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1. Introduction

One of the most well-known inequality in mathematics and statistics is Jensen’s in-
equality for convex functions. Because of their importance, Jensen’s inequality has received
numerous variants, generalizations, and refinements (for reference see [1, 3, 7, 9-12, 14—
18, 21, 22]). In 2003, Mercer established a variant of Jensen’s inequality known as the
Jensen-Mercer inequality [19], which as follows:

Proposition 1. Let ¢ : [u,v] C I — R be a convex function and z; € [, V],
n

s. t. Zwi =1, for 1 <i<n, then
i=1

C( +V—sz$z><C szC xz .

i=1
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In 1988, Stefan Hilger introduced the idea of theory of time scale calculus in order
to unify discrete and continuous analysis and also extend the traditional differential and
difference equations in [13]. There have been over a thousand publications in this field,
with numerous applications [5] in all branches of science. For interest, readers can see
Bohner and Peterson’s monograph [6] for an introduction to single-variable time scale
calculus and its applications.

Definition 1. A time scale is an arbitrary nonempty closed subset of the real numbers.
Ezamples of time scales are R,Z and ¢ := {¢*|k € Ng}. The complex number are not
time scale.

Definition 2. If’JI‘ is a time scale, then we define forward Jump operator

: T — R by 0(9) = inf{r € T|r > 9} for all € T, the backward jump operator
p: T = R by p(f) = sup{r € T|r < 0} for all 6 € T, and the graininess function
p: T —[0,00) by u(@) o(0) — 0 for all € T. Furthermore for a function g : T — R,
we define g% (0) = g(c(0)) for all 0 € T and g°(0) = g(p(9)) for all @ € T. In this definition
we use inf() = supT (i.e., p(0) = 0 if 0 is the mazimum of T) and sup® = inf T (i.e.,
p(0) =0 if 0 is the minimum of T).

These definitions allow us to characterize every point in a time scale as following
classification of points:

(i) 6 right-scattered = 0 < o(6),

D>

(ii) 0 right-dense = 0 = o'(f),

~

)
)
(iii) 0 left-scattered = p(0) < 0,
)
) 0
i)

(iv) 0 left-dense = p(f) = 0,

(v ) isolated — p(é) 0 < J(é)a

(vi) 6 dense = p(A) = 0 = ().

We define,
If T has a left scattered maximum M, then we define T = T/M;; otherwise TF =
If T has a right scattered maximum Mo, then we define TF = T/ Msy; otherwise T¢ = T.
Finally we define T* = T* (| Tj. The mapping p, v : T — [0, 00) defined by

u(t) =o(t) —t
and
v(t) = t - p(t)

are called the forward and backward graininess functions, respectively. In the following
consideration, IT = I ()T will denote a time scale interval.
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Definition 3. Let f : T — R be a real function on time scale T. Then for t € TF, we
define a fA(t) to be a number with the property that given any € > 0, there is a neighbour
hood Ut of t such that

(f(p(t) = f(5)) = FAD)p(t) = s]| < elp(t) - s|
for all s € Ut we call f2(t) the delta derivative of f at t.

For f: T — R, then we define f7 : T — R by f?(t) = f(o(t)) for t € T. We define
fP:T — Rby fP(t) = f(p(t)) for t € T.
Following properties holds for t € T,

(¢) If fis A differentiable at ¢, then f is continuous at t.

(#4) If f is continuous at ¢ and ¢t is right-scattered, then f is delta differentiable at ¢ with

FA() = (F(8) = flo(t)/v(t)

(zi1) If f is right-dense, then f is delta differentiable at ¢ if and only if the limg_,,(f(¢) —
F())/(t = s) exit, then f2(t) = lims—: (f(t) — f(5))/(t — 9).

(i) If f is A differentiable at t, then f°(t) = f(t) + f2(t)v(t)).

For more details on time scale, we refer the reader to [20].
In [23], Jensen inequality on delta integral is given as follow:

Proposition 2. Let a,b € T,a <b and I C R,g € C([a,b|r,I) and w € C([a,b]T,R) is a
probability density function and also ¢ € C(I,R) is convez, then

(f bwmg(nmn) </ "¢ (gm) An. 1)

In this article we generalize Jensen Mercer inequality for A—integral . Also give gen-
eralization and refinement of Ky Fan inequality and its related results for A—integral.

