$1$-movable $2$-Resolving Hop Domination in Graph
DOI:
https://doi.org/10.29020/nybg.ejpam.v16i3.4770Keywords:
1-movable 2-resolving hop dominating set, 1-movable 2-resolving hop domination number, join, corona, edge corona, lexicographic productAbstract
Let $G$ be a connected graph. A set $S$ of vertices in $G$ is a 1-movable 2-resolving hop dominating set of $G$ if $S$ is a 2-resolving hop dominating set in $G$ and for every $v \in S$, either $S\backslash \{v\}$ is a 2-resolving hop dominating set of $G$ or there exists a vertex $u \in \big((V (G) \backslash S) \cap N_G(v)\big)$ such that $\big(S \backslash \{v\}\big) \cup \{u\}$ is a 2-resolving hop dominating set of $G$. The 1-movable 2-resolving hop domination number of $G$, denoted by $\gamma^{1}_{m2Rh}(G)$ is the smallest cardinality of a 1-movable 2-resolving hop dominating set of $G$. In this paper, we investigate the concept and study it for graphs resulting from some binary operations. Specifically, we characterize the 1-movable 2-resolving hop dominating sets in the join, corona and lexicographic products of graphs, and determine the bounds of the 1-movable 2-resolving hop domination number of each of these graphs.Downloads
Published
Issue
Section
License
Copyright (c) 2023 European Journal of Pure and Applied Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.