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Abstract. Let G be a connected graph. A set S ⊆ V (G) is an outer-connected 2-resolving hop
dominating set of G if S is a 2-resolving hop dominating set of G and S = V (G) or the subgraph
⟨V (G)\S⟩ induced by V (G)\S is connected. The outer-connected 2-resolving hop domination
number of G, denoted by γ̃c2Rh(G) is the smallest cardinality of an outer-connected 2-resolving hop
dominating set of G. This study aims to combine the concept of outer-connected hop domination
with the 2-resolving hop dominating sets of graphs. The main results generated in this study include
the characterization of outer-connected 2-resolving hop dominating sets in the join, corona, edge
corona and lexicographic product of graphs, as well as their corresponding bounds or exact values.
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1. Introduction

The concept of domination in graphs is one of the most studied problems and one of
the fastest growing areas in graph theory. This was formally studied by Claude Berge
[1] in 1958 and Oystein Ore in 1962. In 2007, outer-connected domination, a variation
of domination, was first introduced by Cyman [10]. In 2015, Natarajan and Ayyaswamy
introduced and studied the concept of hop domination [16]. In 2022, Canoy and Saromines
studied and published the outer-connect hop dominating sets in graphs [9].

On the other hand, in 1975 the term locating set, the concept of resolving sets for a
connected graph was first introduced by Slater [19]. These concepts were studied much
earlier in the context of the coin-weighing problem. Later that year, Harary and Melter
introduced independently these concepts, but with different terminologies [11]. The term
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metric dimension was used by Harary and Melter instead of locating number.
Recently, 2-resolving hop dominating sets in graphs was studied in [12]. Moreover,

other variations of resolving sets and hop dominating sets in graphs were also studied in
[4–6, 8, 13–15], respectively.

Motivated by the 2-resolving hop domination concept and the introduction of the outer-
connected hop domination concept by S.R. Canoy and C.J. Saromines [9], here authors
introduced and studied the concept of outer-connected 2-resolving hop domination in
graphs.

2. Terminology and Notation

In this study, we consider finite, simple, connected, undirected graphs. For basic graph-
theoretic concepts, we then refer readers to [2] and [3]. The following concepts are found
in [2], [16] and [18].

Let G be a connected graph. A vertex v in G is a hop neighbor of vertex u in G
if dG(u, v) = 2. The set NG(u, 2) = {v ∈ V (G) : dG(v, u) = 2} is called the open hop
neighborhood of u. The closed hop neighborhood of u in G is given by NG[u, 2] = NG(u, 2)∪
{u}. The open hop neighborhood of X ⊆ V (G) is the set NG(X, 2) =

⋃
u∈X NG(u, 2). The

closed hop neighborhood of X in G is the set NG[X, 2] = NG(X, 2) ∪X.
A set S ⊆ V (G) is a hop dominating set of G if NG[S, 2] = V (G), that is, for every

v ∈ V (G)\S, there exists u ∈ S such that dG(u, v) = 2. The minimum cardinality of a
hop dominating set of G, denoted by γh(G), is called the hop domination number of G.
Any hop dominating set with cardinality equal to γh(G) is called a γh-set.

For an ordered set of vertices W = {w1, w2, ..., wk} ⊆ V (G) and a vertex v in G, we
refer to the k-vector (ordered k-tuple)

rG(v/W ) = (dG(v, w1), dG(v, w2), ..., dG(v, wk))

as the (metric) representation of v with respect to W . The set W is called a resolving set
for G if distinct vertices have distinct representations with respect to W . Hence, if W is a
resolving set of cardinality k for a graph G of order n, then the set {rG(v/W ) : v ∈ V (G)}
consists of n distinct k-vectors. A resolving set of minimum cardinality is called aminimum
resolving set or a basis, and the cardinality of a basis for G is the dimension dim(G) of G.
An ordered set of vertices W = {w1, ..., wk} is a k-resolving set for G if, for any distinct
vertices u, v ∈ V (G), the (metric) representations rG(u/W ) and rG(v/W ) of u and v,
respectively, differ in at least k positions. If k = 1, then the k-resolving set is called a
resolving set for G. If k = 2, then the k-resolving set is called a 2-resolving set for G. If G
has a k-resolving set, the minimum cardinality dimk(G) of a k-resolving set is called the
k-metric dimension of G.

A set S ⊆ V (G) is an outer-connected 2-resolving hop dominating set of G if S is a
2-resolving hop dominating set of G and S = V (G) or the subgraph ⟨V (G)\S⟩ induced
by V (G)\S is connected. The outer-connected 2-resolving hop domination number of
G, denoted by γ̃c2Rh(G) is the smallest cardinality of a outer-connected 2-resolving hop



A.M. Mahistrado, H. Rara / Eur. J. Pure Appl. Math, 16 (2) (2023), 1180-1195 1182

dominating set of G.

