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Abstract. Let G be a connected graph. A set S of vertices in G is a 1-movable 2-resolving hop
dominating set of G if S is a 2-resolving hop dominating set in G and for every v ∈ S, either
S\{v} is a 2-resolving hop dominating set of G or there exists a vertex u ∈

(
(V (G)\S) ∩NG(v)

)
such that

(
S\{v}

)
∪ {u} is a 2-resolving hop dominating set of G. The 1-movable 2-resolving

hop domination number of G, denoted by γ1
m2Rh(G) is the smallest cardinality of a 1-movable 2-

resolving hop dominating set of G. In this paper, we investigate the concept and study it for graphs
resulting from some binary operations. Specifically, we characterize the 1-movable 2-resolving hop
dominating sets in the join, corona and lexicographic products of graphs, and determine the bounds
of the 1-movable 2-resolving hop domination number of each of these graphs.
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1. Introduction

The concept of domination was formally studied by Claude Berge [1] in 1958 and
Oystein Ore in 1962. In 2015, Natarajan and Ayyaswamy introduced and studied the
concept of hop domination [14].

On the other hand, in 1975 using the term locating set, the concept of resolving sets
for a connected graph was first introduced by Slater [17]. These concepts were studied
much earlier in the context of the coin-weighing problem. Later that year, Harary and
Melter introduced independently these concepts, but with different terminologies [8]. The
term metric dimension was used by Harary and Melter instead of locating number.

Recently, 2-resolving hop dominating sets in graphs was studied in [9]. Other
variations of 2-resolving hop dominating sets in graphs are found in [10, 11]. Moreover,
other variations of resolving sets and hop dominating sets in graphs were also studied in
[4–7, 12, 13].
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2. Terminology and Notation

In this study, we consider finite, simple, connected, undirected graphs. For basic graph-
theoretic concepts, we then refer readers to [2] and [3]. The following concepts are found
in [2], [14], and [16], respectively.

Let G be a connected graph. A vertex v in G is a hop neighbor of vertex u in G
if dG(u, v) = 2. The set NG(u, 2) = {v ∈ V (G) : dG(v, u) = 2} is called the open hop
neighborhood of u. The closed hop neighborhood of u in G is given by NG[u, 2] = NG(u, 2)∪
{u}. The open hop neighborhood of X ⊆ V (G) is the set NG(X, 2) =

⋃
u∈X NG(u, 2). The

closed hop neighborhood of X in G is the set NG[X, 2] = NG(X, 2) ∪X.
A set S ⊆ V (G) is a hop dominating set of G if NG[S, 2] = V (G), that is, for every

v ∈ V (G)\S, there exists u ∈ S such that dG(u, v) = 2. The minimum cardinality of a
hop dominating set of G, denoted by γh(G), is called the hop domination number of G.
Any hop dominating set with cardinality equal to γh(G) is called a γh-set.

For an ordered set of vertices W = {w1, w2, ..., wk} ⊆ V (G) and a vertex v in G, we
refer to the k-vector (ordered k-tuple)

rG(v/W ) = (dG(v, w1), dG(v, w2), ..., dG(v, wk))

as the (metric) representation of v with respect to W . The set W is called a resolving set
for G if distinct vertices have distinct representations with respect to W . Hence, if W is a
resolving set of cardinality k for a graph G of order n, then the set {rG(v/W ) : v ∈ V (G)}
consists of n distinct k-vectors. A resolving set of minimum cardinality is called aminimum
resolving set or a basis, and the cardinality of a basis for G is the dimension dim(G) of G.
An ordered set of vertices W = {w1, ..., wk} is a k-resolving set for G if, for any distinct
vertices u, v ∈ V (G), the (metric) representations rG(u/W ) and rG(v/W ) of u and v,
respectively, differ in at least k positions. If k = 1, then the k-resolving set is called a
resolving set for G. If k = 2, then the k-resolving set is called a 2-resolving set for G. If G
has a k-resolving set, the minimum cardinality dimk(G) of a k-resolving set is called the
k-metric dimension of G.

A set S of vertices in G is a 1-movable 2-resolving hop dominating set of G if S is a
2-resolving hop dominating set in G and for every v ∈ S, either S\{v} is a 2-resolving
hop dominating set of G or there exists a vertex u ∈

(
(V (G)\S) ∩ NG(v)

)
such that(

S\{v}
)
∪ {u} is a 2-resolving hop dominating set of G. The 1-movable 2-resolving hop

domination number of G, denoted by γ1m2Rh(G) is the smallest cardinality of a 1-movable
2-resolving hop dominating set of G. Any 1-movable 2-resolving hop dominating set of
cardinality γ1m2Rh(G) is referred to as a γ1m2Rh -set of G.

Definition 1. [6] LetG be any nontrivial connected graph and S ⊆ V (G). A set S ⊆ V (G)
is a 2-locating set of G if it satisfies the following conditions:

(i)
∣∣[(NG(x)\NG(y)

)
∩S]∪ [

(
NG(y)\NG(x)

)
∩S]

∣∣ ≥ 2, for all x, y ∈ V (G)\S with x ̸= y.

