−k,n

d
= Wn,α,1 + oP(1),

and √
nBn,2

(k/n)1/2Xn−k,n

d
= Wn,α,2 + Wn,α,4 + Wn,α,5 + oP(1).

This leads to

√
n
(
η̂
(K)
n,k (α, β) − η(Q,α, β)

)
(k/n)1/2Xn−k,n

d
= Wn,α,1 + Wn,α,2 + Wn,α,4 + Wn,α,5 + oP(1). (46)

We only have to compute the asymptotic variance of the sum of process in the right term
of (46).

As in Theorem 1, the computations are quite direct and the desired asymptotic variance
can be obtained by noticing that

EW 2
n,α,5 −→ γ2(1 − ρ)2

(1 − γ)2(γ + ρ− 1)2 L2(Q,α)
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E(Wn,α,1Wn,α,4) = 0

E(Wn,α,5) = 0

EW 2
n,α,4 =

γ4(1 − ρ)2

(1 − γ)4(γ + ρ− 1)2 L2(Q,α)

E(Wn,α,2Wn,α,5) = 0

E(Wn,α,Wn,α,4) = 0

E(Wn,α,4Wn,α,5) = − ργ3(1 − ρ)

(1 − γ)3(γ + ρ− 1)2 L2(Q,α)
.

Combining all these results, Theorem 2 follows.

Proof of Lemma 4.
Note that the first quantity of interest can be expanded as

√
k

γ̂

(
K

∆̂∗
opt

)
n,k − γ

 =
√
k

γ̂

(
K

∆̂∗
opt

)
n,k − γ̂

(
K∆∗

opt

)
n,k

+
√
k

γ̂

(
K∆∗

opt

)
n,k − γ


=

√
k

1

k

k∑
j=1

{
K

∆̂∗
opt

(
j

k + 1

)
−K∆∗

opt

(
j

k + 1

)}
j log

(
Xn−j+1,n

Xn−j,n

)

+
√
k

γ̂

(
K∆∗

opt

)
n,k − γ

 ,

where

K∆∗
opt

(s) =

(
(1 − ρ)2

ρ2

)2

− (1 − ρ) (1 − 2ρ)

ρ2
s−ρ, t ∈ (0, 1),

and K∆∗
opt

(s) = 0 otherwise,
K

∆̂∗
opt

is defined as K∆∗
opt

with ρ replaced by ρ̂. We have all ready mentioned that the

function K∆∗
opt

is viewed as a mixture between two power kernels: K1(s) := I(0<s<1) and

K2,ρ(s) := (1 − ρ) s−ρI(0<s<1) with and ∆∗ = (1− ρ)2/ρ2. Thus, according to the proof of
Theorem 3.2 of [4], we have

√
k

1

k

k∑
j=1

{
K

∆̂∗
opt

(
j

k + 1

)
−K∆∗

opt

(
j

k + 1

)}
j log

(
Xn−j+1,n

Xn−j,n

)
= oP(1),

and

√
k

γ̂

(
K

∆̂∗
opt

)
n,k − γ

 =
√
k

γ̂

(
K∆∗

opt

)
n,k − γ

+ oP(1).

Recall now that

γ̂

(
K∆∗

opt

)
n,k =

(1 − ρ)2

ρ2
γ̂
(K1)
n,k − (1 − 2ρ)

ρ2
γ̂
(K2,ρ)
n,k



M. Kebe et al. / Eur. J. Pure Appl. Math, 16 (4) (2023), 2509-2543 2531

We use the following decomposition,

√
k

γ̂

(
K∆∗

opt

)
n,k − γ

 =
(1 − ρ)2

ρ2

√
k
(
γ̂
(K1)
n,k − γ

)
− (1 − 2ρ)

ρ2

√
k
(
γ̂
(K2,ρ)
n,k − γ

)
From (31), it is clear that

√
k
(
γ̂
(K1)
n,k − γ

)
=

√
k
a (n/k)

1 − ρ
+ γ

√
n

k

∫ 1

0
s−1Bn

(
1 − s

k

n

)
d (sK1(s)) + oP(1)

and

√
k
(
γ̂
(K2,ρ)
n,k − γ

)
=

1 − ρ

1 − 2ρ

√
ka (n/k) + γ

√
n

k

∫ 1

0
s−1Bn

(
1 − s

k

n

)
d (sK2,ρ(s)) + oP(1).