Definition 1. [6] LetG be any nontrivial connected graph and S ⊆ V (G). A set S ⊂ V (G)
is a 2-locating set of G if it satisfies the following conditions:

(i)
∣∣[(NG(x)\NG(y)

)
∩S]∪ [

(
NG(y)\NG(x)

)
∩S]

∣∣ ≥ 2, for all x, y ∈ V (G)\S with x ̸= y.

(ii)
(
NG(v)\NG(w)

)
∩ S ̸= ∅ or

(
NG(w)\NG[v]

)
∩ S ̸= ∅, for all v ∈ S and for all

w ∈ V (G)\S.

The 2-locating number of G, denoted by ln2(G), is the smallest cardinality of a 2-locating
set of G. A 2-locating set of G of cardinality ln2(G) is referred to as an ln2-set of G.

Definition 2. [17] A set D ⊆ V (G) is a point-wise non-dominating set of G if for each
v ∈ V (G)\D, there exists u ∈ D such that v /∈ NG(u). The smallest cardinality of a
point-wise non-dominating set of G, denoted by pnd(G), is called the point-wise non-
domination number of G. Any point-wise non-dominating set D of G with |D| = pnd(G),
is called a pnd-set ofG. A dominating set D which is also a point-wise non-dominating set
of G is called a dominating pointwise non-dominating set of G. The smallest cardinality
of a dominating point-wise non-dominating set of G will be denoted by γpnd(G). Any
dominating point-wise non-dominating set D of G with |D| = γpnd(G), is called a γpnd-set
of G.

Definition 3. [12] A 2-locating set S ⊆ V (G) which is point-wise non-dominating is
called a 2-locating point-wise non-dominating set in G. The minimum cardinality of a 2-
locating point-wise non-dominating set in G, denoted by lnpnd

2 (G) is called the 2-locating
point-wise non-domination number of G. Any 2-locating point-wise non-dominating set
of cardinality lnpnd

2 (G) is then referred to as a lnpnd
2 -set in G.

Definition 4. A set S ⊆ V (G) is an outer-connected 2-locating point-wise non-dominating
set in G if S is a 2-locating point-wise non-dominating set in G and S = V (G) or the
subgraph ⟨V (G)\S⟩ induced by V (G)\S is connected. The outer-connected 2-locating

point-wise non-dominating number of G, denoted by l̃npnd
2 (G), is the smallest cardinality

of an outer-connected 2-locating point-wise non-dominating set in G. An outer-connected

2-locating point-wise non-dominating set of cardinality l̃npnd
2 (G) is then referred to as an

l̃npnd
2 -set in G.

Definition 5. [6] Let G be any nontrivial connected graph and S ⊆ V (G). S is a (2, 2)-
locating ((2, 1)-locating, respectively) set in G if S is 2-locating and |NG(y)∩ S| ≤ |S| − 2
(|NG(y)∩S| ≤ |S|− 1, respectively), for all y ∈ V (G). The (2, 2)-locating ( (2, 1)-locating,
respectively) number of G, denoted by ln(2,2)(G) (ln(2,1)(G), respectively), is the smallest
cardinality of a (2, 2)-locating ((2, 1)-locating, respectively) set in G. A (2, 2)-locating
((2, 1)-locating, respectively) set in G of cardinality ln(2,2)(G) (ln(2,1)(G), respectively) is
referred to as an ln(2,2)-set (ln(2,1)-set, respectively) in G.
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Definition 6. [12] A (2,2)-locating ((2,1)-locating, respectively) set S ⊆ V (G) which is
a point-wise non-dominating is called a (2,2)-locating point-wise non-dominating ((2,1)-
locating point-wise non-dominating, respectively) set in G. The minimum cardinality
of a (2,2)-locating point-wise non-dominating ((2,1)-locating point-wise non-dominating,

respectively) set in G, denoted by lnpnd
(2,2)(G) (lnpnd

(2,1)(G),respectively) is called the (2,2)-

locating point-wise non-domination ((2,1)-locating point-wise non-domination) number of
G. Any (2,2)-locating point-wise non-dominating ((2,1)-locating point-wise non-dominating,

respectively) set of cardinality lnpnd
(2,2)(G) (lnpnd

(2,1)(G), respectively) is then referred to as a

lnpnd
(2,2)-set (ln

pnd
(2,1)-set) in G.