(ii)
(
NG(v)\NG(w)

)
∩ S ̸= ∅ or

(
NG(w)\NG[v]

)
∩ S ̸= ∅, for all v ∈ S and for all

w ∈ V (G)\S.
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The 2-locating number of G, denoted by ln2(G), is the smallest cardinality of a 2-locating
set of G. A 2-locating set of G of cardinality ln2(G) is referred to as an ln2-set of G.

Definition 2. [15] A set D ⊆ V (G) is a point-wise non-dominating set of G if for each
v ∈ V (G)\D, there exists u ∈ D such that v /∈ NG(u). The smallest cardinality of a point-
wise non-dominating set of G, denoted by pnd(G), is called the point-wise non-domination
number of G. Any point-wise non-dominating set D of G with |D| = pnd(G), is called a
pnd-set of G.

Definition 3. [9] A 2-locating set S ⊆ V (G) which is point-wise non-dominating is called
a 2-locating point-wise non-dominating set in G. The minimum cardinality of a 2-locating
point-wise non-dominating set in G, denoted by lnpnd

2 (G) is called the 2-locating point-wise
non-domination number of G. Any 2-locating point-wise non-dominating set of cardinality
lnpnd

2 (G) is then referred to as a lnpnd
2 (G)-set in G.

Definition 4. [6] Let G be any nontrivial connected graph and S ⊆ V (G). S is a (2, 2)-
locating ((2, 1)-locating, respectively) set in G if S is 2-locating and |NG(y)∩ S| ≤ |S| − 2
(|NG(y)∩S| ≤ |S|− 1, respectively), for all y ∈ V (G). The (2, 2)-locating ( (2, 1)-locating,
respectively) number of G, denoted by ln(2,2)(G) (ln(2,1)(G), respectively), is the smallest
cardinality of a (2, 2)-locating ((2, 1)-locating, respectively) set in G. A (2, 2)-locating
((2, 1)-locating, respectively) set in G of cardinality ln(2,2)(G) (ln(2,1)(G), respectively) is
referred to as an ln(2,2)-set (ln(2,1)-set, respectively) in G.

Definition 5. [9] A (2,2)-locating ((2,1)-locating, respectively) set S ⊆ V (G) which is
a point-wise non-dominating is called a (2,2)-locating point-wise non-dominating ((2,1)-
locating point-wise non-dominating, respectively) set in G. The minimum cardinality
of a (2,2)-locating point-wise non-dominating ((2,1)-locating point-wise non-dominating,

respectively) set in G, denoted by lnpnd
(2,2)(G) (lnpnd

(2,1)(G),respectively) is called the (2,2)-

locating point-wise non-domination ((2,1)-locating point-wise non-domination) number of
G. Any (2,2)-locating point-wise non-dominating ((2,1)-locating point-wise non-dominating,

respectively) set of cardinality lnpnd
(2,2)(G) (lnpnd

(2,1)(G), respectively) is then referred to as a

lnpnd
(2,2)-set (ln

pnd
(2,1)-set) in G.

Definition 6. A set S ⊆ V (G) is a 1-movable 2-locating point-wise non-dominating set in
G if S is a 2-locating point-wise non-dominating set in G and for every v ∈ S, either S\{v}
is a 2-locating point-wise non-dominating set or there exists a vertex u ∈

(
(V (G)\S) ∩

NG(v)
)
such that

(
S\{v}

)
∪ {u} is a 2-locating point-wise non-dominating set of G. The

1-movable 2-locating point-wise non-domination number of G, denoted by mlnpnd
2 (G) is

the smallest cardinality of a 1-movable 2-locating point-wise non-dominating set of G. Any
1-movable 2-locating point-wise non-dominating set of cardinality mlnpnd

2 (G) is referred

to as a mlnpnd
2 -set of G.

Definition 7. A set S ⊆ V (G) is a 1-movable (2, 2)-locating point-wise non-dominating
((2, 1)-locating point-wise non-dominating, respectively) in G if S is a (2, 2)-locating point-
wise non-dominating ((2, 1)-locating point-wise non-dominating, respectively) set in G and
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for every v ∈ S, either S\{v} is a 2-locating point-wise non-dominating set or there
exists a vertex u ∈

(
(V (G)\S) ∩NG(v)

)
such that

(
S\{v}

)
∪ {u} is (2, 2)-locating point-

wise non-dominating ((2, 1)-locating point-wise non-dominating, respectively) set in G.
The 1-movable (2,2)-locating point-wise non-domination ((2,1)-locating point-wise non-

domination) number of G, denoted by mlnpnd
(2,2)(G) (mlnpnd

(2,1)(G),respectively) is s the

smallest cardinality of a 1-movable called the (2,2)-locating point-wise non-dominating
((2,1)-locating point-wise non-dominating) number set of G. Any 1-movable (2,2)-locating
point-wise non-dominating ((2,1)-locating point-wise non-dominating, respectively) set of

cardinality mlnpnd
(2,2)(G) (mlnpnd

(2,1)(G), respectively) is then referred to as a mlnpnd
(2,2)-set

(mlnpnd
(2,1)-set) in G.

3. Preliminary Results

Remark 1. A 1-movable 2-resolving hop dominating set does not always exist in a graph
G.

Example 1. A complete bipartite graph Km,n and a complete graph Kn do not admit
1-movable 2-resolving hop dominating set.

Remark 2. Let G be a nontrivial connected graph. If S is a 2-resolving set in G,
then {x, y} ⊆ S for every x, y ∈ V (G) with x ̸= y and dG(x, z) = dG(y, z) for each
z ∈ V (G)\{x, y}.

