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Abstract. Let G be an undirected graph with vertex and edge sets V(G) and E(G), respectively.
A subset S of vertices of G is a geodetic hop dominating set if it is both a geodetic set and
a hop dominating set. The geodetic hop domination number of G is the minimum cardinality
among all geodetic hop dominating sets in G. In this paper, we characterize the geodetic hop
dominating sets in the join of two graphs. These characterizations which use the concept of
pointwise non-dominating 2-path closure absorbing set are, in turn, used to determine the geodetic
hop domination number of the join of graphs. Moreover, a realization result involving the hop
domination number and geodetic hop domination number is also obtained.
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1. Introduction

Over the years, a number of studies dealing with the topic on hop domination, a concept
introduced and initially studied by Natarajan and S. K. Ayyaswamy [13], had been done.
In particular, some variations of hop domination had been introduced and considered in
many studies (see [2], [3], [4], [5], [6], [7], [10], [11], [12], [14], [15], and [16]). Henning and
Rad [9] gave a probabilitics upper bound of the hop domination number of a graph and
showed that the hop dominating set problem is NP-complete for planar bipartite graphs
and planar chordal graphs. In a recent study, Henning et al. [8] presented a linear time
algorithm for computing a minimum hop dominating set in bipartite permutation graphs.

The idea of combining the concepts of hop domination and geodetic has led to the
introduction of the notion of geodetic hop domination. This hop domination variant was
first defined and examined by Anusha and Robin [1]. Motivated by the new concept,
Saromines and Canoy [16] gave characterizations of the geodetic hop dominating sets in
the corona and lexicographic product of two graphs. In this present paper, we revisit the
concept of geodetic hop domination and give further results of this new parameter.
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2. Terminology and Notation

For any two vertices v and v in an undirected connected graph G, the distance
dg(u,v) is the length of a shortest path joining v and v. Any w-v path of length dg(u,v)
is called a u-v geodesic. The interval I [u,v] consists u,v and all vertices lying on a u-v
geodesic. The interval I(u,v) = I [u,v] \ {u,v}. The open neighborhood of a vertex u is
the set N (u) consisting of all vertices v which are adjacent to u. The closed neighborhood
of u is Ng[u] = Ng(u) U {u}. For any A C V(G) U N¢(v) is called the open

veEA
neighborhood of A and Ng[A] = Ng(A)UA is called the closed neighborhood of A. The open

hop neighborhood of a vertex u is the set N3 (u) = {v € V(G) : da(v, u) = 2} The closed

hop neighborhood of u is NZ[u] = N&(u) U {u}. For any A C V(G) U NE (v
vEA

is called the open hop neighborhood of A and NZ[A] = NZ(A) U A is called the closed hop

neighborhood of A.

A set S C V(G) is a dominating set in G if Ng[S] = V(G). The smallest cardinality
of a dominating set in G, denoted by v(G) is called the domination number of G. The
geodetic closure of a set S C V(G), denoted by I [S], is the union of the intervals I[u, v],
where u,v € S. Set S is geodetic set in G if I¢[S] = V(G). The smallest cardinality among
all geodetic sets in G, denoted by g(G), is called the geodetic number of G. A geodetic set
of cardinality ¢g(G) is called a g-set of G. A set S C V(G) is a geodetic dominating set in
G if it is both a dominating and a geodetic set.

A set S C V(G) is a hop dominating set if N4[S] = V(G). The minimum cardinality of
a hop dominating set of a graph G, denoted by v (G), is called the hop domination number
of G. A subset S of V(G) is a total hop dominating set of G if for every v € V(G), there
exists u € S such that dg(u,v) = 2. The smallest cardinality of a total hop dominating
set of G, denoted by 4, (G) is called the total hop domination number of G. Any total
hop dominating set of G with cardinality v, (G) is called a ~yp-set.