Definition 7. A set S ⊆ V (G) is an outer-connected (2, 2)-locating point-wise non-
dominating ((2, 1)-locating point-wise non-dominating, respectively) set in G if S is a
(2, 2)-locating point-wise non-dominating ((2, 1)-locating point-wise non-dominating, re-
spectively) set in G and S = V (G) or the subgraph ⟨V (G)\S⟩ induced by V (G)\S is
connected. The outer-connected (2, 2)-locating point-wise non-domination ((2, 1)-locating

point-wise non-domination, respectively) number of G, denoted by l̃npnd
(2,2)(G) (l̃npnd

(2,1)(G),

respectively), is the smallest cardinality of an outer-connected (2, 2)-locating point-wise
non-dominating ((2, 1)-locating point-wise non-dominating, respectively) set in G. An
outer-connected (2, 2)-locating point-wise non-dominating ((2, 1)-locating point-wise non-

dominating, respectively) set of cardinality l̃npnd
(2,2)(G) (l̃npnd

(2,1)(G), respectively) is then re-

ferred to as an l̃npnd
(2,2)-set (l̃n

pnd
(2,1)- set) in G.

3. Preliminary Results

Every nontrivial connected graph G admits an outer-connected 2-resolving hop
dominating set. Indeed, the vertex set V (G) of G is an outer-connected 2-resolving hop
dominating set.

Remark 1. For any connected graph G of order n ≥ 2,
2 ≤ γ̃c2Rh(G) ≤ n. Moreover, γ̃c2Rh(P2) = 2 and γ̃c2Rh(Kn) = n.

Proposition 1. (i) For a path Pn on n vertices

γ̃c2Rh(Pn) =


n, if n = 2, 3;

n− 2, if n = 4, 5, 6;

n− 3, if n = 7;

n− 4, if n ≥ 8.
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(ii) For a cycle Cn on n vertices

γ̃c2Rh(Cn) =


n, if n = 3, 4;

n− 2, if n = 5;

n− 3, if n = 6;

n− 4, if n ≥ 7.

Now, consider the following results of outer-connected 2-locating point-wise non-dominating
sets which are used in characterizing the outer-connected 2-resolving hop dominating sets
in the join of two graphs.

Proposition 2. Let G be any nontrivial connected graph. Then for any positive integers
n, we have

(i) l̃npnd
2 (Pn) =


n, if n = 2, 3;

n− 1, if 4 ≤ n ≤ 7;

n− 2, if n ≥ 8.

(ii) l̃npnd
2 (Cn) =

{
n, if n = 3, 4;

n− 2, if n ≥ 5.

(iii) For all n ≥ 5, l̃npnd
(2,2)(Pn) =

{
n− 1, if 5 ≤ n ≤ 7;

n− 2, if n ≥ 8;

For all n ≥ 6, l̃npnd
(2,2)(Cn) = n− 2.

(iv) For all n ≥ 4, l̃npnd
(2,1)(Pn) =

{
n− 1, if 4 ≤ n ≤ 7;

n− 2, if n ≥ 8;

For all n ≥ 4, l̃npnd
(2,1)(Cn) =

{
n, if n = 4;

n− 2, if n ≥ 5.

Proof. (i) Let Pn = [v1, v2, v3, . . . , vn]. Clearly, l̃n
pnd
2 (Pn) = n for n = 2, 3. Let n ≥ 4

and let S be an l̃npnd
2 -set in Pn. Since ⟨V (Pn) \ S⟩ is connected and S is a 2-locating

point-wise non-dominating set, 1 ≤ |V (Pn)\S| ≤ 2. Clearly, at least one of v1 and vn is in
S. Suppose that v1 ∈ S. Suppose further that |V (Pn) \ S| = 1. Then 4 ≤ n ≤ 7. Hence,

l̃npnd
2 (Pn) = n− 1 for 4 ≤ n ≤ 7. Next, suppose that |V (Pn) \ S| = 2. If p is the smallest

integer such that vp /∈ S, then p /∈ {1, 2, 3}. It follows that v1, v2, v3 ∈ S. In this case, for
n ≥ 8, the set S

′
= V (Pn) \ {v4, v5} is clearly an outer-connected 2-locating point-wise

non-dominating set. Thus, l̃npnd
2 (Pn) = n− 2 for all n ≥ 8.

(ii) Let Cn = [v1, v2, v3, . . . , vn]. Clearly, l̃n
pnd
2 (Cn) = n for n = 3, 4. Let n ≥ 5 and let

S be an l̃npnd
2 -set of Cn. Since ⟨V (Cn) \ S⟩ is connected and S is a 2-locating point-wise
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non-dominating set, |V (Cn) \ S| = 2. Therefore, l̃npnd
2 (Cn) = n− 2 for all n ≥ 5.

The proofs of (iii) and (iv) are similar to (i) and (ii).