We establish a Jensen Mercer A—integral inequality. Before we further proceed we
recall here a lemma from [19] stated as under:

Lemma 1. Let ¢ : [, v] C I — R be a convex function and x; € [u,v]. Then

Ctv—mz) <C(p)+¢() —C(z), 1<i<n.

Theorem 1. If g € C([a,b|r,[p,v]) and w € C([a,b]T, [, v]) is a probability density
function and also ¢ € C([p,v],R) is convez, then

b b
C<u+1/— / w(T)!J(ﬂ)M) < o+ o) = [ecm) s @)
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Proof.
b
Since ¢ is convex function and <,u +v —/ w(T)g(n)An) € [u,v], therefore by in-
a

equality (1) and Lemma 1, we have
¢ (n+v— [ wthgtman)

= ([ et - goman)

</ W I (v — g() )

b
=)+ ()~ [ wlhe(gln) Ao

Corollary 1. Let T =R and by considering assumptions of Theorem 1. Then

b b
C<u+1/— / w(T)g(n)dn> < W o+ <o) - [ edcman @

1.1. Cases

(i) Let g(n) > 0 on [a,b]t and ¢(1) = t? is convex and concave on (0, +00) for f < 0 or
B > 1 and for 8 € (0,1) respectively. Then

B b
<P+ ¢ )P - / WD (gm)P A, B <0or B> 1,

(4)
b
> ¢ (0P + ¢ () — / w(DC ()P g, € (0,1).
(5)

¢ <u +v— /abw(T)g(n)An>
8

¢ <u +v— /abw(T)g(n)An>

(ii) Let g(n) > 0 on [a, bl and ¢(f) = In(}) is concave on (0,4o00). Then

In (u v | bw(T)g(n)An> <)+ () - [ () In (g(m)) An.
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(iii) Let T=Zand m € N. Fixa=1landb=m+1,let g: {1,...,m+ 1} — (0,00),
¢ = —Inz is convex on (0,400) and by using Theorem 1, we get

In (u +v— ZQ(T))
=1

=1In (u +v— /1m+1 g(n)An)

m+1
> In () + In (v) — / In (9(n)) Ar

= In () — Zln(g(T))]

=In () — |In (H g(T))] ,
| =

In (/Hr v— ZQ(T)) > IHWEW)~

and hence

(iv) Let T = 2 and M € N. Fix a = 1 and b = 2™ and consider a function g : {2’ :
0 <1< N} — (0,00) by using Theorem 1, we get

SRy LN

M-1
=In <,u +v— Z 2lg(21)>

=0

=In <u +v— /12M g(n)An)

2M
> In () + In (v) — / In (g(n)) A,
2M
— In () - / In (g(1)) At

=In (uv) — 2 In (g(2l))
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M—-1 .
= In (uv) — [ln [T (92)? ]

=0

and hence

M—1 5
p+v— (Z 2lg(21)> > ﬁ
= IT (s2))

=
2. Ky Fan inequality and related results

In 1961, the Ky Fan inequality was given in the famous monograph ‘Inequalities’ in [4]
as follow:

G, A 1

G — Al 2
equality holds iff x; = - - - = x,,, which magnetize the attention of several mathematician.
For generalization and refinement of the Ky Fan inequality see papers [2, 8]. (and references

therein)

In this section, we are improving Ky Fan inequality and related results for time scale
calculus.

By considering assumptions of Theorem 1, we define the generalized weighted arith-
metic mean of g € C([a, b]t, [, v]) with weight w :

b
Aplg.) = v = [ wlbglman, @)

the generalized weighted geometric mean of the g € C([a, b]T, [, V]) of weight w:

b
Gl (g, w) = exp {ln (wv) — / w(t)In (g(n))An] 7 (8)

the generalized weighted harmonic mean of the g € C([a, b]T, [, v]) of weight w:

-1

. 11 b 1
Hy,(9,w) = (M 7 —/a w(T)(Q(U))A?) : (9)

