EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS

Vol. 16, No. 4, 2023, 2208-2212 ISSN 1307-5543 – ejpam.com Published by New York Business Global

On the Diophantine Equation $(p+n)^x + p^y = z^2$ where p and p+n are prime numbers

Wachirarak Orosram

Department of Mathematics, Faculty of Science, Buriram Rajabhat University, Buriram 31000, Thailand

Abstract. In this paper, we study the Diophantine equation $(p+n)^x + p^y = z^2$, where p, p+n are prime numbers and n is a positive integer such that $n \equiv 0 \pmod{4}$. In case p = 3 and n = 4, Rao [7] showed that the non-negative integer solutions are (x, y, z) = (0, 1, 2) and (1, 2, 4). In case p > 3 and $p \equiv 3 \pmod{4}$, if n-1 is a prime number and 2n-1 is not prime number, then the non-negative integer solution (x, y, z) is $(0, 1, \sqrt{p+1})$ or $(1, 0, \sqrt{p+n+1})$. In case $p \equiv 1 \pmod{4}$, the non-negative integer solution (x, y, z) is also $(0, 1, \sqrt{p+1})$ or $(1, 0, \sqrt{p+n+1})$.

2020 Mathematics Subject Classifications: 11D61 Key Words and Phrases: Diophantine equation, Catalan's conjecture

1. Introduction

Many mathematicians have been studying the Diophantine equations of the type (p + $(n)^{x} + p^{y} = z^{2}$ with a constant n and a specific condition of p, for example, in case that p is a prime number. In 2015, Tatong and Suvarnamani [10] found that (p, x, y, z) = (3, 1, 0, 2) is a unique non-negative integer solution of the Diophantine equation $p^{x} + (p+1)^{y} = z^{2}$ where p is an odd prime number. In 2018, Burshtein [1] showed that the Diophantine equation $p^{x} + (p+4)^{y} = z^{2}$ when p > 3, p+4 are primes has no positive integer solution (x, y, z). In the same year, Fernando [3] showed that $p^{x} + (p+8)^{y} = z^{2}$ has no positive integer solution, when p > 3 and p + 8 are primes. In addition, Kumar, Gupta and Kishan [5] proved that the solution of $p^{x} + (p+12)^{y} = z^{2}$ has no non-negative integer solution where p and p+12are prime numbers and p = 6n + 1 for some natural number n. In 2021, Dokchan and Pakapongpun [2] studied a Diophantine equation $p^{x} + (p+20)^{y} = z^{2}$, when p and p+20are primes and showed that the equation has no positive integer solution (x, y, z). In the same year, Gayo Jr and Bacani [4] solved the Diophantine equation $M_p^x + (M_q + 1)^y = z^2$ where M_p and M_q are Mersenne primes. In 2022, Tadee [8] gave the solutions of equations $p^{x} + (p+14)^{y} = z^{2}$, where p and p+14 are primes. In 2023, Viriyapong and Viriyapong [11] studied the Diophantine equation $a^x + (a+2)^y = z^2$, where $a \equiv 5 \pmod{21}$ and showed

Email address: Wachirarak.tc@bru.ac.th (W. Orosram)

https://www.ejpam.com

2208

© 2023 EJPAM All rights reserved.

DOI: https://doi.org/10.29020/nybg.ejpam.v16i4.4822

that the equation has no non-negative integer solution (x, y, z). In the same year, Tadee and Siraworakun [9] studied the Diophantine equation $p^x + (p+2q)^y = z^2$, where p, q, p+2qare prime numbers and showed that the equation has no positive integer solution.

In this paper, we give a solution of the Diophantine equation $(p+n)^x + p^y = z^2$, where p, p+n are odd prime numbers such that $n \equiv 0 \pmod{4}$. To obtain our result, we consider two cases of p in modulo 4, i.e., the case that $p \equiv 1 \pmod{4}$ and the case that $p \equiv 3 \pmod{4}$. In case $p \equiv 3 \pmod{4}$, we first consider case p = 3 and n = 4. The considered equation in this case is $3^x + 7^y = z^2$ in which the solutions were given by Rao [7] that (x, y, z) = (0, 1, 2) or (x, y, z) = (1, 2, 4). Next, we consider $p \equiv 3 \pmod{4}$ such that p > 3 with a specific condition that n - 1 is a prime number and 2n - 1 is not a prime number. Then, our final case is when $p \equiv 1 \pmod{4}$ and n is a positive integer.

2. Preliminaries

Proposition 1. (Catalan's conjecture) The Diophantine equation $a^x - b^y = 1$ where $\min\{a, b, x, y\} > 1$ has a unique solution (a, b, x, y) = (3, 2, 2, 3).

This proposition was proved in 2004 by Mihailescu [6].

Lemma 1. Let p be odd prime number. The non-negative integer solution to the Diophantine equation $1 + p^y = z^2$ is $(y, z) = (1, \sqrt{p+1})$ if $\sqrt{p+1}$ is a positive integer.

Proof. Let (y, z) be a non-negative integer solution of $1 + p^y = z^2$. If y = 0, then $z^2 = 2$, which is impossible. If y > 1, then z > 1. By Catalan's conjecture, there is no non-negative integer solution. If y = 1, then $z^2 = p + 1$. So $z = \sqrt{p+1}$. This means that $\sqrt{p+1}$ is a non-negative integer as z is a non-negative integer.

