2-Locating Sets in a Graph
DOI:
https://doi.org/10.29020/nybg.ejpam.v16i3.4821Keywords:
2-locating set, 2-locating number, join, corona, edge corona, lexicographic productAbstract
Let $G$ be an undirected graph with vertex-set $V(G)$ and edge-set $E(G)$, respectively. A set $S\subseteq V(G)$ is a $2$-locating set of $G$ if $\big|[\big(N_G(x)\backslash N_G(y)\big)\cap S] \cup [\big(N_G(y)\backslash N_G(x)\big)\cap S]\big|\geq 2$, for all \linebreak $x,y\in V(G)\backslash S$ with $x\neq y$, and for all $v\in S$ and $w\in V(G)\backslash S$, $\big(N_G(v)\backslash N_G(w)\big)\cap S \neq \varnothing$ or $\big(N_G(w)\backslash N_G[v]\big) \cap S\neq \varnothing$. In this paper, we investigate the concept and study 2-locating sets in graphs resulting from some binary operations. Specifically, we characterize the 2-locating sets in the join, corona, edge corona and lexicographic product of graphs, and determine bounds or exact values of the 2-locating number of each of these graphs.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 European Journal of Pure and Applied Mathematics

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the journal, the author(s) accept(s) the transfer of copyright of the article to European Journal of Pure and Applied Mathematics.
European Journal of Pure and Applied Mathematics will be Copyright Holder.