A subset S of vertices of G is a geodetic hop dominating set if it is both a geodetic and
a hop dominating set. The geodetic hop domination number v,4(G) of G is the minimum
cardinality among all geodetic hop dominating sets in G. Any geodetic hop dominating
set of G' with cardinality v,4(G) is called a ypg-set.

A set S C V(G) of a graph G is called a 2-path closure absorbing if for each x € V/(G)\ S
there exist u,v € S such that dg(u,v) = 2 and = € Ig(u,v). The minimum cardinality
of a 2-path closure absorbing set in G is denoted by p2(G). Any 2-path closure absorbing
set of G with cardinality p2(G) is called a ps-set.

A set D C V(G) is a pointwise non-dominating set of G if for each v € V(G) \
S, there exists u € S such that v ¢ Ng(u). The smallest cardinality of a pointwise
non-dominating set of G, denoted by pnd(G), is called the pointwise non-domination
number of G. A pointwise non-dominating set S C V(G) of a graph G is called a 2-path
closure absorbing pointwise non-dominating set if it is a 2-path closure absorbing set. The
minimum cardinality of a 2-path closure absorbing pointwise non-dominating set in G is
denoted by popnqd(G). Any 2-path closure absorbing pointwise non-dominating set of G
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with cardinality popnq(G) is called a pappg-set.
Let G and H be two graphs. The join G+ H is the graph with vertex set V(G+ H) =
V(G)UV(H) and edge set E(G+ H) = E(G)UEH)U{uw :u e V(G),ve V(H)}.

3. Results

Since every geodetic hop dominating set is a hop dominating set, we have the following
remark.

Remark 1. Let G be any connected graph on n vertices. Then v,(G) < yie(G).

Remark 2. The bound given in Remark 1 is tight. Moreover, strict inequality can also be
attained.

To see this, consider G = K4 and H = K; 3. It can easily be verified that v,(G) =
Yhg(G) =4 and 7, (H) = 2 < 4 = ypy(H).

Theorem 1. Let a and b be positive integers such that 2 < a < b. Then there exists a
connected graph G such that v,(G) = a and v,4(G) = b.

Proof. Consider the following cases:

Case 1. a=0b.
Let G = K,. Then v,(G) = a = y,4(G).

Case 2. a <b.
Consider the following subcases:

Subcase 2.1. a is even.

Suppose a = 2 and let m = b—a. Consider the graph G in Figure 1. Let S; = {z1, 22}
and So = {y1,¥2, 21, 22, ..., Zm }. Then Sy and Sy are, respectively, y,-set and ~,4-set of G.
Hence, 74(G) = a and v,4(G) = a+m = b.

Y1 Y2
21
G:
22
r1 X2 Zm
Figure 1

Suppose a > 4. Consider the graph G’ in Figure 2. Let S3 = {x1,29,...,2q-1,%a}
and St = {y1,Y2, -y Ya—1, Yas 21, 22, ---, Zm }. Then S3 and Sy are, respectively, y-set and
Yhg-set of G'. Hence, v,(G') = a and y44(G') = a+m =b.
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yr Y2 Ys Y4 Ya—1 Ya

G-

Ty T2 T3 T4

Figure 2
Subcase 2.2. a is odd.
Suppose a = 3 and let m = b —a + 1. Consider the graph H in Figure 3. Let

S5 = {x1,z2,23} and S¢ = {y1, Y2, 21, 22, ..., 2m }. Then S5 and Sg are, respectively, ~j-set
and ypg-set of H. Hence, v,(H) = a and yp4(H) =m+a—1=b.

yr Y2
21

<2

Zm—1

Zm

Figure 3

Suppose a > 5 and let m = b — a + 1. Consider the graph H' in Figure 4. Let
S7 = {x1,x9,....;xq-1,2,} and Sg = {y1,Y2, ..., Ya—1, 21, 22, ---, Zm }. Then S7 and Sy are,
respectively, yp-set and ypg-set of H'. Hence, y4,(H') = a and ypg(H') =m+a—1=0b.