Proposition 1. Let G be a nontrivial connected graph. Then G admits a 1 -movable
2-resolving hop dominating set if and only if γ(G) ̸= 1, dim2(G) ̸= V (G) and G is a
free-equidistant graph.

Proof. Suppose that G admits a 1-movable 2-resolving hop dominating set. Let S be a
1-movable 2-resolving hop dominating set of G. Suppose γ(G) = 1. Let
A = {x ∈ V (G) : {x} is a dominating set of G}. Then A ̸= ∅ since γ(G) = 1. Since
S is a hop dominating set, A ⊆ S. Let x ∈ A. Then S \ {x} and (S \ {x}) ∪ {y} for each
y ∈ ((V (G) \ S) ∩NG(x)) are not hop dominating sets of G. Thus, S is not a 1-movable
2-resolving hop dominating set. Therefore, γ(G) ̸= 1. If dim2(G) = V (G), then V (G)\{z}
for each z ∈ V (G) is not a 2-resolving set. Thus, S is not a 1-movable 2-resolving hop
dominating set. Therefore, dim2(G) ̸= V (G). If G is not a free-equidistant graph, then
there exist a pair of vertices y, w ∈ V (G) with dG(w, z) = dG(y, z) for all z ∈ V (G)\{y, w}.
By Remark 2, y, w ∈ S. Hence, rG(y/(S\{y})) and rG(w/(S\{y})) differ in at most one
position. Thus, S is not a 1-movable 2-resolving hop dominating set. Therefore, G is a
free-equidistant graph.

Conversely, suppose that γ(G) ̸= 1, dim2(G) ̸= V (G) and G is a free-equidistant
graph. Let S = V (G). Then S is a 2-resolving hop dominating set in G. For each x ∈ S,
S \ {x} is a 2-resolving set in G since dim2(G) ̸= V (G) and G is a free-equidistant graph.
Also, since {x} is not a dominating set, there exists y ∈ (S \ {x}) ∩ NG(x, 2). Hence,
S \ {x} is a hop dominating set of G. Therefore, S \ {x} is a 2-resolving hop dominating
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set in G for each x ∈ S. It follows that S is a 1-movable 2-resolving hop dominating set
in G. Accordingly, G admits 1-movable 2-resolving hop dominating set.

Remark 3. Every 1-movable 2-resolving hop dominating set in G is a 2-resolving hop
dominating set in G. Thus, γ2Rh(G) ≤ γ1m2Rh(G).

Proposition 2. (i) For a path Pn on n vertices (n ≥ 4),

γ1m2Rh(Pn) = n.

(ii) For a cycle Cn on n vertices,

γ1m2Rh(Cn) =

3, if n = 5;
2n+ k

3
, if n = k(mod 3), 0 ≤ k ≤ 2 and n > 5.

Proof. Let Pn = [v1, v2, v3, . . . vn]. By Proposition 1, V (Pn) is a 1-movable 2-resolving
hop dominating set. Suppose Si = V (Pn)\{vi1 , vi2 , . . . vik} is a 2-resolving hop dominating
set in Pn for 1 ≤ k ≤ n− 2. Note that 0 < |NPn(vim , 2)| ≤ 2 for each m ∈ {1, 2, . . . k}. If
|NPn(vim , 2)| = 1, then Si \{vj} is not a hop dominating set for vj ∈ NPn(vim , 2). Suppose
|NPn(vim , 2)| = 2. Let vj , vl ∈ NPn(vim , 2). If |NPn(vj , 2)| = 1 or |NPn(vl, 2)| = 1, then
Si\{vj} or Si\{vl} is not a hop dominating set in Pn. On the other hand, if |NPn(vj , 2)| = 2
or |NPn(vl, 2)| = 2, then Si \ {vp} or Si \ {vq} is not a hop dominating set where
vp ∈ NPn(vj , 2) and vq ∈ NPn(vl, 2). Thus, Si is not a 1-movable 2-resolving hop dominat-
ing set in Pn. Therefore, γ

1
m2Rh(Pn) = n.

(ii) Let Cn = [v1, v2, . . . , vn] and S be a γ1m2Rh- set of Cn. The case when n = 5 can be
verified. Next, let n > 5 and n ≡ k(mod 3) where 0 ≤ k ≤ 2. Then n = 3r + k. Hence,

r =
n− k

3
. Then the set

S = {v1, v3, v4, v6, v7, v9, v10, v12, v13, . . . , v3r+k−3, v3r+k−2, . . . , v3r+k}

is a γ1m2Rh- set of Cn. Therefore, |S| = 3r + k − r =
2n+ k

3
.

Now, consider the following results of 1-movable 2-locating point-wise non-dominating
sets which are used in characterizing the 1-movable 2-resolving hop dominating sets in
some binary operations.

Remark 4. A 1-movable 2-locating point-wise non-dominating set does not always exist
in a graph G.

Example 2. A complete bipartite graph Km,n and a complete graph Kn do not admit
1-movable 2-locating point-wise non-dominating set.

Remark 5. Let G be a nontrivial connected graph. If S is a 2-locating set in G, then
{x, y} ⊆ S for every x, y ∈ V (G) with x ̸= y and NG(x) = NG(y).