Finally, combining these two previews expansions, we get:

√
k

γ̂

(
K∆∗

opt

)
n,k − γ

 = γ

√
n

k

∫ 1

0
s−1Bn

(
1 − s

k

n

)
d

(
s
{(1 − ρ)2

ρ2
K1(s)

})

−γ

√
n

k

∫ 1

0
s−1Bn

(
1 − s

k

n

)
d

(
s
{1 − 2ρ

ρ2
K2,ρ(s)

})
+ oP(1)

= γ

√
n

k

∫ 1

0
s−1Bn

(
1 − s

k

n

)
d
(
sK∆∗

opt
(s)
)

+ oP(1).

The first part of Lemma 4 follow.

Focussing on the second part and we have

ân,k(ρ̂ ) := −(1 − ρ̂)(1 − 2ρ̂)

ρ̂ 2

{
γ̂
(K1)
n,k − γ̂

(K2,ρ̂)

n,k

}
.

Thus,

√
k (ân,k(ρ̂ ) − a(n/k)) = (1 − ρ̂)

√
k

(
γ̂
(K1)
n,k − γ − a(n/k)

1 − ρ

)
− (1 − ρ̂)

√
k

γ̂

(
K

∆̂∗
opt

)
n,k − γ


+
√
k a(n/k)

(
(1 − ρ̂)

(1 − ρ)
− 1

)
.

Since ρ̂ is a consistent estimator of ρ, this leads to the desired result.

Proof of Lemma 5.
Following the same approach as in the Proof of Lemma 3, we have
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Un,k,2

(
Q

(K
∆̂∗
opt

)

n,k,ρ̂

)
Ln(α)

−
Un,k,2(Q)

L(Q,α)
=

Un,k,2

(
Q

(K
∆̂∗
opt

)

n,k,ρ̂

)
Ln(α)

−
Un,k,2(Q)

L(Q,α)

+

Un,k,2

(
Q

(K
∆̂∗
opt

)

n,k,ρ̂

)
L(Q,α)

−
Un,k,2(Q)

L(Q,α)

=
1

L(Q,α)

(
Un,k,2

(
Q

(K
∆̂∗
opt

)

n,k,ρ̂

)
− Un,k,2(Q)

)

−
Un,k,2

(
Q

(K
∆̂∗
opt

)

n,k,ρ̂

)
Ln(α)L(Q,α)

(
Ln(α) − L(Q,α)

)
.

This implies that:

√
n


Un,k,2

(
Q

(K
∆̂∗
opt

)

n,k,ρ̂

)
Ln(α)

−
Un,k,2(Q)

L(Q,α)


(k/n)1/2Xn−k,n

=
1

L(Q,α)
×

√
n

(
Un,k,2

(
Q

(K
∆̂∗
opt

)

n,k,ρ̂

)
− Un,k,2(Q)

)
(k/n)1/2Xn−k,n

−
Un,k,2

(
Q

(K
∆̂∗
opt

)

n,k,ρ̂

)
Ln(α)L(Q,α)

×

√
n
(
Ln(α) − L(Q,α)

)
(k/n)1/2Xn−k,n

.(47)

Recall that

Un,k,2

(
Q

(K
∆̂∗
opt

)

n,k,ρ̂

)
=

(k/n) Xn−k,n

1 − γ̂
(K

∆̂∗
opt

)

n,k

1 −
ân,k(ρ̂ )

γ̂
(K

∆̂∗
opt

)

n,k + ρ̂− 1

 .