Yy Y2 Ys Ya Ya—2 Ya—1

H

T1 X9 T3 T4

Figure 4

This proves the assertion.

Corollary 1. Let n be a positive integer. Then there exists a connected graph such that

Yhg(G) =1 (G) = n. In other words, the difference yhg(G) —v,(G) can be made arbitrarily
large.
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The next few results deal with the concept of pointwise non-dominating 2-path closure
absorbing sets.

Remark 3. Fvery pointwise non-dominating 2-path closure absorbing is both a pointwise
non-dominating set and a 2-path closure absorbing set in G. Hence,

papmal(@) > maz {pnd(G), pa(G)}
Theorem 2. Let G be a graph on n > 3 vertices. Then

3 < p2pna(G) < n.
Moreover,

(1) popnd(G) = 3 if and only if n = 3 or n > 3 and there exists S C V(G) with
|S| = 3 such that for each v € V(G)\ S, |[Ng(v)NS| = 2 and dg(a,b) = 2 for
a,b € Ng(v)n§S.

(1) popnd(G) = n if and only if one of the following holds:

(a) G is connected and for every pair of vertices x,y with dg(x,y) = 2, the set
Ng(z) N Ng(y) contains dominating vertices of G only or

(b) G is disconnected such that every component H of G is complete.

Proof.

Let S be a popna-set of G. Suppose |S| < 2 and let v € V(G) \ S. Since S is a 2-path
closure absorbing set, there exist p,q € S such that dg(p,q) = 2 and v € Iz (p, q). Hence,
S cannot be a pointwise non-dominating set, contradicting our assumption that S is a
papnd-set of G. Therefore, 3 < papnq(G).

(7) Suppose popna(G) = 3. Suppose further that n > 3 and let S be a pypnq-set of G.
Then |S| = 3. Let v € V(G) \ S. Then there exist vertices a,b € S such that
dg(a,b) =2 and v € Ig(a,b) because S is a 2-path closure absorbing set. Also, since
S is a pointwise non-dominating set, there exists z € S\ {a, b} such that v ¢ Ng(z).
Therefore, |[Ng(v) N S| = 2.

For the converse, suppose that n > 3 and there exists S C V(G) with |S| = 3 that
satisfies the given conditions. Let v € V(G) \ S. Then, by assumption, there exist
a,b € S with dg(a,b) = 2 and v € Ig(a,b). This implies that S is a 2-path closure
absorbing set of G. Since [Ng(v) NS| =2, S is also a pointwise non-dominating set
of G.

Finally, suppose that n = 3. Then S = V(G) is both a pointwise non-dominating
and 2-path closure absorbing set. Since 3 < popnq(G), it follows that pay,q(G) = 3.

(i1) Suppose papnd(G) = n. Consider the following cases:

Case 1. G is connected.
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Suppose there exist p, g € V(G) with dg(p, ¢) = 2 such that Ng(p)NNg(q) contains a
non-dominating vertex, say z. Then there is a vertex w € V(G)\ Ng(z). This implies
that V(G) \ {z} is a pointwise non-dominating and 2-path closure absorbing set of
G, contrary to the assumption that popnq(G) = n. Thus, Ng(z) N Ng(y) contains
dominating vertices of G only for every pair of vertices z,y with dg(z,y) = 2,
showing that (a) holds.

Case 2. GG is disconnected.

Suppose there exists a component H of G that is not complete. Then there exist
v,w € V(H) such that dg(v,w) = 2. Let u € Ng(v) N Ng(w). Then V(G) \ {u}
is a 2-path closure absorbing set of G. Let H be a component of G with H # H
and pick u' € V(H). Then v’ € V(G) \ {u} and uv’ € E(G). Hence, V(G) \ {u} is
also a pointwise non-dominating set of G. This gives a contradiction. Thus, every
component of G is complete.