Examples

(i) Let T =R. Then

b
A (gw) =p+v— / w(t)g(n)dn, (10)
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b
Cuy(9.) = cap @n<uu>—-J/ w«nln<gon>dn}, (1)

and
-1

Ao = (141 [ut ) (12)
Ty T e S  gmydn)
(ii) Let T = Z,a =1 and b = n + 1, we define w(i) = w; and ¢(i) = g;. The condition

for weight for w means that Zwi > (. Then, we have

=1
A (9,w) = An(g,w) = p+v =Y wigi, (13)
=1
. ~ 13%
Gy (9 0) = Gn(g,0) = ) (14)

=
o
1o
=1

and

n

-1
. . 1 1 1
Hy,(g9,w) = Hy(g,w) = (M to - ;wl(gz)> : (15)

Now we establish generalized Ky Fan inequality for time scale.

Theorem 2. By considering assumptions of Theorem 1, and g(n) € (0, 3], where 0 < r <
v <1, then

i > 2 _ .

Proof. By applying ¢(z) = In =%, 2 € (0, 4] to the Theorem 1, we obtain required
results.

In next theorem we provide refinement of the Ky Fan inequality as follow:

Theorem 3. By considering assumptions of Theorem 1 and 0 < n < g(n) < N,~v > 0,
then

NZ
) (9:9) | (v = N)?
[,v] (g7w) B

[p,v] (’7 - Z, (/J)
[u,v] (’7 -, w)

[u,v] (gv w)
[u,v] (gv w)

U
U

>

U
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A
> | =
|G

(] (9@)] (v —n)? > 1. (16)

Proof. From the inequality G“‘L(gw) >1and n, N € (0, 3], the first and last inequali-

(o] (9:w)

ties deduced directly.
Let ¢ : (0,7) = R, ¢(r) = In[(*

T)] + aln(r) with « € R, we have

re (0,7),

Oé
T‘

r

N
S = 1[ ‘2’” ~a]. re@)

If ¢ : (0,7) — R, defined as ¢(r) = 10720 then ' (r) = 2(T(T )?, indicating ¢ is mono-

(y—m)?>
tonically strictly decreasing on (0,~). Consequently for r € (n, N), we have
1—-2N 1—-2n

If a < 7((“’ ]3,])\9, we conclude from (17) that the function ¢ is strictly convex on (n, N).

Applying Theorem 1 to the function
¢:(n,N) =R,

é(r) = In K’V - Tﬂ +aln(r),

with a < 7((77__]\2,])\9, we conclude that

In <7;”> +alnu+In (t”) +alno— /abw(f) [m <7;(*Z§’7)> +ozln(g(77))] An

b
Y vt / w(P)g(m A

b
[ )
potv— / w(t)g(n)An ‘
G[Ml/](’y g, ) X [l‘ }(7_95 ) bt
: +alnGy, ,(g9,w) > In—= +alnAp, i(g,w)
G[u,l/] (gv ) ] A[u V] (97 v]

<~ a—1 <
G:[,u,u} (g,w) > fil[u,u] (’7 - .CC,(/J) (18)
A (9, w) T\ Gy (v —zw)
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from (18) we observe that this inequality is best possible if we have a is maximal, i.e,

o= %, that leads

. y_2N_ g .
G[,u,u} (g,w) o= > A[u,u] ('7 - IL‘,O.))
A (9, w) T Gy (y - z,w)

which yield to the second inequality in (16).
We established the third inequality by using the function F'(r) = Slnr—In [@} and

the same technique. If 8 > % is true, then the function is strictly convex on (n, N).

Remark 1. Since the Ky Fan inequality is also equivalent to

fil[u,y] (9:@) _ f:l[u,u} (v—g,w)
G[u,y] (ga (/J) B G[M,V} (fy -9, W)

Y

then the first part of the inequality may be seen as refinement of the Ky Fan inequality
while the second part

{l[u,u} (7 -9, w) > A[u,u} (97 w) (r=m)®
G[,u,z/] (7 -9, w) B

can be considered as a counter part of the Ky Fan inequality.
Remark 2. (i) Let T=7Z,a=1 and b=n+1, we define w(i) = w; and g(i) = g;. The
n
condition for w means that Zwi > (0. Then, we have
i=1
N2 TL2
ol0.)  [0)] G- =), [lgs