For a given ρ̂ be either a canonical negative value ρ̂ = ρ = ρ0 or an external estimator
ρ̂ = ρ̂kρ , consistent in probability to ρ, with kρ := kρ(n) an intermediate sequence of inte-
gers greater than k, satisfying kρ → ∞ and kρ/n → 0, as n → ∞, we have from Lemma

4, γ̂
(K

∆̂∗
opt

)

n,k
P→ γ and ân,k(ρ̂ )

P→ 0, as n −→ ∞. Since (k/n) Xn−k,n
P→ 0 ( see the Proof of

Lemma 3). Therefore, Un,k,2

(
Q

(K
∆̂∗
opt

)

n,k,ρ̂

)
P→ 0, as n −→ 0. Consequently, according to the

Lemma 1, the second right term of the Equation 47 is equal to oP(1).

Now, it allows us to look at the first right term of the Equation 47. Thus, we have
the following decomposition:

√
n

L(Q,α) (k/n)1/2U (n/k)

(
Un,k,2

(
Q

(K
∆̂∗
opt

)

n,k,ρ̂

)
− Un,k,2(Q)

)
=

6∑
i=1

Sn,i
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where

Sn,1 =
1

L(Q,α)
(

1 − γ̂
(K

∆̂∗
opt

)

n,k

)
1 −

ân,k(ρ̂ )

γ̂
(K

∆̂∗
opt

)

n,k + ρ̂− 1

√
k

[
U (Yn−k,n)

U(n/k)
−
(
k

n
Yn−k,n

)γ]

Sn,2 =
1

L(Q,α)
(

1 − γ̂
(K

∆̂∗
opt

)

n,k

)
1 −

ân,k(ρ̂ )

γ̂
(K

∆̂∗
opt

)

n,k + ρ̂− 1

√
k

[(
k

n
Yn−k,n

)γ

− 1

]

Sn,3 =
1

L(Q,α)
(

1 − γ̂
(K

∆̂∗
opt

)

n,k

)(
1 − γ

)√k

(
γ̂
(K

∆̂∗
opt

)

n,k − γ

)

Sn,4 =

√
ka(n/k)

L(Q,α)

 1

(1 − γ)(γ + ρ− 1)
− 1(

1 − γ̂
(K

∆̂∗
opt

)

n,k

)(
γ̂
(K

∆̂∗
opt

)

n,k + ρ̂− 1

)


Sn,5 = − 1

L(Q,α)

(
1 − γ̂

(K
∆̂∗
opt

)

n,k

)(
γ̂
(K

∆̂∗
opt

)

n,k + ρ̂− 1

)√
k (ân,k(ρ̂ ) − a(n/k))

Sn,6 =

√
n

L(Q,α)(k/n)1/2U(n/k)

[
k/n

1 − γ

(
1 − a(n/k)

γ + ρ− 1

)
U(n/k) − Un,k,2(Q)

]
.

Next, we are going to study separately the terms Sn,1, ..., Sn,6.
Term Sn,1. Note that

Sn,1 =
1 − γ̂

(K)
n,k

1 − γ̂
(K

∆̂∗
opt

)

n,k

1 −
ân,k(ρ̂ )

γ̂
(K

∆̂∗
opt

)

n,k + ρ̂− 1

 Tn,1

where Tn,1 is defined in the Proof of Lemma 3. Thus combining Lemma 4 with the
consistency of ρ̂ and (32), we obtain that

Sn,1 = oP(1). (48)

Term Sn,2. Similarly, we observe that Sn,2 = Tn,2(1 + oP(1)) where Tn,2 is defined in the

proof of Lemma 3. Thus according to (33), we have

Sn,2
d
= Wn,α,2 + oP(1). (49)

Term Sn,3. Combining Lemma 4 with the consistency of γ̂
(K

∆̂∗
opt

)

n,k , we infer that

Sn,3
d
=

γ + ρ− 1

ργ
Wn,α,4 + oP(1). (50)
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Term Sn,4. Under the assumption that
√
k a(n/k) → λ ∈ R, as n → ∞ and by the

consistency of ρ̂ and γ̂
(K

∆̂∗
opt

)

n,k , we have

Sn,4 = oP(1). (51)