Next, we show that every pair of positive integers are realizable as 2-resolving hop
domination number and outer-connected 2-resolving hop domination number.

Remark 2. Every outer-connected 2-resolving hop dominating set of G is a 2-resolving
hop dominating set of G. Thus, γ2Rh(G) ≤ γ̃c2Rh(G).

Theorem 1. Let a and b be positive integers such that 2 ≤ a ≤ b. Then there exists a
nontrivial connected graph G such that γ2Rh(G) = a and γ̃c2Rh(G) = b.

Proof. Suppose 2 ≤ a = b. Consider Figure 1. Then S = {u1, u2, u3, u4, . . . un} is both
a γ2Rh-set and γ̃c2Rh-set of G1. Hence, 2 ≤ γ2Rh(G1) = γ̃c2Rh(G1) = a = b.
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Figure 1

Suppose 2 < a < b. Consider the graph G2 in Figure 2. Then S = {x1, x2, . . . , xa} is a
γ2Rh-set of G2 and X = S ∪ {y1, y2, . . . , yb−a} is a γ̃c2Rh-set of G2. Hence γ2Rh(G2) = a
and γ̃c2Rh(G2) = |X| = |S|+ (b− a) = a+ b− a = b.
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G2 :

Corollary 1. For each positive integer n, there exists a connected graph G such that
γ̃c2Rh(G)− γ2Rh(G) = n, that is, γ̃c2Rh − γ2Rh can be made arbitrarily large.

We now characterize the outer-connected 2-resolving hop dominating sets in some
graphs under some binary operations.
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4. Join of Graphs

This section presents characterizations in the outer-connected 2-resolving hop domi-
nating sets in the join of graphs.

Theorem 2. [12] Let G be a connected graph and let K1 = {x}. Then S ⊆ V (K1 +G)
is a 2-resolving hop dominating set in K1 + G if and only if S = {x} ∪ T where T is a
(2, 1)-locating point-wise non-dominating set in G.

Theorem 3. Let G be a connected graph and let K1 = {x}. Then S ⊆ V (K1 + G) is
an outer-connected 2-resolving hop dominating set in K1 +G if and only if S = {x} ∪ T
where T is an outer-connected (2, 1)-locating point-wise non-dominating set in G.

Proof. Let S ⊆ V (K1 + G) be an outer-connected 2-resolving hop dominating set
in K1 + G. Then S is a 2-resolving hop dominating set in K1 + G. Then by Theorem
2, S = {x} ∪ T where T is a (2,1)-locating point-wise non-dominating set in G. Now,
since S is an outer-connected 2-resolving hop dominating set in K1 + G, it follows that
S = V (K1 + G) or ⟨V (K1 +G)\S⟩ = ⟨V (G)\T ⟩ is connected. Thus, T = V (G) or the
subgraph ⟨V (G)\T ⟩ induced by V (G)\T is connected. Therefore, T is an outer-connected
(2, 1)-locating point-wise non-dominating set in G.

Conversely, assume that S = {x} ∪ T , where T is an outer-connected (2,1)-locating
point-wise non-dominating set in G. By Theorem 2, S is a 2-resolving hop dominating
set in K1 + G. Next, since ⟨V (K1 +G)\S⟩ = ⟨V (G)\T ⟩ and T is an outer-connected
(2,1)-locating point-wise non-dominating set in G, it follows that S is a outer-connected
2-resolving hop dominating set in K1 +G.

Corollary 2. Let G be connected nontrivial graph. Then γ̃c2Rh(K1+G) = l̃npnd
(2,1)(G)+1.

Example 1. For a fan Fn = Pn + 1 on n+ 1 vertices

γ̃c2Rh(Fn) = l̃npnd
(2,1)(Pn) + 1 =

{
n, if 4 ≤ n ≤ 7;

n− 1, if n ≥ 8.

Example 2. For a wheel Wn = Cn + 1 on n+ 1 vertices

γ̃c2Rh(Wn) = l̃npnd
(2,1)(Cn) + 1 =

{
n+ 1, if n = 4;

n− 1, if n ≥ 5.

Theorem 4. [12] Let G and H be any two graphs. A set S ⊆ V (G+H) is a 2-resolving
hop dominating set in G+H if and only if S = SG ∪ SH where SG = V (G) ∩ S and
SH = V (H) ∩ S are 2-locating point-wise non-dominating sets in G and H, respectively,
where SG or SH is a (2, 2)-locating point-wise non-dominating set or SG and SH are
(2, 1)-locating point-wise non-dominating sets of G and H, respectively.
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Theorem 5. [9] Let G and H be any two graphs. A set S ⊆ V (G + H) is an outer-
connected hop dominating set in G+H if and only if S = SG ∪SH , where SG and SH are
pointwise non-dominating subsets of G and H, respectively, such that

(i) ⟨V (H)\SH⟩ is connected whenever SH ̸= V (H) and SG = V (G) and

(ii) ⟨V (G)\SG⟩ is connected whenever SG ̸= V (G) and SH = V (H).

