Strongly 2-Nil Clean Rings with Units of Order Two
DOI:
https://doi.org/10.29020/nybg.ejpam.v16i3.4797Keywords:
Clean, Nil clean, Strongly 2-nil clean, TripotentAbstract
A ring R is considered a strongly 2-nil clean ring, or (strongly 2-NC ring for short), if each element in R can be expressed as the sum of a nilpotent and two idempotents that commute with each other. In this paper, further properties of strongly 2-NC rings are given. Furthermore, we introduce and explore a special type of strongly 2-NC ring where every unit is of order 2, which we refer to as a strongly 2-NC rings with U(R) = 2. It was proved that the Jacobson radical over a strongly 2-NC ring is a nil ideal, here, we demonstrated that the Jacobson radical over strongly 2-NC ring with U(R) = 2 is a nil ideal of characteristic 4. We compare this ring with other rings, since every SNC ring is strongly 2-NC, but not every unit of order 2, and if R is a strongly 2-NC with U(R) = 2, then R need not be SNC ring. In order to get N il(R) = 0, we added one more condition involving this ring.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 European Journal of Pure and Applied Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.