On the Diophantine Equation (p+n)^x+p^y=z^2 where p and p+n are Prime Numbers
DOI:
https://doi.org/10.29020/nybg.ejpam.v16i4.4822Keywords:
Diophantine equation, Catalan's conjectureAbstract
In this paper, we study the Diophantine equation (p+n)^x+p^y=z^2, where p, p+n are prime numbers and n is a positive integer such that n equiv mod 4. In case p=3 and n=4, Rao{7} showed that the non-negative integer solutions are (x,y,z)=(0,1,2) and (1,2,4) In case p>3 and pequiv 3pmod4, if n-1 is a prime number and 2n-1 is not prime number, then the non-negative integer solution (x, y, z) is (0, 1,\sqrt {p+1}) or ( 1, 0, \sqrt{p+n+1}). In case pequiv 1pmod4, the non-negative integer solution (x,y,z) is also (0, 1,\sqrt {p+1}) or ( 1,0, \sqrt{p+n+1}).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 European Journal of Pure and Applied Mathematics

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the journal, the author(s) accept(s) the transfer of copyright of the article to European Journal of Pure and Applied Mathematics.
European Journal of Pure and Applied Mathematics will be Copyright Holder.