Theorem 6. Let G and H be any two graphs. A set S ⊆ V (G + H) is an outer-
connected 2-resolving hop dominating set in G + H if and only if S = SG ∪ SH where
SG = V (G) ∩ S and SH = V (H) ∩ S are 2-locating point-wise non-dominating sets in G
and H, respectively, where SG or SH is a (2, 2)-locating point-wise non-dominating set or
SG and SH are (2, 1)-locating point-wise non-dominating sets of G and H, respectively,
such that

(i) ⟨V (H)\SH⟩ is connected whenever SH ̸= V (H) and SG = V (G) and

(ii) ⟨V (G)\SG⟩ is connected whenever SG ̸= V (G) and SH = V (H).

Proof. Suppose that S ⊆ V (G+H) is an outer-connected 2-resolving hop dominating
set in G+H. Let SG = V (G) ∩ S and SH = V (H) ∩ S then S = SG ∪ SH . Now, since S
is a 2-resolving hop dominating set, by Theorem 4, SG and SH are 2-locating point-wise
non-dominating sets in G and H, respectively, where SG or SH is a (2, 2)-locating point-
wise non-dominating set or SG and SH are (2, 1)-locating point-wise non-dominating sets.
Suppose SG = V (G) and SH ̸= V (H). Since S is an outer-connected hop dominating
set, by Theorem 5, ⟨V (H)\SH⟩ is connected. Hence, (i) holds. Similarly, suppose that
SG ̸= V (G) and SH = V (H). By Theorem 5, ⟨V (G)\SG⟩ is connected and so (ii) holds.

Conversely, suppose that S = SG ∪ SH where SG ⊆ V (G) and SH ⊆ V (H) are sets as
described and satisfying (i) and (ii). By Theorem 4, S is a 2-resolving hop dominating
set of G+H. If SG = V (G) and SH = V (H), then S = V (G+H) is an outer-connected
2-resolving hop dominating set. Suppose, S ̸= V (G+H). Consider the following cases:

Case 1: SG ̸= V (G) and SH ̸= V (H)
Then ⟨V (G+H)\S⟩ = ⟨V (G)\SG⟩+ ⟨V (H)\SH⟩ is connected.

Case 2: SG = V (G) and SH ̸= V (H)
Then ⟨V (G+H)\S⟩ = ⟨V (H)\SH⟩ is connected by (i).

Case 3: SH = V (H) and SG ̸= V (G)
Then ⟨V (G+H)\S⟩ = ⟨V (G)\SG⟩ is connected by (ii).

Accordingly, S is an outer-connected 2-resolving hop dominating set of G+H.

As a consequence of Theorem 6 the next result follows.

Corollary 3. Let G and H be nontrivial connected graphs. Then

γ̃c2Rh(G+H) =min{lnpnd
(2,2)(G) + lnpnd

2 (H), lnpnd
2 (G) + lnpnd

(2,2)(H),

lnpnd
(2,1)(G) + lnpnd

(2,1)(H)},
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5. Corona of Graphs

This section presents characterizations in the outer-connected 2-resolving hop domi-
nating sets in the corona of graphs.

Remark 3. [7] Let v ∈ V (G). For every x, y ∈ V (Hv), dG◦H(x,w) = dG◦H(y, w) and
dG◦H(v, w) + 1 = dG◦H(x,w) for every w ∈ V (G ◦H)\V (Hv).

Theorem 7. [12] Let G and H be nontrivial connected graphs. A set
S ⊆ V (G ◦H) is a 2-resolving hop dominating set of G ◦H if and only if

S = A ∪

 ⋃
v∈V (G)∩NG(A)

Sv

 ∪

 ⋃
w∈V (G)\NG(A)

Dw


where

(i) A ⊆ V (G) such that for each w ∈ V (G)\A, there exists x ∈ A with dG(w, x) = 2 or
there exists y ∈ V (G) ∩NG(w) with V (Hy) ∩ S ̸= ∅;

(ii) Sv ⊆ V (Hv) is a 2-locating set of Hv for all v ∈ V (G) ∩NG(A); and

(iii) Dw ⊆ V (Hw) is a 2-locating point-wise non-dominating set of Hw for all w ∈
V (G)\NG(A).