For the converse, suppose first that (a) holds. Let S be a papng-set of G. Suppose
S # V(G), say v € V(G) \ S. Since S is a 2-path closure absorbing set of G,
there exist x,y € S such that dg(z,y) = 2 and v € Ig(z,y). By assumption, v is
a dominating vertex of G. Therefore, S is not a pointwise non-dominating set, a
contradiction. Hence, S = V(G) and papnq(G) = n.

Next, suppose that (b) holds. Then the only 2-path closure absorbing set of G is
V(G). Therefore, V(G) is the only pointwise non-dominating and 2-path closure
absorbing set of G. Accordingly, papnd(G) = n.

The next result follows from Theorem 2.

Corollary 2. Let n be a positive integer and n > 2. Then papna(Kn) = popnd(Kn) =
p2pnd(K1,n71) =n.

Proposition 1. Let m and n be positive integers with m,n > 2. Then

P2pnd\mn) = 4 ifm>3andn>2.

Proof. Suppose m = 2 or n = 2, say m = 2. Choose any w € V(K,). Then
S = V(K,,) U {w} is a pointwise non-dominating and 2-path closure absorbing set of
K n. By Theorem 2, popnd(Kmn) = S| = 3. o B

Next, suppose that m > 3 and n > 3. Pick any z,y € V(K,,) and p,q € V(K,).
Then {z,y,p, ¢} is a pointwise non-dominating and 2-path closure absorbing set of Ky, ;.
This implies that popnd(Kmn) < 4. Let S, be a popng-set of Ky, . Suppose further
that |S,| = 3. Since S, is a pointwise non-dominating set, S; = So NV (K,,) # @ and
So = S,NV(K,) # @. We may assume that |S1| = 1. Then |Ss| = 2. Let z € V(K,)\ S..
Then z ¢ Ik, (u,v) for all u,v € S,, a contradiction. Therefore, |S,| > 4. Accordingly,

P2pnd (Km,n) =4.
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Proposition 2. For each positive integer n > 2,

2 ifn=2
(Z) p2pnd(Pn) =43 if n=23,4
%4 ifn>5

3 ifn=34

(i1) p2pnd(Cn) = {(g] ifn>05

Proof.

(1) Clearly, popnd(P2) = 2 and popna(Ps) = popna(Ps) = 3. Let n > 5. If n is odd, then
S1 = {v1,v3, ..., vp—2, v, } is the only pa,ng-set of P,. Hence, popna(Pn) = "TH If n
is even, then Sy = {v1,vs, ..., U3, Un_1,0,} and S3 = {v1, v3, v4..., Vp_2, v, } are the

only popng-sets of Py,. It follows that popnd(Pn) = ”T“

(¢7) By Theorem 2(7), popnd(C3) = popnd(Cs) = 3. Let n > 5. If n is odd, then
{v1,v3,05, ..., 0p—2, U} is a popna-set of C,. If n is even, then {vi,vs,vs,...,vp—1}
is a popng-set of Cy,. Therefore, popna(Crn) = [5].

From the proof of Proposition 2, the next result follows.
Corollary 3. Let n be a positive integer. Then
(1) popnd(Pn) = p2(Fn) for alln # 3 and
(1) papnd(Crn) = p2(Cy) for all n > 3.
The next result is found in [11].

Theorem 3. Let G and H be any two graphs. A set S C V(G + H) is hop dominating
set of G+ H if and only if S = Sg U Sy, where Sg and Sy are pointwise non-dominating
sets of G and H, respectively.

Theorem 4. Let G and H be any two graphs. A set S C V(G + H) is geodetic hop
dominating set of G + H if and only if S = Sg U Sy, where Sg and Sy are pointwise
non-dominating sets of G and H, respectively, such that

(i) Sg is a 2-path closure absorbing set in G whenever (Sg) is a complete subgraph of
H and

(13) Sp is a 2-path closure absorbing set in H whenever (Sg) is a complete subgraph of
G.