A.M. Mahistrado, H. Rara / Eur. J. Pure Appl. Math, 16 (3) (2023), 1464-1479 1469

Proposition 3. Let G be a nontrivial connected graph. Then G admits a 1-movable
2-locating set if and only if G is a point determining graph.

Proof. Let S be a 1-movable 2-locating set of G. Suppose G is not a point determining
graph. Then there exist x, y ∈ V (G) with x ̸= y and NG(x) = NG(y). This implies that
x, y ∈ S by Remark 5. Thus, S \ {x} and (S \ {x}) ∪ {z} are not 2-locating sets where
z ∈ (V (G) \ S) ∩NG(x). Thus, G is a point determining graph.

Conversely, suppose G is a point determining graph. Let S = V (G). Then S is a
2-locating set of G. Since G is a point determining graph, S \ {x} is a 2-locating set for
all x ∈ S. Therefore, G admits a 1-movable 2-locating set.

Proposition 4. Let G be a nontrivial connected graph. Then G admits a 1-movable
2-locating point-wise non-dominating set if and only if G is a point determining graph
where γ(G) ̸= 1.

Proof. Let S be a 1-movable 2-locating point-wise non-dominating set of G. Suppose
γ(G) = 1. Set A = {x ∈ V (G) : {x} is a dominating set of G}. Then A ̸= ∅ since
γ(G) = 1. Since S is a point-wise non-dominating set, A ⊆ S. Let x ∈ A. Then S\{x}
and

(
S\{x}

)
∪ {y} for each

y ∈ V (G)\S ∩ NG(x) are not point-wise non-dominating sets of G. Thus, S is not a
1-movable 2-locating point-wise non-dominating set. Therefore, γ(G) ̸= 1. By Proposition
3, G is a point determining graph.

Conversely, suppose G is a point determining graph where γ(G) ̸= 1. Then by
Proposition 3, S = V (G) is a 1-movable 2-locating set. Thus, S is a 1-movable 2-locating
point-wise non-dominating set of G. Accordingly, G admits a 1-movable 2-locating point-
wise non-dominating set.

Proposition 5. Let G be a nontrivial connected graph of order n ≥ 4. Then

(i)

mlnpnd
2 (Pn) =

n, if n = 4, 5;
2n+ k

3
, if n = k(mod 3), 0 ≤ k ≤ 2 and n > 5;

(ii)

mlnpnd
(2,1)(Pn) = mlnpnd

(2,2)(Pn)

=

n, if n = 5;
2n+ k

3
, if n = k(mod 3), 0 ≤ k ≤ 2 and n > 5;

(iii)

mlnpnd
2 (Cn) =

3, if n = 5;
2n+ k

3
, if n = k(mod 3), 0 ≤ k ≤ 2 and n > 5;
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(iv)

mlnpnd
(2,1)(Cn) =

3, if n = 5;
2n+ k

3
, if n = k(mod 3), 0 ≤ k ≤ 2 and n > 5;

(v)

mlnpnd
(2,2)(Cn) =

5, if n = 5;
2n+ k

3
, if n = k(mod 3), 0 ≤ k ≤ 2 and n > 5.

Proof. (i) Let Pn = [v1, v2, . . . , vn] and S be an mlnpnd
2 - set of Pn. The case where

n = 4, 5 can be verified. Next, let n > 5 and n ≡ k(mod 3) where 0 ≤ k ≤ 2. Then

n = 3r + k. Hence, r =
n− k

3
. Then the set

S = {v1, v3, v4, v6, v7, v9, v10, v12, v13, . . . , v3r+k−3, v3r+k−2, . . . , v3r+k}

is an mlnpnd
2 - set of Pn. Therefore, |S| = 3r + k − r =

2n+ k

3
.

The proofs of (ii), (iii), (iv) and (v) are similar to (i).

Remark 6. Let G be a nontrivial connected graph. Then G admits a 1-movable (2, 1)-
locating point-wise non-dominating set if and only if ∆(G) ≤ |V (G)|| − 2.

Remark 7. Let G be a nontrivial connected graph. Then G admits a 1-movable (2, 2)-
locating point-wise non-dominating set if and only if ∆(G) ≤ |V (G)|| − 3.

We now characterize the 1-movable 2-resolving hop dominating sets in some graphs
under some binary operations.

4. Join of Graphs

As a consequence of Proposition 1 the next result follows.

Corollary 1. A graph G does not admit a 1-movable 2-resolving hop dominating set if
and only if G = K1 +H for any nontrivial connected graph H.

Theorem 1. [9] Let G and H be nontrivial connected graphs with
γ(G) ̸= 1 and γ(H) ̸= 1. A set S ⊆ V (G + H) is a 2-resolving hop dominating set
of G + H if and only if S = SG ∪ SH where SG = V (G) ∩ S and SH = V (H) ∩ S are
2-locating point-wise non-dominating sets of G and H, respectively where SG or SH is a
(2, 2)-locating point-wise non-dominating set or SG and SH are (2, 1)-locating point-wise
non-dominating sets.
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Theorem 2. Let G and H be nontrivial connected graphs with
γ(G) ̸= 1 and γ(H) ̸= 1. A set S ⊆ V (G + H) is a 1-movable 2-resolving hop domi-
nating set of G+H if and only if S = SG∪SH where SG = V (G)∩S and SH = V (H)∩S
are 1-movable 2-locating point-wise non-dominating sets of G and H, respectively where
SG or SH is a 1-movable (2, 2)-locating point-wise non-dominating set or SG and SH are
1-movable (2, 1)-locating point-wise non-dominating sets.