Gn(g,w) Gn(ng) B Gn(’y_gaw) N Gn(gaw)

(i) Let T =R. Then for weight w : R — R and for continuous function g : R — R with
9([u,v]) C [n,N] C (0, 3], we have

N2
‘{l[p,y} (g,w) > f:l[,u,l/} (97"‘)) (’Y — N)2 > f:l[,u,zx} (’Y - g,w)
G[p,,y} (gyw) B G[p,,l/] (ng) B G[u V] (7 -9 OJ)
nQ
o (A0 @) | (r=n)*
G[u,u} (97
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Now, we will prove a result related to the inequality A[M,,j} (v—z,w) > GV'[W,} (v —z,w).

Theorem 4. By considering the assumptions of Theorem 1 and also ¢ € C([u,v],R) is
convex and v > 0, then

A[,u,l/} ('Y -9, w) > G[,u,l/} (’Y -9, w)'

Proof. By applying ((z) = x — In(y — z) for all € (0,3] to the Theorem 1, we get
required result.

Now, we present refinement of Ky Fan inequality via convexity.

Theorem 5. By considering the assumptions of Theorem 1, we get

— A
(1] (ry ng) < 1 < V[M,V] (gaw) . (19)

) (7 = 2w) T Gl(9,w) + G (v — g,w) T Gl (g,w)

A
G

1
Proof. By using ( (z) = T e for strictly convex on [0,00) and strictly concave
e

on (—00,0]. We apply convex function to the inequality (2) and we define g(n) =

lnLg(n) >0, =1In (’Y‘M) ,v=1In (’Y—V>’ by which we get,
9(n) p g

1 - 1 N 1 /bw(ﬂ 1
b = 14ev  14ev “ 1+ e9(m)
1+e<u+v— / w(T)g(n)An>

1
1+ eap <ln (52) +m (%) - /abw(T) In (W) An>
1 1
e (w(50)) e (w(5Y))
e 1+ eap (lj e

which gives,

1

b b
1+ exp (ln(v —u)(y—v)— / w(f) In(y — g(n))An) —In(uv) + / w(t) In(g(n))An

< <u v | bw(T)g(n)An>
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G[,u,zz]((’y - g)aw)

1+exp (ln
G[u,y] (gva w)

consequently,
, W . . . :
[1,V] (g )’ this gives the right hand side of (19).

1
) < A[u,u] (gv w)

1 A

or — = < =
G[,u,u} (ga w) + G[u,u] (’7 -9 w) G[u,u] (ga w)

Now by applying the Theorem 1 for the convex function —¢ on (—o0,0] with g(n) =

<0, we get left side of the inequality (19).
(g,w) and A[W,](l —g,w) > H[My](l —g,w).

N\

v = g(n)
Now, we will establish A[#’V} (g,w) > H[

]
Theorem 6. By considering the assumptions of Theorem 1 also by considering g(n) €

(0,31 C [ o], then
(Z) A[u,u] (g,w) > H[p,,y} (97("})'

(“) A[/L,V] (’7 - g,w) > H[u,u] (’7 - g)w)'
1 for all z € (0, 3] to the inequality (2) we get,

Proof. (i) By using ((x) =
b
) < [ () e
ptv = [ whaman ‘
A[u,u](ng) 2> b ! 1
bt e () &
A[u,y] (g,UJ) > H[M,V] (ng)‘
Proof. (ii) By using ¢(z) = w%m for all z € (0, 3] to the inequality (2), we get,
1 1 1 b 1
; < v [un () A
7—(u+v—/ w(1)g(n)An) e /“ 7= )
1 1 b 1
_ w - A
TR /a (1 <7—g(77)> !