Proof. Suppose that S is a geodetic hop dominating set of G+ H. Let Sg = SNV (G)
and Sy = SNV(H). Since S is a hop dominating set, by Theorem 3, S and Sy are
pointwise non-dominating sets of G and H, respectively. Next, suppose that (Sg) is a
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complete subgraph of H. If S¢ = V(G), then we are done. Suppose Sg # V(G). Let
x € V(G)\ Sg. Since S is a geodetic set of G + H, there exist y,z € S such that
x € Igyp(y,z). Since (Sy) is complete, y,z € Sg. Thus, dg(y,z) = 2. Hence, Sg is
2-path closure absorbing set in G. Similarly, (¢¢) holds.

Conversely, suppose S satisfies the given conditions. By Theorem 3, S is a hop dom-
inating set of G + H. Let u € V(G+ H)\ S. Suppose u € V(H) \ Syg. If (Sq)
is non-complete, then there exist v,w € Sg C S such that dgyg(v,w) = 2. Hence,
u € Igymg(v,w). If (Sg) is complete, then there exist s,t € Sy C S such that dg(s,t) = 2
and u € Ig(s,t) = Ig4u(s,t) by (ii). Similarly, there exist p,q € S such that [p,u,q] is
a geodesic in G + H if u € V(G) \ Sg. Therefore, S is a geodetic hop dominating set of
G+ H.

Lemma 1. Let G be a non-complete graph. Then the following hold:
(¢) If D is a pnd-set of G such that (D) is complete, then D U {v} is a pointwise non-
dominating set and (D U {v}) is non-complete for every v € V(G) \ D.
(i1) If E is a papna-set of G, then (E) is non-complete.
Proof.
(i) Let v € V(G)\ D. Since D is a pointwise non-dominating set, DU {v} is a pointwise

non-dominating set and there exists w € D \ Ng(v). Therefore, (D U {v}) is non-
complete.

(13) If E = V(G), then we are done. Suppose E # V(G). Let x € V(G) \ E. Since
E is a 2-path closure absorbing, there exist p,q € E such that dg(p,q) = 2 and
x € Ig(p, q). Therefore, (F) is non-complete.

Before proceeding to the next result, we denote the family C of graphs by

C = {G : G has a pnd-set which induces a non-complete graph} .
Lemma 2. Let G be a non-complete graph. If G ¢ C, then pnd(G) < popnd(G), that is,
pnd(G) +1< p2pnd(G)'

Proof. Let S be a pnd-set of G. Then (S) is complete because G ¢ C. Therefore,
pnd(G) < papnd(G) by Remark 3 and Lemma 1(i7).

Corollary 4. Let G and H be any two non-complete graphs of orders m and n, respectively.
Then

pnd(G) + pnd(H), ifG,H € C
min { papnd(G) + pnd(H), pnd(G) + pnd(H) + 1} if GeC and H ¢ C
199(G) = { min {pnd(G) + papnalH),pnd(C) + prd(H) +1} if G ¢ C,H € C
min{papnd(G) + pnd(H), pnd(G) + p2pna(H)

pnd(G) + pnd(H) + 2} if G,H ¢ C.
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Proof. Let S be a ypg-set of G+ H. Then Sg = SNV(G) and Sy = SNV (H)
are pointwise non-dominating sets of G and H, respectively, by Theorem 4. Hence, if
G and H are in C, then Sg and Sy are pnd-sets of G and H, respectively. Therefore,
Yhg(G + H) = pnd(G) +pnd(H) if G,H € C.

Next, suppose that G € C and H ¢ C. Let Dg be a pappg-set of G and let Dy be a pnd-
set of H. Then (D¢) is non-complete by Lemma 1(i7). Since H ¢ C, (Dp) is complete.
Hence, Dy # V(H) because H is non-complete. Let w € V(H) \ Dy. By Lemma 1(7),

D}{ = Dy U{w} is a pointwise non-dominating set of H and <D}{ is non-complete.
Let D/G be a pnd-set of G such that <D’G> is non-complete. Then S; = Dg U Dy

and Sy = D/G U D}{ are geodetic hop dominating sets of G + H by Theorem 4. Thus,
g(G + H) < |S1] = papna(G) + prd(H) and 4pg(G + H) < | S5] = pnd(G) + pnd(H) + 1.
Consequently,

Yhg(G + H) < min{papna(G) + pnd(H),pnd(G) + pnd(H) + 1} .