Proof. Suppose that S ⊆ V (G + H) is a 1-movable 2-resolving hop dominating set
of G + H. Since S is 2-resolving hop dominating set by Theorem 1, S = SG ∪ SH

where SG and SH are 2-locating point-wise non-dominating sets of G and H, respectively
where SG or SH is a (2, 2)-locating (point-wise non-dominating) set or SG and SH are
(2, 1)-locating (point-wise non-dominating) sets. Now, let p ∈ SG. Then p ∈ S. Thus,
S\{p} =

(
SG\{p}

)
∪ SH or

(
S\{p}

)
∪ {z} =

[(
SG\{p} ∪ {z}

)]
∪ SH for some

z ∈ NG(p)∩(V (G)\SG) or (S\{p})∪{q} = (SG\{p})∪(SH∪{q}) for some q ∈ V (H)\SH is
a 2-resolving hop dominating set inG+H. Hence, by Theorem 1, SG\{p} or (SG\{p})∪{z}
is a 2-locating point-wise non-dominating set of G. This shows that SG is a 1-movable
2-locating point-wise non-dominating set of G. Similarly, SH is a 1-movable 2-locating
point-wise non-dominating set of H. Therefore, SG and SH are 1-movable 2-locating
point-wise non-dominating sets of G and H, respectively where SG or SH is a 1-movable
(2, 2)-locating (point-wise non-dominating) set or SG and SH are 1-movable (2, 1)-locating
(point-wise non-dominating) sets.

Conversely, suppose that SG and SH satisfy the given conditions. Then by
Theorem 1, S = SG ∪ SH is a 2-resolving hop dominating set in G + H. Let p ∈ S.
If p ∈ SG, then S\p = (SG\{p})∪SH or (S\{p})∪{w} =

[
(SG\{p})∪{w}

]
∪SH for some

w ∈ NG(p)∩ (V (G)\SG) is a 2-resolving hop dominating set in G+H. Similarly, suppose
that p ∈ SH . Then S\{p} = (SH\{p})∪SG or (S\{p})∪{w} =

[
(SH\{p})∪{w}

]
∪SG for

some w ∈ NH(p) ∩ (V (H)\SH) is a 2-resolving hop dominating set in G+H. Therefore,
S is a 1-movable 2-resolving hop dominating set in G+H.

Corollary 2. Let G and H be nontrivial connected graphs with γ(G) ̸= 1 and γ(H) ̸= 1.
Then

γ1m2Rh(G+H) =min{mlnpnd
(2,2)(G) +mlnpnd

(2) (H),mlnpnd
(2) (G) +mlnpnd

(2,2)(H),

mlnpnd
(2,1)(G) +mlnpnd

(2,1)(H)}.
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5. Corona of Graphs

Theorem 3. [9] Let G and H be nontrivial connected graphs. A set
S ⊆ V (G ◦H) is a 2-resolving hop dominating set of G ◦H if and only if

S = A ∪

 ⋃
v∈V (G)∩NG(A)

Sv

 ∪

 ⋃
w∈V (G)\NG(A)

Dw


where

(i) A ⊆ V (G) such that for each w ∈ V (G)\A, there exists x ∈ A with dG(w, x) = 2 or
there exists y ∈ V (G) ∩NG(w) with V (Hy) ∩ S ̸= ∅;

(ii) Sv ⊆ V (Hv) is a 2-locating set of Hv for all v ∈ V (G) ∩NG(A); and

(iii) Dw ⊆ V (Hw) is a 2-locating point-wise non-dominating set of Hw for all
w ∈ V (G)\NG(A).

Theorem 4. Let G and H be nontrivial connected graphs. Then S ⊆ V (G ◦ H) is a
1-movable 2-resolving hop dominating set of G ◦H if and only if S ∩ V (Hv) ̸= ∅ and

S = A ∪

 ⋃
v∈V (G)∩NG(A)

Sv

 ∪

 ⋃
w∈V (G)\NG(A)

Dw


where

(i) A ⊆ V (G)

(ii) Sv ⊆ V (Hv) is a 1-movable 2-locating set of Hv for all v ∈ V (G) ∩NG(A).

(iii) Dw ⊆ V (Hw) is a 1-movable 2-locating point-wise non-dominating set of Hw for all
w ∈ V (G)\NG(A).

Proof. Suppose that S ⊆ V (G ◦H) is a 1-movable 2-resolving hop dominating set of
G◦H. Then S is a 2-resolving hop dominating set. Let A = S∩V (G) and Sv = S∩V (Hv)
for all v ∈ V (G) ∩NG(A). By Theorem 3, Sv is a 2-locating set of Hv. Let p ∈ Sv. Since
S is a 1-movable 2-resolving hop dominating set and p ∈ S , either S\{p} or (S\{p})∪{q}
is a 2-resolving hop dominating set in G ◦ H for some q ∈ (V (G ◦ H)\S) ∩ NG◦H(p).
Now, note that S\{p} = A ∪

(
Sv\{p}

)
and (S\{p}) ∪ {q} = A ∪

(
(Sv\{p}) ∪ {q}

)
or

(S\{p}) ∪ {q} =
(
A ∪ {q}

)
∪ (Sv\{p}). Hence, either Sv\{p} or (Sv\{p}) ∪ {q} for some

q ∈ (V (Hv)\Sv)∩NHv(p) is a 2-locating set of Hv. Thus, Sv is a 1-movable 2-locating set
of Hv. Finally, suppose w ∈ V (G)\NG(A). Then by similar argument, Dw is a 1-movable
2-locating point-wise non-dominating set of Hw. Thus, (ii) follows.