Term Sn,5. Using again the Lemma 4, we get

Sn,5
d
= − γ(1 − ρ)

(1 − γ)(γ + ρ− 1)

√
n

k

∫ 1

0
s−1Bn

(
1 − sk

n

)
d(s(K(s) −K

∆̂∗
opt

(s))) + oP(1)

= −(1 − ρ)(1 − γ)

γ + ρ− 1

(
Wn,α,3 −

γ + ρ− 1

ργ
Wn,α,4

)
+ oP(1)

= Wn,α,5 +
(1 − ρ)(1 − γ)

γρ
Wn,α,4 + oP(1). (52)

Term Sn,6. Remark that

Sn,6 = −
√
ka(n/k)

(1 − γ)(γ + ρ− 1)
+ Tn,4,

where Tn,4 is defined in the proof of Lemma 3. Thus using (35) and the assumption that√
k a(n/k) → λ ∈ R, as n → ∞. We deduce that

Sn,6 = oP(1). (53)

Combining (48)-(53), Lemma 5 follows.

5. Simulation study

In this section, the class of biased estimator η̂
(K)
n,k (0.2, 0.8) and the reduced-bias estimator

η̃
(K

∆̂∗
opt

)

n,k, ρ̂ (0.2, 0.8) of the QSR index η(Q, 0.2, 0.8) are compared in a simulation study. To
this end, N = 500 samples of size n := 1000; 1500; 2000 are generated from a Burr
distribution defined as F (x) = (1 + x−ρ/γ)1/ρ, with γ = 2/3 and different values of
ρ := −0.5; −0.75; −1. It is known that this distribution is heavy-tailed and satisfies
the second order condition (RU) with a(t) = γtρ. This kind of Burr distribution and its
unidentified parameters were previously used by various authors such as [13], [14] and
[11] to assess risk measures for heavy-tailed losses. [29] and [15] also used this kind of
distribution to estimate the QSR index for heavy-tailed capital incomes.

Now, for computation and the comparison of the estimators, we adopt the following steps:

• The estimator η̂
(K)
n,k (0.2, 0.8) is computed with the tail index estimators γ̂

(K)
n,k , for

different sample fractional numbers of top order statistics k = 10, ...,mn, where mn is the
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integer part of 0.2 × n, which ensures the validity of the condition β = 0.8 < 1 − k/n.
For the choice of the kernels K, we use the power kernel, which satisfies the assumption
(K) and is defined by K(s) = (1 + τ)sτ I{0<s<1}, with τ := 0, 1. In the case where τ = 0,

we denote K := K1 = K and η̂
(K)
n,k (0.2, 0.8) corresponds to the QSR index estimator asso-

ciated with the Hill’s estimator γ̂
(K)
n,k . For τ = 1, the corresponding kernel is exactly the

above mentioned K := K2,ρ̄, with ρ̄ = −1.

• The estimator η̃
(K

∆̂∗
opt

)

n,k, ρ̂ (0.2, 0.8) is computed with the tail index estimators γ̂
(K

∆̂∗
opt

)

n,k ,
for k = 10, ...,mn and ρ̂ := ρ̂k∗ρ defined in (43), where k∗ρ is selected as follows:

k∗ρ := sup

{
kρ : kρ ≤ min

(
n− 1,

2n

log logn

)
and ρ̂kρ exists

}
.

• Next, we compare on the one hand the performance of the mentioned QSR index es-
timators by computing the absolute value of the median together with the median squared
errors (MSE) based on the N samples, and defined as:

ABias(η, k) :=

∣∣∣∣∣median

{
η̂(1)

η
, ...,

η̂(N)

η

}
− 1

∣∣∣∣∣
and

MSE(η, k) := median


(
η̂(1)

η
− 1

)2

, ...,

(
η̂(N)

η
− 1

)2
 ,

where η := η(Q, 0.2, 0.8) is the true value of the QSR index and η̂(i) is the i-th value
(i = 1, ..., N) of an estimator of η(Q, 0.2, 0.8) evaluated at different sample fractional
numbers of top order statistics k as mentioned above.

