Spectral Analysis of Splitting Signed Graph
DOI:
https://doi.org/10.29020/nybg.ejpam.v17i1.4798Keywords:
Signed Graph, Splitting Signed graph, spectrum, EnergyAbstract
An ordered pair $\Sigma = (\Sigma^{u}$,$\sigma$) is called the \textit{signed graph}, where $\Sigma^{u} = (V,E)$ is a \textit{underlying graph} and $\sigma$ is a signed mapping,called \textit{signature}, from $E$ to the sign set $\lbrace +, - \rbrace$. The \textit{splitting signed graph} $\Gamma(\Sigma)$ of a signed graph $\Sigma$ is defined as,
for every vertex $u \in V(\Sigma)$, take a new vertex $u'$. Join $u'$ to all the vertices of $\Sigma$ adjacent to $u$ such that $\sigma_{\Gamma}(u'v) = \sigma(u'v), \ u \in N(v)$.
The objective of this paper is to propose an algorithm for the generation of a splitting signed graph, a splitting root signed graph from a given signed graph using Matlab.
Additionally, we conduct a spectral analysis of the resulting graph. Spectral analysis is performed on the adjacency and laplacian matrices of the
splitting signed graph to study its eigenvalues and eigenvectors. A relationship between the energy of the original signed graph $\Sigma$
and the energy of the splitting signed graph $\Gamma(\Sigma)$ is established.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 European Journal of Pure and Applied Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.