Conversely, suppose that S is a set as described and satisfies the given conditions.
Then by Theorem 3, S is a 2-resolving hop dominating set. Let x ∈ S and let v ∈ V (G)
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such that x ∈ V (⟨v⟩+Hv). If x = v, then x ∈ A. By Theorem 3, S\{x} or
(
S\{x}

)
∪{y}

for some y ∈
(
V (G◦H)\S

)
∩NG◦H(x) is a 2-resolving hop dominating set. Next, suppose

that x ̸= v. Consider the following cases.
Case 1: v ∈ V (G) ∩NG(A)

Then x ∈ Sv and S\{x} = (Sv\{x})∪

( ⋃
u∈V (G)\{v}

Du

)
∪A or (S\{x})∪ {y} for some

y ∈ (V (G ◦H)\S) ∩NG◦H(x) is a 2-resolving hop dominating set, by Theorem 3.
Case 2: v ∈ V (G)\NG(A)

Then x ∈ Dv and S\{x} = (Dv\{x})∪

( ⋃
u∈V (G)\{v}

Su

)
∪A or (S\{x})∪{y} for some

y ∈ (V (G ◦H)\S) ∩NG◦H(x) is a 2-resolving hop dominating set, by Theorem 3.
Accordingly, S is a 1-movable 2-resolving hop dominating set in G ◦H.

Corollary 3. Let G and H be nontrivial connected graphs where |V (G)| = n. Then

γ1m2Rh(G ◦H) ≤ min{n ·mlnpnd
2 (H), γt(G) + n ·mln2(H)}.

Proof. Let S ⊆ V (G ◦ H) be a 1-movable 2-resolving hop dominating set of G ◦ H.
Then S ∩ V (Hv) ̸= ∅ and S ∩ V (Hv) is a 1-movable 2-locating set for each v ∈ V (G) and

S = A ∪

 ⋃
v∈V (G)∩NG(A)

Sv

 ∪

 ⋃
w∈V (G)\NG(A)

Dw


where A ⊆ V (G) and Sv and Dw satisfy the given properties in Theorem 4. Consider the
following cases for set A.
Case 1: A = ∅

Let Dw = S∩V (Hw) be an mlnpnd
2 -set of Hw for each w ∈ V (G). Thus, S =

( ⋃
v∈V (G)

Dw

)
s a 1-movable 2-resolving hop dominating set of G ◦H by Theorem 4. Implying that,

γ1m2Rh(G ◦H) ≤ |S| = |V (G)||Dw| ≤ n · (mlnpnd
2 (H)).

Case 2: A is a γt-set of G
Let NG(A) = V (G). Sv = S ∩ V (Hv) be an mln2-set of Hv for each v ∈ V (G). Thus,

S = A ∪

( ⋃
v∈V (G)

Sv

)
s a 1-movable 2-resolving hop dominating set of G ◦H by Theorem

4. Implying that,

γ1m2Rh(G ◦H) ≤ |S| = |A|+ |V (G)||Sv| ≤ γt(G) + n · (mln2(H)).
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6. Edge Corona of Graphs

Theorem 5. Let G ̸= P2 and H be any nontrivial connected graphs. A set
C ⊆ V (G ⋄H) is a 2-resolving hop dominating set of G ⋄H if and only if

C = A ∪

 ⋃
uv∈E(G)

Suv


where

(i) A ⊆ V (G);

(ii) Suv ⊆ V (Huv) is a 2-locating set of Huv for all uv ∈ E(G) or if uv is a pendant
edge, then Suv is a (2, 1)-locating set of Huv whenever l(⟨{u, v}⟩) ⊆ A and Suv is a
(2, 2)-locating set of Huv otherwise.

Theorem 6. Let G and H be any nontrivial connected graphs where γ(G) ̸= 1 and
∆(H) ≤ |V (H)| − 3. A set C ⊆ V (G ⋄H) is a 1-movable 2-resolving hop dominating set
of G ⋄H if and only if

C = A ∪

 ⋃
uv∈E(G)

Suv


where

(i) A ⊆ V (G);

(ii) Suv ⊆ V (Huv) is a 1-movable 2-locating set of Huv for all uv ∈ E(G) or if uv is a
pendant edge, then Suv is a 1-movable (2, 1)-locating set of Huv whenever
l(⟨{u, v}⟩) ⊆ A and Suv is a 1-movable (2, 2)-locating set of Huv otherwise.

