On the Diophantine Equation (p+n)^x+p^y=z^2 where p and p+n are Prime Numbers
DOI:
https://doi.org/10.29020/nybg.ejpam.v16i4.4822Keywords:
Diophantine equation, Catalan's conjectureAbstract
In this paper, we study the Diophantine equation (p+n)^x+p^y=z^2, where p, p+n are prime numbers and n is a positive integer such that n equiv mod 4. In case p=3 and n=4, Rao{7} showed that the non-negative integer solutions are (x,y,z)=(0,1,2) and (1,2,4) In case p>3 and pequiv 3pmod4, if n-1 is a prime number and 2n-1 is not prime number, then the non-negative integer solution (x, y, z) is (0, 1,\sqrt {p+1}) or ( 1, 0, \sqrt{p+n+1}). In case pequiv 1pmod4, the non-negative integer solution (x,y,z) is also (0, 1,\sqrt {p+1}) or ( 1,0, \sqrt{p+n+1}).
Downloads
Published
Issue
Section
License
Copyright (c) 2023 European Journal of Pure and Applied Mathematics
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the European Journal of Pure and Applied Mathematics, the author(s) retain the copyright to the article. However, by submitting your work, you agree that the article will be published under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This license allows others to copy, distribute, and adapt your work, provided proper attribution is given to the original author(s) and source. However, the work cannot be used for commercial purposes.
By agreeing to this statement, you acknowledge that:
- You retain full copyright over your work.
- The European Journal of Pure and Applied Mathematics will publish your work under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
- This license allows others to use and share your work for non-commercial purposes, provided they give appropriate credit to the original author(s) and source.