Now, suppose that §* = 5S¢ U S, is a ypg-set of G + H. Then S; and S7; satisfy the
conditions in Theorem 4. Suppose popna(G) + pnd(H) < pnd(G) + pnd(H) + 1. If (SF)
is complete, then S¢, is pointwise non-dominating 2-path closure absorbing set of G' by
Theorem 4. It follows that v44(G + H) = |SE&| + |Sk| = popnd(G) + pnd(H). Suppose
(S3;) is non-complete. Since H ¢ C, H is non-complete, and S* is ypg-set of G + H,
|SH| > pnd(H) + 1 (see Lemma 1(7)). It follows that

hg(G+H) =[5
= [Scl+ 5|
> pnd(G) +pnd(H) + 1 > popna(G) + pnd(H).

Similar arguments may be used to show that v,4(G + H) > pnd(G) + pnd(H) + 1 if
pnd(G) + pnd(H) + 1 < papnd(G) + pnd(H ). Therefore,

Yhg(G + H) = min{popnd(G) + pnd(H),pnd(G) + pnd(H) + 1}if G € C and H ¢ C.

Similarly, vne(G + H) = min {popna(H) + pnd(G), pnd(G) + pnd(H) + 1} if G ¢ C and
H eC.
Suppose G, H ¢ C. Let

R = min{papna(G) + pnd(H ), pnd(G) + popna(H ), pnd(G) + pnd(H) + 2}.
Clearly,
Yrg(G + H) < min{ papna(G) + pnd(H ), papna(H) + pnd(G))} .

Let S; and Sy be pnd-sets of G and H, respectively. Let S; = S; U{p} and S = S, U{q},
where p € V(G)\ Sy and g € V(H)\Sz. Then S; and S, are pointwise non-dominating sets

of G and H, respectively, and <S;> and <S;> are non-complete by Lemma 1(7). Hence,
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S =S, U S, is a geodetic hop dominating set of G + H by Theorem 5. It follows that
g (G + H) < )s‘ = pnd(G) + pnd(H) + 2.

Therefore, v,4(G + H) < R.

Let So = Sg U S3 be a ypg-set of G + H. Then S and S§; satisfy the conditions in
Theorem 5. Consider the following cases:
Case 1. (S%;) is complete.

By Theorem 4, S¢ is a pointwise non-dominating 2-path closure absorbing set of G
and [Sg| > papnd(G). Hence,

Tg(G+H) =[S =|Sg]+ |SH|
> p2pnd(G)+pnd(H) ZR

Case 2. (Sg) is complete.
Then S% is a pointwise non-dominating and 2-path closure absorbing set of 4. Hence,

hg(G+H) = [S:| =|5¢| + [Sk|
> p2pnd(H) +pnd(G) > R.

Case 3. (Sg) and (S%;) are non-complete.
Then |Sg| > pnd(G) + 1 and |Sy| > pnd(H) + 1 by Lemma 1(7). Hence,

g(G+H) = S| =|5¢] +[SH|
> pnd(G) +pnd(H) +2 > R.
Accordingly, v,4(G + H) = R.
Corollary 5. Let G be a non-complete graph and n a positive integer. Then S C V (K, +
G) is a geodetic hop dominating set of K, + G if and only if S = V(K,) U Sq, where

Sa is a pointwise non-dominating and 2-path closure absorbing set in G. In particular,

Corollary 6. Let G and H be any two graphs of orders m and n respectively. Then
(1) Yg(G+H)=m+n if G and H are complete;

(1) Yhg(K1n-1) = Yhg(K1 + Ky 1) =n forn>2;
) =14 popna(Fn);

)
)
) Yng(Fn

) Yhg(Wn) = 1+ popna(Ch); and

(
(143) Yhg(
(1v) Yrg(
3 ifm=2o0rn=2.