Proof. Suppose that C ⊆ V (G ⋄ H) is a 1-movable 2-resolving hop dominating
set of G ⋄ H. Then C is a 2-resolving hop dominating set. Let A = C ∩ V (G) and

Suv = C ∩ V (Huv) for all uv ∈ E(G). Then C = A ∪

( ⋃
uv∈E(G)

Suv

)
where A ⊆ V (G)

and Suv ⊆ V (Huv) for all uv ∈ E(G). By Theorem 5, Suv is a 2-locating set of Huv

for all uv ∈ E(G). Let p ∈ Suv. Since C is a 1-movable 2-resolving hop dominating set
and p ∈ C, either C\{p} or (C\{p}) ∪ {q} is a 2-resolving hop dominating set of G ⋄ H
for some q ∈ (V (G ⋄ H)\C) ∩ NG⋄H(p). Now, note that C\{p} = A ∪

(
Suv\{p}

)
and

(C\{p})∪ {q} = A∪
(
(Suv\{p})∪ {q}

)
or (C\{p})∪ {q} =

(
A∪ {q})∪ (Suv\{p}). Hence,

either Suv\{p} or (Suv\{p}) ∪ {q} for some q ∈ (V (Huv)\Suv) ∩ NHuv(p) is a 2-locating
set of Huv. Thus, Suv is a 1-movable 2-locating set of Huv. Next, suppose that uv is a
pendant edge and suppose u is an end-vertex where u ∈ C. Since Suv = C ∩ V (Huv) ⊆ C
and C is a 1-movable 2-resolving set it follows by Theorem 5, Suv is a 1- movable (2, 1)-
locating set of Huv whenever l(⟨{u, v}⟩) ⊆ A and Suv is a 1-movable (2, 2)-locating set of
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Huv otherwise. Thus, (ii) holds.
Conversely, suppose that C is a set as described and satisfies the given conditions.

By Theorem 5, C is 2-resolving hop dominating set of G ⋄ H. Let p ∈ C. If p ∈ Suv,
then by assumption and Theorem 5, either C\{p} = A ∪

(
Suv\{p}

)
or (C\{p}) ∪ {q} =

A ∪
(
(Suv\{p}) ∪ {q}

)
is a 2-resolving hop dominating set of G ⋄H for some q ∈ (V (G ⋄

H)\C)∩NG⋄H(p). Therefore, C is a 1-movable 2-resolving hop dominating set ofG⋄H.

Corollary 4. Let γ(G) ̸= 1 and H a nontrivial connected graph with |E(G)| = p. Then
the following statements hold.

(i) If G is a graph with no pendant edges, then γ1m2Rh(G ⋄H) = p ·mln2(H).

(ii) If G is a graph with k ≥ 1 pendant edges, then

γ1m2Rh(G ⋄H) =min
{(

p− k
)
mln2(H) + k ·mln(2,1)(H) + k,(

p− k
)
mln2(H) + k ·mln(2,2)(H)

}
and γ1m2Rh(G ⋄H) =

(
p− k

)
mln2(H) + k ·mln(2,2)(H) whenever

mln(2,2)(H) = mln(2,1)(H).

7. Lexicographic Product of Graphs

Theorem 7. [9] Let G and H be nontrivial connected graphs. Then
W =

⋃
x∈S [{x} × Tx], where S ⊆ V (G) and Tx ⊆ V (H) for each x ∈ S, is a 2-resolving

hop dominating set in G[H] if and only if

(i) S = V (G);

(ii) Tx is a 2-locating set in H for every x ∈ V (G) ;

(iii) Tx or Ty is a (2, 1)-locating set or one of Tx and Ty is a (2, 2)-locating set in H
whenever x, y ∈ EQ1(G);

(iv) Tx and Ty are (2 − locating) dominating sets in H or one of Tx and Ty is a
2-dominating set whenever x, y ∈ EQ2(G).

(v) Tx is a 2-locating point-wise non-dominating set in H for every x ∈ S with
|NG(x, 2) ∩ S| = 0.

Theorem 8. Let G and H be nontrivial connected graphs with
△(H) ≤ |V (H)| − 3. Then W =

⋃
x∈S [{x} × Tx], where S ⊆ V (G) and Tx ⊆ V (H)

for each x ∈ S, is a 1-movable 2-resolving hop dominating set in G[H] if and only if

(i) S = V (G);

(ii) Tx is a 1-movable 2-locating set of H for every x ∈ V (G) ;
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(iii) Tx\{p} or Tx\{p}∪ {q} is a 2-locating point-wise non-dominating set of H for every
x ∈ S with |NG(x, 2) ∩ S| = 0 and p ∈ Tx and for some q ∈ NH(p).

(iv) Tx\{p} and Ty are (2, 1)-locating set or one of Tx\{p} and Ty is a (2, 2)-locating set
of H whenever x, y ∈ EQ1(G) and for each p ∈ Tx;

(v) Tx\{p} or Tx\{p}∪{q} or Ty is (2− locating) dominating sets in H or one of Tx\{p}
and Ty is a 2-dominating set whenever x, y ∈ EQ2(G) and for each p ∈ Tx and for
some q ∈ NH(p).