Theorem 8. [9] Let G be a connected graph and let H be any graph. Then a subset C
of V (G ◦H) is an outer-connected hop dominating set of G ◦H if and only if

C = A ∪

 ⋃
v∈V (G)

Sv


where Sv ⊆ V (Hv) for each v ∈ V (G) and satisfies each of the following statements:

(i) A = V (G) or ⟨V (G)\A⟩ is connected;

(ii) If A = V (G), then ⟨V (Hv)\Sv⟩ is a connected proper subgraph of Hv for at most
one vertex v ∈ A. Otherwise, Sv = V (Hv) for all v ∈ A.

(iii) For all v ∈ (V (G)\NG[A, 2], there exists w ∈ NG(v) such that Sw ̸= ∅;

(iv) Sv is a point-wise non-dominating set of Hv for all v ∈ (V (G)\NG[A]).

Theorem 9. Let G and H be nontrivial connected graphs. A set S ⊆ V (G ◦ H) is an
outer-connected 2-resolving hop dominating set of G ◦H if and only if

S = A ∪

 ⋃
v∈V (G)

Sv
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where Sv ⊆ V (Hv) for each v ∈ V (G) and satisfies each of the following statements:

(i) A = V (G) or ⟨V (G)\A⟩ is connected;

(ii) If A = V (G), then ⟨V (Hv)\Sv⟩ is a connected proper subgraph of Hv for at most
one vertex v ∈ A. Otherwise, Sv = V (Hv) for all v ∈ A;

(iii) Sv is a 2-locating set for all v ∈ V (G) where Sv is a (2-locating) point-wise
non-dominating set of Hv if v ∈ (V (G)\NG[A]).

Proof. Suppose S ⊆ V (G ◦H) is an outer-connected 2-resolving hop dominating set of

G◦H. Let A = S∩V (G), Sv = S∩V (Hv) for each v ∈ V (G). Then S = A∪

( ⋃
v∈V (G)

Sv

)
Since S is an outer-connected hop dominating set, (i) and (ii) follow immediately from
Theorem 8. Now, since S is a 2-resolving hop dominating set, by Theorem 7, (iii) holds.

Conversely, let S be the set as described and satisfies the given conditions. By Theorem
7, S is 2-resolving hop dominating set. Furthermore, because (i) and (ii) hold, S is an
outer-connected hop dominating set. Accordingly, S is an outer-connected 2-resolving hop
dominating set in G ◦H.

Corollary 4. Let G and H be connected graphs of orders n and m, respectively. Then

γ̃c2Rh(G ◦H) ≤ min{γ̃c(G)(m+ 1) + (n− γ̃c(G))ln2(H), nlnpnd
2 }.

Proof. Let A be a γ̃c-set of G and Sv be an ln2-set of Hv for each

v ∈ V (G) \ A. Thus, by Theorem 9 S = A ∪

( ⋃
v∈V (G)

V (Hv)

)
∪

( ⋃
v∈V (G)\A

Sv

)
is an

outer-connected 2-resolving hop dominating set. Hence,

γ̃c2Rh(G ◦H) ≤ |S| = |A|+
∑

v∈V (G)

|V (Hv)|+
∑

v∈V (G)\A

|Sv|

= γ̃c(G)(m+ 1) + (n− γ̃c(G))ln2(H).

Let A = ∅, Sw be a lnpnd
2 -set of Hw. Then S = A ∪

( ⋃
w∈V (G)

Sw

)
is an outer-connected

2-resolving hop dominating set in G ◦H by Theorem 9. Hence,

γ̃c2Rh(G ◦H) ≤ |S| = |A|+
∑

w∈V (G)

|Sw| = |V (G)| · |Sw| = n(lnpnd
2 (H)).

Accordingly, γ̃c2Rh(G ◦H) ≤ min{γ̃c(G)(m+ 1) + (n− γ̃c(G))ln2(H), nlnpnd
2 }.
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6. Edge Corona of Graphs

This section presents characterizations in the outer-connected 2-resolving hop domi-
nating sets in the edge corona of graphs.

Remark 4. [12] Let uv ∈ E(G). For every x, y ∈ V (Huv), dG⋄H(x,w) = dG⋄H(y, w),
dG⋄H(u,w) = dG⋄H(x,w), and dG⋄H(v, w)+1 = dG⋄H(x,w) for every w ∈ V (G⋄H)\V (Huv).

Remark 5. [12] Let G and H be nontrivial connected graphs, C ⊆ V (G ⋄H) and Suv =
V (Huv) ∩ C where uv ∈ E(G). For each x ∈ V (Huv)\Suv and z ∈ Suv,

dG⋄H(x, z) =

{
1 if z ∈ NHuv(x)

2 otherwise.

Definition 8. A leaf l(G) of a graph G is a set of vertices v in G with degG(v) = 1.