4  otherwise.

(v) Yhg (Km,n) = {



REFERENCES 1578

4. Conclusion

A realization result involving the hop domination number and the geodetic hop domi-
nation number was obtained. This result shows that the difference of these two parameters
can be made arbitrarily large. The concept of pointwise non-dominating 2-path closure
absorbing set was defined and studied for some graphs. The geodetic hop dominating sets
in the join of two graphs were characterized using the concept of 2-path closure absorbing
pointwise non-dominating set. Complexity of the geodetic hop domination problem may
be investigated and the parameter may studied for other graphs.

Acknowledgements

The authors are very much grateful to the referees for the corrections and sugges-
tions they made in the initial manuscript. Also, the authors would like to thank the
Department of Science and Technology - Accelerated Science and Technology Human Re-
source Development Program (DOST-ASTHRDP)-Philippines, and MSU-Iligan Institute
of Technology for funding this research.

References

[1] D. Anusha and S. Joseph Robin. Geodetic hop domination in join and corona
of graphs. Journal of Combinatorial Mathematics and Combinatorial Computing,
21(3):1117-1127, 2011.

[2] S. Ayyaswamy, B. Krishnakumari, B. Natarjan, and Y. Venkatakrishnan. Bounds on
the hop domination number of a tree. Proceedings-Mathematical Sciences, 125(4):449—-
455, 2015.

[3] S. Canoy and G. Salasalan. Revisiting domination, hop domination, and global hop
domination in graphs. Furopean Journal of Pure and Applied Mathematics, 14:1415
— 1428, 2021.

[4] S. Canoy and G. Salasalan. A variant of hop domination in a graph. Furopean Journal
of Pure and Applied Mathematics, 15(2):342-353, 2022.

[5] J. Hassan and S. Canoy Jr. Grundy hop domination in graphs. European Journal of
Pure and Applied Mathematics, 15(4):1623-1636, 2022.

[6] J. Hassan and S. Canoy Jr. Hop independent domination in graphs. European Journal
of Pure and Applied Mathematics, 15(4):1783-1796, 2022.

[7] M. Henning and N.Rad. On 2-step and hop dominating sets in graphs. Graphs and
Combinatorics, 33(4):913-927, 2017.

[8] M. Henning, A. Pal, and D. Pradhan. Algorithm and hardness results on hop domi-
nation in graphs. Information Processing Letters, 153:105872, 2020.



REFERENCES 1579

[9]

M. Henning and J. Rad. On 2-step and hop dominating sets in graphs. Graphs and
Combinatorics, 33(2):1-15, 2017.

S. Canoy Jr. and S. Arriola. (1,2)*-domination in graphs. Advances and Applications
in Discrete Mathematics., 18(2):179-190, 2017.

S. Canoy Jr., R. Mollejon, and J. G. Canoy. Hop dominating sets in graphs under
binary operations. Fur. J. Pure Appl. Math., 12(4):1455-1463, 2019.

S. Canoy Jr. and G. Salasalan. Global hop domination number of graphs. European
Journal of Pure and Applied Mathematics, 14(1):112 — 125, 2021.

C. Natarajan and S. Ayyaswamy. Hop domination in graphs ii. Versita, 23(2):187—
199, 2015.

R. Rakim and H. Rara. Perfect hop domination in graphs. Applied Mathematical
Sciences, 12(13):635-649, 2018.

R. Rakim and H. Rara. Total perfect hop domination in graphs under some binary
operations. Furopean Journal of Pure and Applied Mathematics, 14(3):803-815, 2021.

C.J. Saromines and S. Canoy Jr. Outer-connected hop dominating sets in graphs.
European Journal of Pure and Applied Mathematics, 15(4):1996-1981, 2022.