Figure 1 resp. Figure 2 show the Absolute bias of the median resp. the Median Squared

Error of η̂
(K)
n,k (0.2, 0.8) (black line), η̂

(K2,ρ̄)
n,k (0.2, 0.8) (blue line) and η̃

(K
∆̂∗
opt

)

n,k, ρ̂ (0.2, 0.8) (red
line) as a function of k based on N = 500 samples of size 1000 (top), 1500 (middle) and
2000 (down) for QSR index η(Q, 0.2, 0.8) from the underlying Burr distribution. From the
left to the right: (ρ = −0.5, η(Q, 0.2, 0.8) = 292.93), (ρ = −0.75, η(Q, 0.2, 0.8) = 73.47)
and (ρ = −1, η(Q,0.2, 0.8) = 37.70).

To compute the confidence intervals of the estimators under simulation, we need an optimal
number of k, whose choice is a serious challenge. The algorithm of [39], Page 137, gives
an automatic choice of the number of top extremes k for tail index estimators in γ̂•n,k.
According to these authors, an automatic choice of top extremes used in γ̂•n,k is as the
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value k∗ that minimizes

1

k

k∑
j=1

jδ
∣∣∣γ̂•n,j − median

(
γ̂•n,1, ..., γ̂

•
n,k

)∣∣∣, 10 ≤ k ≤ mn, (54)

where 0 ≤ δ < 1/2. By the way, choosing δ = 1/4, we compute the optimal values
k∗ as in (54) for each tail index estimator used in the computation of their associated
QSR index estimators. In the Table 1, Table 2 and Table 3, we present the results of
the estimated values of the above mentioned QSR index estimators with respect to the
sample size. Remarking that from Theorem 1 and Theorem 2, the asymptotic variances
of the QSR index estimators under study depend on unknown parameters, we opt to use
a block bootstrapping method to construct a 95% confidence interval for the QSR index
estimates. The block bootstrapping follows the routine boot of the package boot in R
software. By repeating such bootstrapping procedure T = 10, 000 times, we obtain T
bootstrapped estimates for each QSR index estimator. The sample standard deviation
across the T estimates gives an estimate of the standard deviation of the underlying QSR
index estimators for given k ∈ {10, ...,mn}. We construct the 95% confidence interval
using the point estimate and the estimated standard deviation. This procedure is applied
to all values of k of each estimator. The point estimates of QSR index at its optimal value
k∗ as well as the lower and upper bounds of the confidence intervals are given in Table 1,
Table 2 and Table 3.

Based on these simulations, we can draw the following conclusions:

• It appears on Figure 2 that the closer ρ is to 0, the more important is the bias of

η̃
(K

∆̂∗
opt

)

n,k, ρ̂ (0.2, 0.8) with a longer stability as a function of k. The bias is also less variable
than the two others for the lowest values of k. Also, The effect of the bias correction on
the MSE is well illustrated on Figure 2. We can observe that the MSE of the reduced-bias

estimator η̃
(K

∆̂∗
opt

)

n,k, ρ̂ (0.2, 0.8) is almost constant with respect to k, especially when bias of

η̂
(K)
n,k (0.2, 0.8) and η̂

(K2,ρ̄)
n,k (0.2, 0.8) are strong, i.e, when ρ is close to 0.

• After the inspection of the tables, two conclusions can be drawn regardless of the
situation. First, we notice that the absolute bias of both estimators increases as ρ goes to
0. Second, the reduced bias estimator is more efficient than the biased estimators regard-
less to the absolute bias, the median squared errors and the cover values when ρ is closer
to 0. That illustrates well our conclusions drawn from the graphical analysis.
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Figure 1: Absolute bias of the median of η̂
(K)
n,k (0.2, 0.8) (black line), η̂

(K2,ρ̄)

n,k (0.2, 0.8) (blue line) and

η̃
(K

∆̂∗
opt

)

n,k,ρ̂ (0.2, 0.8) (red line) as a function of k based on N = 500 samples of size 1000 (top), 1500 (mid-

dle) and 2000 (down) for QSR index η(Q, 0.2, 0.8) from a Burr distribution defined as F (x) = (1 + x− 3ρ
2 )1/ρ.