Theorem 10. [12] Let γ(G) ̸= 1 and H be any nontrivial connected graphs. A set
C ⊆ V (G ⋄H) is a 2-resolving hop dominating set of G ⋄H if and only if

C = A ∪

 ⋃
uv∈E(G)

Suv


where

(i) A ⊆ V (G);

(ii) Suv ⊆ V (Huv) is a 2-locating set of Huv for all uv ∈ E(G) or if uv is a pendant
edge, then Suv is a (2, 1)-locating set of Huv whenever l(⟨{u, v}⟩) ⊆ A and Suv is a
(2, 2)-locating set of Huv otherwise.

Theorem 11. Let γ(G) ̸= 1 and H be any nontrivial connected graphs. A set S ⊆
V (G ⋄H) is an outer-connected 2-resolving hop dominating set of G ⋄H if and only if

C = A ∪

 ⋃
uv∈E(G)

Suv


where Suv ⊆ V (Huv) for each uv ∈ E(G) and satisfies each of the following statements:

(i) Suv ⊆ V (Huv) is a 2-locating set of Huv for all uv ∈ E(G) or if uv is a pendant
edge, then Suv is a (2, 1)-locating set of Huv whenever l(⟨{u, v}⟩) ⊆ A and Suv is a
(2, 2)-locating set of Huv otherwise.

(ii) A = V (G) or ⟨V (G)\A⟩ is connected;

(iii) If A = V (G), then ⟨V (Huv)\Suv⟩ is a connected proper subgraph of Huv for at most
one edge uv ∈ E(G). Otherwise, Suv = V (Huv) for all uv ∈ E(G);
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Proof. Suppose C is an outer-connected 2-resolving hop dominating set in G ⋄H. Let

A = V (G) ∩ C and Suv = C ∩ V (Huv) for all uv ∈ E(G). Then C = A ∪

( ⋃
uv∈E(G)

Suv

)
where A ⊆ V (G) and Suv ⊆ V (Huv) for each uv ∈ E(G). Then C is a 2-resolving hop
dominating set in G ⋄ H. By Theorem 10, (i) holds. Now, suppose A ̸= V (G). Then
C ̸= V (G ⋄H). Since C is an outer-connected 2-resolving hop dominating set, it follows
that

⟨V (G ⋄H)\C⟩ = ⟨V (Huv)\Suv⟩ ∪ ⟨V (G)\A⟩

is connected. Hence, ⟨V (G)\A⟩ is connected. Hence, (ii) holds. Suppose A = V (G).
If V (G ⋄ H) ̸= C, then ⟨V (G ⋄ H)\C⟩ = ⟨V (Huv)\Suv⟩. Since C is outer-connected 2-
resolving hop dominating set, ⟨V (Huv)\Suv⟩ is a connected proper subgraph of Huv for
at most one edge uv ∈ E(G). Otherwise, if V (G ⋄ H) = C, then Suv = V (Huv) for all
uv ∈ E(G). Hence, (iii) holds.

Conversely, let C be a set as described and satisfies the given conditions. By (i), C is a
2-resolving hop dominating set. If V (G⋄H) = C, then we are done. Now, if V (G⋄H) ̸= C.
Consider the following cases:

Case 1: A = V (G)
Then ⟨V (G ⋄ H)\C⟩ = ⟨V (Huv)\Suv⟩ and by (iii), ⟨V (Huv)\Suv⟩ is a connected proper
subgraph of Huv for at most one edge uv ∈ E(G). Thus, ⟨V (G ⋄ H)\C⟩ is connected.

Case 2: A ̸= V (G)
Then V (Huv) = Suv for all uv ∈ E(G). Hence,

⟨V (G ⋄H)\C⟩ = ⟨V (Huv)\Suv⟩ ∪ ⟨V (G)\A⟩ = ⟨V (G)\A⟩.

Thus, ⟨V (G ⋄H)\C⟩ is connected since ⟨V (G)\A⟩ is connected by (ii).
Accordingly, C is an outer-connected 2-resolving hop dominating set in G ⋄H.

Corollary 5. Let γ(G) ̸= 1 be any nontrivial connected graph of sizem andH a nontrivial
connected graph. Then the following statements hold.

(i) If G is a graph with no pendant edges, then γ̃c2Rh(G ⋄H) = m · ln2(H).

(ii) If G is a graph with k ≥ 1 pendant edges, then

γ̃c2Rh(G⋄H) = min
{(

m−k
)
ln2(H)+k ·ln(2,1)(H)+k,

(
m−k

)
ln2(H)+k ·ln(2,2)(H)

}
and γ̃c2Rh(G ⋄H) =

(
m− k

)
ln2(G)+ k · ln(2,2)(G) whenever ln(2,2)(H) = ln(2,1)(H).