1

b
(v—w)+(—v) —/ w(t)(y —g(n)An
A[u,u](’y_ng) > g[u,u](7_97w)'

Now, we present arithmetic and harmonic mean inequality.
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Theorem 7. By considering the assumptions of Theorem 1, we get

1 1 1 1
= — —= < = — = .
A (gw)  Apy(y—g,w) — Hypylg,w)  Hpyy(y —g,w)
Proof. We establish it by applying the Theorem 1 to the function,
1 1 ¥
== - <),
¢ (2) . (0<z<7)

z y—=z

By which we get,

1

1
b b
pAv— / w(t)g(n)An (y—p)+(y—v)— / w(t) (v —g(n)) An

: CL - 11u +%_ 711/ _/abw(ﬂ (9(177) - 719(77)> An)

left side of inequality gives,

1 1
Ap(gw)  Apy(y—gw)

from the right side of the inequality we obtain,

oo Lemgga] =[5 [0 (Gam) ]

1 1

et /f;’(“ (=) &
Hyoy(g.w)  Hypy(y — g.w)

-1

that completes the proof.
Now, we establish geometric and harmonic mean inequality for time scale.

Theorem 8. By considering the assumptions of Theorem 1, we get
H[,u,,zl] (ng) < G[,u,l/] (gaw) .
Proof. By using ¢(z) = €® for all x € [—00,00) to the inequality (2) we get

exp (u +v— /abw(T)g(n)An> < exp (u) +exp(v) — /abw(T) exp (g9(n)) An.

By replacing p by In <ﬁ), v by In (%) and ¢g(n) by In (ﬁ), then we obtained result.
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Theorem 9. By considering the assumptions of Theorem 1, we get
H[,u,,zz] (’Y -9, w) < G[p,,y} (’Y -9, w) .

Proof. By applying ¢(x) = e® for all z € (0, 3] to the inequality (2),

exp (u +v— /abw(f)g(n)ﬁn> < exp (u) +exp(v) — /abw(T) exp (g9(n)) An.

By using p = In (ﬁ) ,v=1In (ﬂﬁy) and g(n) = In (#(n))’ then we get required result.

Theorem 10. By considering the assumptions of Theorem 1, we get

H[;{,z/} (7 -9 OJ) < G[/J;,l/] (7 -9 W)
Hy(g,w) = Glu(g,w)

. (20)

Proof. Without loss of generality we suppose that g}s are not equal and by using the

strictly convex function ¢ (z) = In <H>, for all z € (0, 3].
z

We set,
H, (9, w) ol
Sl i s e MR A CF 1
] (95 w) + Hyy ) (v — g, w)
Then we get,
1— H[,u,y] (.97("))
n Hyy, (9, w) + Hyy ) (v — 9,w)
H[u,y}(g7w)

Hyy,o)(g,w) + Hiy ) (v — g,w)

—In <H[,u,1/](’y - gv“))
H[u,u](ng)

- <; " % _b/abw(T)g(lmAn> - ('y i w —luv - /Q:W(T)’Y—lg(n)m>
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In G[;ﬁ,u] (7 -9 w) ‘
G[u,v] (ga UJ)

We get required inequality (20) by taking exponential on both sides.

right side of the inequality gives,

Theorem 11. By considering the assumptions of Theorem 1, we get

H, —
[1,v] (7 9, OJ) < 1 <

[p,v] (gv CU)
Gluy)(Y = 9,w) — Gluu(g,w) + Gy — g,w)

[w,v] (ga w)

(21)

Q T

1
Proof. For the left hand inequality we apply function ((z) = —+1lon (—o00,00] to the
e
inequality (2) that is,

1

exp <u +v— /abw(T)g(n)An>

by replacing g(n) = ln(vg(gq;;)) >0, p by In(2F) and v by In(17), we get

+1

v

1 1 1 b 1
- +1§(+—/w(T)An>
x| 1 [ Clumi(r=9) Ol U el Z (v —9(m)
b G[y,u](’y_ng)
G v\g, W +é v —g,w 1 1 b 1
s, }(9@ )+ Gy — g, w) < ( N _/ W(T)An>
[MV}(")’—Q,(U) YK Y-V a (7_9(77))
H[u,u](7_97w) < 1

Glu(v = 9w) = Glu(y — g,w) + Gl (g, w)

To prove right-hand of the inequality (21) we apply inequality (2) to the convex function
—( on (—o0, 00] with g(n) = ln< 9(n) ) <0, p=1In (L) V= ln( Y

v—9(n) Y= )’ v )"
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