New Improved Bounds for Signless Laplacian Spectral Radius and Nordhaus-Gaddum Type Inequalities for Agave Class of Graphs
DOI:
https://doi.org/10.29020/nybg.ejpam.v16i3.4806Keywords:
Spectral radius, Signless Laplacian spectral radius, Core-satellite graphs, Agave graphs, Complete split graphAbstract
Core-satellite graphs Θ(c, s, η) ∼= Kc ▽ (ηKs) are graphs consisting of a central clique Kc (the core) and η copies of Ks (the satellites) meeting in a common clique. They belong to the class of graphs of diameter two. Agave graphs Θ(2, 1, η) ∼= K2 ▽ (ηK1) belong to the general class of complete split graphs, where the graphs consist of a central clique K2 and η copies of K1 which are connected to all the nodes of the clique. They are the subclass of Core-satellite graphs. Let μ(G) be the spectral radius of the signless Laplacian matrix Q(G). In this paper, we have obtained the greatest lower bound and the least upper bound of signless Laplacian spectral radius of Agave graphs. These bounds have been expressed in terms of graph invariants like m the number of edges, n the number of vertices, δ the minimum degree, ∆ the maximum degree, and η copies of the satellite. We have made use of the approximation technique to derive these bounds. This unique approach can be utilized to determine the bounds for the signless Laplacian spectral radius of any general family of graphs. We have also obtained Nordhaus-Gaddum type inequality using the derived bounds.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 European Journal of Pure and Applied Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.