Proof. Suppose W is a 1-movable 2-resolving hop dominating set in G[H]. Then by
Theorem 7, S = V (G) and Tx is a 2-locating set of H for each x ∈ V (G). Let p ∈ Tx.
Then (x, p) ∈ W . Since W is a 1-movable 2-resolving hop dominating set, either

W\{(x, p)} =

 ⋃
v∈S\{x}

({v} × Tv)

 ∪ [{x} × (Tx\{p})]

or

(W\{(x, p)}) ∪ {(x, q)} =

 ⋃
z∈S\{x}

({z} × Tz)

 ∪ [{x} × (Tx\{p} ∪ {q})]

for some q ∈ (V (H)\Tx) ∩NH(p) or

(W\{(x, p)}) ∪ {(y, w)} =

 ⋃
a∈S\{(x,y)}

({a} × Ta)

 ∪ [{x} × (Tx\{p})]

∪ [{y} × (Ty\{w})]

for some y ∈ V (G)∩NG(x) and w ∈ V (H)\Ty is a 2-resolving hop dominating set of G[H].
By Theorem 7, Tx\{p} or (Tx\p) ∪ {q} is a 2-locating set of H for each p ∈ Tx and

for some q ∈ (V (H)\Tx) ∩NH(p). Hence, Tx is a 1-movable 2-locating set of H for each
x ∈ V (G) or Tx\{p} is 2-locating and (ii) holds.

If (iii) does not hold, then W\{(x, p)} and (W\{(x, p)} ∪ {(y, q)}) are not hop domi-
nating sets of G[H] for all y ∈ NG(x) and q ∈ V (H)\Tx or x = y and q ∈ NH(p). This is
a contradiction to W being a 1-movable 2-resolving hop dominating set of G[H]. Hence,
(iii) holds.

To prove (iv), let x and y be adjacent vertices of G with dG(x, z) = dG(y, z) for all
z ∈ V (G)\{x, y}. Let p, w ∈ V (H), p ̸= w. Suppose (iii) does not hold. Then there
exist a ∈ V (H)\(Tx\{p}) and w ∈ V (H)\Ty such that NH(a) ∩ (Tx\{p}) = Tx\{p} and
NH(w)∩Ty = Ty for some adjacent vertices x and y of G and for some p ∈ Tx. Hence, both
W\{(x, p)} and (W\{(x, p)}) ∪ {(y, w)} are not 2-resolving sets, a contradiction. Thus,
(iv) holds.

To prove (v), let x, y ∈ V (G) where dG(x, y) = 2 and dG(x, z) = dG(y, z) for all
z ∈ V (G)\{x, y}. Let p, w ∈ V (H), p ̸= w. Suppose one of Tx\{p} and Ty, say Tx\{p}
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is not a dominating set in H. Pick p ∈ V (H)\NH [Tx] and let w ∈ V (H)\Ty. Since
dG[H]((x, a), (y, w)) = 2, for all (y, w), it follows that |NH(b) ∩ Ty| ≥ 2, that is, Ty is a
2-dominating set. Thus, (v) holds.

Conversely, suppose that W satisfies properties (i) to (v). By Theorem 7, W is a
2-resolving hop dominating set of G[H]. Let x ∈ V (G) and p ∈ Tx. Then (x, p) ∈ W and

W\{(x, p)} =

( ⋃
v∈S\{x}

({v} × Tv)

)
∪ [{x} × (Tx\{p})] and

(W\{(x, p)}) ∪ {(x, q)} =

 ⋃
z∈S\{x}

({z} × Tz)

 ∪ [{x} × (Tx\{p} ∪ {q})]

for some q ∈ (V (H)\Tx) ∩NH(p) and

(W\{(x, p)}) ∪ {(y, w)} =

 ⋃
a∈S\{(x,y)}

({a} × Ta)

 ∪ [{x} × (Tx\{p})]

∪ [{y} × (Ty\{w})]

for some y ∈ V (G) ∩NG(x) and w ∈ V (H)\Ty.
By (i) to (v), for every (x, p) ∈ W either W\{(x, p)} is a 2-resolving hop dominating set in
G[H] or there exists (y, q) ∈ NG[H]((x, p)) ∩ (V (G[H])\W ) such that
(W\{(x, p)}) ∪ {(y, q)} is a 2-resolving hop dominating set in G[H]. Accordingly, W
is a 1-movable 2-resolving hop dominating set in G[H].

Corollary 5. Let G and H be nontrivial connected graph with γ(G) ̸= 1 and G is free-
equidistant. Then γ1m2Rh(G[H]) = |V (G)| ·mln2(H).

Proof. Let S = V (G) and let Rx be an mln2-set of H for each x ∈ S. Since γ(G) ̸= 1,
x ∈ NG(S, 2) for each x ∈ S. By Theorem 8,
W =

⋃
x∈S [{x} ×Rx] is a 1-movable 2-resolving hop dominating set in G[H]. Thus,

γ1m2Rh(G[H]) ≤ |W | = |V (G)||Rx| = |V (G)|mln2(H).

If W0 =
⋃

x∈S({x} × T ) is a γ1m2Rh -set of G[H], then S0 = V (G) and Tx is a 1-movable
2-locating set of H for each x ∈ V (G) by Theorem 8. Hence,

γ1m2Rh(G[H]) = |W0| = |V (G)||Tx| ≥ |V (G)|mln2(H).

Therefore, γ1m2Rh(G[H]) = |V (G)| ·mln2(H).

8. Conclusion

1-movable 2-resolving hop domination, a variant of 2-resolving hop domination, has
been introduced and studied for some graphs and graphs resulting from the join, corona
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and lexicographic product of two graphs. It is recommended that some bounds on the
1-movable 2-resolving hop domination be determined and that the parameter can be in-
vestigated further for graphs under other binary operations.
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