7. Lexicographic Product of Graphs

This section presents characterizations on the outer-connected 2-resolving hop domi-
nating sets in the lexicographic product of graphs.
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Theorem 12. [12] Let G and H be nontrivial connected graphs. Then
W =

⋃
x∈S [{x} × Tx], where S ⊆ V (G) and Tx ⊆ V (H) for each x ∈ S, is a 2-resolving

hop dominating set in G[H] if and only if

(i) S = V (G);

(ii) Tx is a 2-locating set in H for every x ∈ V (G) ;

(iii) Tx or Ty is a (2, 1)-locating set or one of Tx and Ty is a (2, 2)-locating set in H
whenever x, y ∈ EQ1(G);

(iv) Tx and Ty are (2 − locating) dominating sets in H or one of Tx and Ty is a 2-
dominating set whenever x, y ∈ EQ2(G).

(v) Tx is a 2-locating point-wise non-dominating set inH for every x ∈ S with |NG(x, 2)∩
S| = 0.

Theorem 13. [9] Let G and H be connected nontrivial graphs. A subset C =
⋃

x∈S [{x}×
Tx] of V (G[H]) is an outer-connected hop dominating set of G[H] if and only if

(i) S is a hop dominating set of G; and

(ii) Tx is a point-wise non-dominating set of H for every x ∈ S with |NG(x, 2) ∩ S| = 0;

(iii) ⟨(V (G)\S) ∪ {v ∈ S : Tv ̸= V (H)}⟩ is a connected graph in G.

Theorem 14. Let G and H be nontrivial connected graphs with
∆(H) ≤ |V (H)| − 3. Then W =

⋃
x∈S [{x} × Tx], where S ⊆ V (G) and Tx ⊆ V (H)

for each x ∈ S, is an outer-connected 2-resolving hop dominating set in G[H] if and only
if

(i) S = V (G);

(ii) Tx is a 2-locating set of H for every x ∈ V (G) ;

(iii) Tx and Ty are (2, 1)-locating set or one of Tx and Ty is a (2, 2)-locating set of H
whenever x, y ∈ EQ1(G);

(iv) Tx and Ty are (2 − locating) dominating sets in H or one of Tx and Ty is a 2-
dominating set whenever x, y ∈ EQ2(G).

(v) Tx is a 2-locating point-wise non-dominating set of H for every x ∈ S with
|NG(x, 2) ∩ S| = 0.

(vi) ⟨∪{v ∈ V (G) : Tv ̸= V (H)}⟩ is a connected graph in G.
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Proof. Let W =
⋃

x∈S [{x} × Tx], where S ⊆ V (G) and Tx ⊆ V (H) for each x ∈ S,
be an outer-connected 2-resolving hop dominating set in G[H]. Then W is a 2-resolving
hop dominating set in G[H]. Since W is an outer-connected hop dominating set and
S = V (G), by Theorem 13 (iii), ⟨

⋃
{v ∈ V (G) : Tv ̸= V (H)}⟩ is a connected graph in G.

For the converse, let W be a 2-resolving hop dominating set and satisfies the given
condition. If V (G[H]) = W , then we are done. On the other hand, suppose V (G[H]) ̸= W .
Since S = V (G),

⟨(V (G)\S) ∪ {v ∈ S : Tv ̸= V (H)}⟩ = ⟨∪{v ∈ V (G) : Tv ̸= V (H)}⟩

which is connected. By Theorem 13, Theorem 12(i), and by Theorem 12 (iii) Therefore, W
is an outer-connected hop dominating set in G[H]. Accordingly, W is an outer-connected
2-resolving hop dominating set in G[H].

Corollary 6. Let G and H be any nontrivial connected graph with γ(G) ̸= 1 and G is a
free-equidistant. Then

γ̃c2Rh(G[H]) = |V (G)| · ln2(H).

Proof. Let S = V (G) and let Rx be an ln2-set of H for each x ∈ S. By Theorem
14, W =

⋃
x∈S [{x} × Rx] is an outer-connected 2-resolving hop dominating set in G[H].

Thus,
γ̃c2Rh(G[H]) ≤ |W | = |V (G)||Rx| = |V (G)|ln2(H).

If W0 =
⋃

x∈S({x}×T ) is a γ̃c2Rh -set of G[H], then S0 = V (G) and Tx is a 2-locating set
in H for each x ∈ V (G) by Theorem 14. Hence,

γ̃c2Rh(G[H]) = |W0| = |V (G)||Tx| ≥ |V (G)| · ln2(H).

Therefore, γ̃c2Rh(G[H]) = n · ln2(H).
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