From the left to the right: (ρ = −0.5, η(Q, 0.2, 0.8) = 292.93), (ρ = −0.75, η(Q, 0.2, 0.8) = 73.47) and
(ρ = −1, η(Q,0.2, 0.8) = 37.70).
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Figure 2: Median Squared Errors (MSE) of η̂
(K)
n,k (0.2, 0.8) (black line), η̂

(K2,ρ̄)

n,k (0.2, 0.8) (blue line) and

η̃
(K

∆̂∗
opt

)

n,k,ρ̂ (0.2, 0.8) (red line) as a function of k based on N = 500 samples of size 1000 (top), 1500 (mid-

dle) and 2000 (down) for QSR index η(Q, 0.2, 0.8) from a Burr distribution defined as F (x) = (1 + x− 3ρ
2 )1/ρ.

From the left to the right: (ρ = −0.5, η(Q, 0.2, 0.8) = 292.93), (ρ = −0.75, η(Q, 0.2, 0.8) = 73.47) and
(ρ = −1, η(Q, 0.2, 0.8) = 37.70).

6. Conclusion

In this paper, we introduced a large class of asymptotically normal estimators of the Quintile
Share Ratio (QSR) index for heavy tailed income distributions. From that class, we derived a
bias reduction procedure and we proposed an unbiased estimator with minimal variance of the
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Table 1: Estimation results of the QSR index estimators η̃
(K∆̂∗

opt
)

n,k,ρ̂ (0.2, 0.8), η̂
(K)
n,k∗(0.2, 0.8) and

η̂
(K2,ρ̄)
n,k∗ (0.2, 0.8) with their 95% confidence intervals, computed with their associated optimal num-
bers of top statistics k∗, based on N = 500 samples of size n = 1000, from a Burr distribution defined

as F (x) = (1 + x− 3ρ
2 )1/ρ. The true values of the QSR index are η(Q, 0.2, 0.8) = 292.93 for ρ = −0.5,

η(Q, 0.2, 0.8) = 73.47, for ρ = −0.75 and η(Q, 0.2, 0.8) = 37.70 for ρ = −1.

n = 1000

ρ γ-estimates QSR-estimates Abias MSE 95%-Conf. Int Cover

γ̂
(K)
n,k∗ 0.831 η̂

(K)
n,k∗(0.2, 0.8) 396.559 0.353 0.165 (287.176; 698.188) 411.012

-0.5 γ̂
(K2,ρ̄)
n,k∗ 0.864 η̂

(K2,ρ̄)
n,k∗ (0.2, 0.8) 404.973 0.382 0.367 (280.834; 712.542) 431.708

γ̂
(K∆̂∗

opt
)

n,k∗ 0.733 η̃
(K∆̂∗

opt
)

n,k∗,ρ̂ (0.2, 0.8) 297.701 0.016 0.055 (257.609; 310.992) 53.382

γ̂
(K)
n,k∗ 0.749 η̂

(K)
n,k∗(0.2, 0.8) 84 0.143 0.032 (70.909; 104.751) 33.841

-0.75 γ̂
(K2,ρ̄)
n,k∗ 0.768 η̂

(K2,ρ̄)
n,k∗ (0.2, 0.8) 89.821 0.222 0.059 (69.444; 131.834) 62.390

γ̂
(K∆̂∗

opt
)

n,k∗ 0.687 η̃
(K∆̂∗

opt
)

n,k∗,ρ̂ (0.2, 0.8) 75.140 0.009 0.028 (66.043; 75.648) 9.604

γ̂
(K)
n,k∗ 0.736 η̂

(K)
n,k∗(0.2, 0.8) 42.859 0.136 0.024 (36.466; 44.092) 7.626

-1 γ̂
(K2,ρ̄)
n,k∗ 0.754 η̂

(K2,ρ̄)
n,k∗ (0.2, 0.8) 46.517 0.203 0.056 (36.106; 49.632) 13.526

γ̂
(K∆̂∗

opt
)

