Adapting Integral Transforms to Create Solitary Solutions for Partial Differential Equations via a New Approach
DOI:
https://doi.org/10.29020/nybg.ejpam.v16i2.4774Keywords:
Laplace transform; Sumudu transform; Double ARA–Sumudu transform; New iterative method; Nonlinear partial differential equations.Abstract
In this article, a new effective technique is implemented to solve families of nonlinear partial differential equations (NLPDEs). The proposed method combines the double ARA-Sumudu transform with the numerical iterative method to get the exact solutions of NLPDEs. The successive iterative method was used to find the solution of nonlinear terms of these equations. In order to show the efficiency and applicability of the presented method, some physical applications are analyzed and illustrated, and to defend our results, some numerical examples and figures are discussed.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 European Journal of Pure and Applied Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.