Strong Coproximinality in Bochner $L^p$-Spaces and in Köthe Spaces
DOI:
https://doi.org/10.29020/nybg.ejpam.v16i3.4800Keywords:
Strong Coapproximation, Bochner spaces, Köthe function spaceAbstract
In this paper, we study strong coproximinality in Bochner $L^p$-spaces and in the Köthe Bochner function space $E(X)$. We investigate some conditions to be imposed on the subspace $G$ of the Banach space $X$ such that $L^{p}\left(\mu,G \right)$ is strongly coproximinal in $L^{p}\left(\mu,X \right), 1 \leq p <\infty$. On the other hand, we prove that if $G$ is a separable subspace of $X$ then $G$ is strongly coproximinal in $X$ if and only if $E(G)$ is strongly coproximinal in $E(X)$, provided that $E$ is a strictly monotone Köthe space. This generalizes some results in the literature. Some other results in this direction are also presented.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 European Journal of Pure and Applied Mathematics

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the journal, the author(s) accept(s) the transfer of copyright of the article to European Journal of Pure and Applied Mathematics.
European Journal of Pure and Applied Mathematics will be Copyright Holder.