n,k∗ 0.672 η̃
(K∆̂∗

opt
)

n,k∗,ρ̂ (0.2, 0.8) 37.810 0.002 0.018 (34.252; 38.446) 4.193

Table 2: Estimation results of the QSR index estimators η̃
(K∆̂∗

opt
)

n,k,ρ̂ (0.2, 0.8), η̂
(K)
n,k∗(0.2, 0.8) and

η̂
(K2,ρ̄)
n,k∗ (0.2, 0.8) with their 95% confidence intervals, computed with their associated optimal num-
bers of top statistics k∗, based on N = 500 samples of size n = 1500, from a Burr distribution defined

as F (x) = (1 + x− 3ρ
2 )1/ρ. The true values of the QSR index are η(Q, 0.2, 0.8) = 292.93 for ρ = −0.5,

η(Q, 0.2, 0.8) = 73.47, for ρ = −0.75 and η(Q, 0.2, 0.8) = 37.70 for ρ = −1.

n = 1500

ρ γ-estimates QSR-estimates Abias MSE 95%-Conf. Int Cover

γ̂
(K)
n,k∗ 0.817 η̂

(K)
n,k∗(0.2, 0.8) 380.375 0.298 0.108 (284.818; 667.245) 382.427

-0.5 γ̂
(K2,ρ̄)
n,k∗ 0.850 η̂

(K2,ρ̄)
n,k∗ (0.2, 0.8) 392.540 0.369 0.267 (281.455; 702.841) 421.386

γ̂
(K∆̂∗

opt
)

n,k∗ 0.717 η̃
(K∆̂∗

opt
)

n,k∗,ρ̂ (0.2, 0.8) 295.998 0.010 0.038 (258.821; 303.800) 44.978

γ̂
(K)
n,k∗ 0.735 η̂

(K)
n,k∗(0.2, 0.8) 81.594 0.132 0.029 (69.898, 100.133) 30.235

-0.75 γ̂
(K2,ρ̄)
n,k∗ 0.762 η̂

(K2,ρ̄)
n,k∗ (0.2, 0.8) 86.718 0.213 0.038 (69.231; 124.037) 54.806

γ̂
(K∆̂∗

opt
)

n,k∗ 0.674 η̃
(K∆̂∗

opt
)

n,k∗,ρ̂ (0.2, 0.8) 73.599 0.006 0.018 (66.998; 73.983) 6.985

γ̂
(K)
n,k∗ 0.728 η̂

(K)
n,k∗(0.2, 0.8) 42.206 0.119 0.018 (37.105; 43.399) 6.293

-1 γ̂
(K2,ρ̄)
n,k∗ 0.749 η̂

(K2,ρ̄)
n,k∗ (0.2, 0.8) 45.521 0.198 0.038 (36.469; 47.377) 10.907

γ̂
(K∆̂∗

opt
)

n,k∗ 0.669 η̃
(K∆̂∗

opt
)

n,k∗,ρ̂ (0.2, 0.8) 37.369 0.001 0.014 (34.357, 37.751) 3.394

QSR index. Comparing the bias reduction procedure to the alternative estimators, our unbiased
estimator provides, in addition to lower absolute bias and median squared error in general, more
stability over the number of top statistics k, especially when bias of the alternative estimators
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Table 3: Estimation results of the QSR index estimators η̃
(K∆̂∗

opt
)

n,k,ρ̂ (0.2, 0.8), η̂
(K)
n,k∗(0.2, 0.8) and

η̂
(K2,ρ̄)
n,k∗ (0.2, 0.8) with their 95% confidence intervals, computed with their associated optimal num-
bers of top statistics k∗, based on N = 500 samples of size n = 2000, from a Burr distribution defined

as F (x) = (1 + x− 3ρ
2 )1/ρ. The true values of the QSR index are η(Q, 0.2, 0.8) = 292.93 for ρ = −0.5,

η(Q, 0.2, 0.8) = 73.47, for ρ = −0.75 and η(Q, 0.2, 0.8) = 37.70 for ρ = −1.

n = 2000

ρ γ-estimates QSR-estimates Abias MSE 95%-Conf. Int Cover

γ̂
(K)
n,k∗ 0.782 η̂

(K)
n,k∗(0.2, 0.8) 352.200 0.223 0.102 (286.512; 574.367) 287.855

-0.5 γ̂
(K2,ρ̄)
n,k∗ 0.804 η̂

(K2,ρ̄)
n,k∗ (0.2, 0.8) 371.115 0.279 0.212 (282.517; 621.934) 339.417

γ̂
(K∆̂∗

opt
)

n,k∗ 0.692 η̃
(K∆̂∗

opt
)

n,k∗,ρ̂ (0.2, 0.8) 293.616 0.008 0.018 (271.012; 297.014) 26.002

γ̂
(K)
n,k∗ 0.727 η̂

(K)
n,k∗(0.2, 0.8) 79.682 0.117 0.012 (71.515; 101.509) 29.994

-0.75 γ̂
(K2,ρ̄)
n,k∗ 0.758 η̂

(K2,ρ̄)
n,k∗ (0.2, 0.8) 82.763 0.185 0.024 (70.208; 130.772) 60.563

γ̂
(K∆̂∗

opt
)

n,k∗ 0.668 η̃
(K∆̂∗

opt
)

n,k∗,ρ̂ (0.2, 0.8) 73.416 0.0007 0.010 (68.456; 73.943) 5.486

γ̂
(K)
n,k∗ 0.714 η̂

(K)
n,k∗(0.2, 0.8) 40.918 0.085 0.009 (36.921; 43.617) 6.695

-1 γ̂
(K2,ρ̄)
n,k∗ 0.731 η̂

(K2,ρ̄)
n,k∗ (0.2, 0.8) 43.246 0.146 0.019 (35.998; 48.017) 12.018

γ̂
(K∆̂∗

opt
)

n,k∗ 0.657 η̃
(K∆̂∗

opt
)

n,k∗,ρ̂ (0.2, 0.8) 37.461 0.0005 0.0007 (35.149; 37.706) 2.557

are strong. The comparison are also made at their optimal point of top statistics and with their
95% confidence intervals, constructed from a Bootstrap methodology. The results show that, the
reduced bias estimator is more efficient than alternative estimators regardless to the absolute bias,
the median squared errors and the coverage. An important feature expected in this type of of bias
reduction approach to be applicable in practice. In application, the unbiased estimator can be
proposed to any heavy-tailed income distributions for which QSR index needs to be calculated.
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[32] Matti Langel and Yves Tillé. Statistical inference for the quintile share ratio. Journal of
Statistical Planning and Inference, 141(10):2976–2985, 2011.

[33] G.S. Lo and A. M. Fall. Another look at second order condition in extreme value theory.
Afrika Statistika, 6:346–370, 2011.

[34] A. Necir, A. Rassoul, and R. Zitikis. Estimating the conditional tail expectation in the case
of heavy-tailed losses. Journal of Probability and Statistics, ID 596839:17 pages, 2010.

[35] G. Osier. Variance estimation: the linearization approach applied by eurostat to the 2004
silc operation. Technical Report, Eurostat and Statistics Finland Methodological Workshop on
EU-SILC, 2006.

[36] G. Osier. Variance estimation for complex indicators of poverty and inequality using lineariza-
tion techniques. Survey Research Methods, 3:167–195, 2009.

[37] L. Peng. Estimating the mean of a heavy tailed distribution. Stat. Prob. Lett., 52:255–264,
2001.



REFERENCES 2543

[38] L. Peng and Y. Qi. Estimating the first- and second-order parameters of a heavy-tailed
distribution. Aust. N. Z. J. Stat., 46(2):305–312, 2004.

[39] R. D. Reiss and M. Thomas. Statistical Analysis of Extreme Values with Applications to
Insurance, Finance, Hydrology and Other Fields. Birkhäuser, 3rd edition, 2007.
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