Lemma 2. Let n be a positive integer such that $n \equiv 0 \pmod{4}$ and let p, p + n be prime numbers. The non-negative integer solutions of the Diophantine equation $1 + (p+n)^x = z^2$ is $(x, z) = (1, \sqrt{p+n+1})$ if $\sqrt{p+n+1}$ is a positive integer.

Proof. Let (x, z) be a non-negative integer solution of $1 + (p+n)^x = z^2$. If x = 0, then $z^2 = 2$, which is impossible. If x > 1, then z > 1. By Catalan's conjecture, there is no of a non-negative integer solution. If x = 1, then $z^2 = p + n + 1$. So $z = \sqrt{p+n+1}$. This means that $\sqrt{p+n+1}$ is a non-negative integer as z is a non-negative integer.

Theorem 1. ([7]) Let n = 4 and p = 3. The non-negative integer solutions of the Diophantine equation $(p+n)^x + p^y = z^2$ are (x, y, z) = (0, 1, 2) and (1, 2, 4).

This theorem was proved in 2017 by Rao [7].

3. Main results

In Theorem 2, we use the same method of proof as appeared in [1, 2] to derive the result.

Theorem 2. Let n and p be positive integers where $n \equiv 0 \pmod{4}$, $p \equiv 3 \pmod{4}$ and p > 3 such that p, p+n, n-1 are prime numbers and 2n-1 is not a prime number. If $\sqrt{p+1}$ and $\sqrt{p+n+1}$ are integers, then all of the non-negative integer solutions of the Diophantine equation $(p+n)^x + p^y = z^2$ are given by $(x, y, z) \in \{(0, 1, \sqrt{p+1}), (1, 0, \sqrt{p+n+1})\}$, where x, y and z are non-negative integer.

Proof. Let (x, y, z) be a non-negative integer solution of $(p+n)^x + p^y = z^2$. If x = 0 or y = 0, then $(x, y, z) = (0, 1, \sqrt{p+1})$ or $(x, y, z) = (1, 0, \sqrt{p+n+1})$ by Lemma 1 and Lemma 2. Now, we suppose x > 0 and y > 0. We consider the following cases. If x and y are even, then $(p+n)^x \equiv 1 \pmod{4}$ and $p^y \equiv 1 \pmod{4}$. Thus $(p+n)^x + p^y \equiv 2 \pmod{4}$ which is impossible since $z^2 \equiv 0, 1 \pmod{4}$. If x and y are odd, then $(p+n)^x \equiv 3 \pmod{4}$ and $p^y \equiv 3 \pmod{4}$. Thus $(p+n)^x + p^y \equiv 2 \pmod{4}$ which is impossible since $z^2 \equiv 0, 1 \pmod{4}$. If x and y are odd, then $(p+n)^x \equiv 3 \pmod{4}$ and $p^y \equiv 3 \pmod{4}$. Now, there are two remaining cases to be considered.

Case 1. x is even and y is odd.

There exist $k \ge 1$ and $s \ge 0$ such that x = 2k, y = 2s+1. We have $(p+n)^{2k} + p^{2s+1} = z^2$, which can be rewritten as

$$p^{2s+1} = z^2 - (p+n)^{2k} = \left[z - (p+n)^k\right] \left[z + (p+n)^k\right].$$

Thus, there exist non-negative integers α , β that $p^{\alpha} = z - (p+n)^k$ and $p^{\beta} = z + (p+n)^k$, where $\alpha < \beta$ and $\alpha + \beta = 2s + 1$. Hence

$$2(p+n)^{k} = p^{\alpha} \left[p^{\beta-\alpha} - 1 \right].$$

If $\alpha \ge 1$, then $p \mid (p+n)$ which is impossible since p and p+n are different primes. In Case $\alpha = 0$, we have $2(p+n)^k = p^{2s+1} - 1$. If s = 0, then $2(p+n)^k + 1 = p$ which is impossible. If $s \ge 1$, then we have

$$2(p+n)^{k} = (p-1) \left[p^{2s} + p^{2s-1} + \dots + p + 1 \right].$$

Since p-1 is even and $p^{2s}+p^{2s-1}+\cdots+p+1$ is odd, it follows that p-1 is an even positive divisor of $2(p+n)^k$ that is $p-1=2(p+n)^j$, for some integer j such that $0 \le j < k$. If j=0, then p=3 which contradicts p>3. If $1 \le j < k$, then $2(p+n)^j+1=p$ which is also impossible.

Case 2. x is odd and y is even.

There exist $k \ge 0$ and $s \ge 1$ such that x = 2k + 1 and y = 2s. We now have $(p+n)^{2k+1} + (p)^{2s} = z^2$, which can be rewritten as

$$(p+n)^{2k+1} = z^2 - p^{2s} = (z+p^s)(z-p^s).$$

Thus, there exist non-negative integers α, β such that $(p+n)^{\alpha} = z - p^s$ and $(p+n)^{\beta} = z + p^s$, where $\alpha < \beta$ and $\alpha + \beta = 2k + 1$. Then

$$2p^{s} = (p+n)^{\alpha} \left[(p+n)^{\beta-\alpha} - 1 \right].$$

If $\alpha \ge 1$, then $(p+n) \mid p$ which is impossible. In Case $\alpha = 0$, we have $2p^s = (p+n)^{2k+1} - 1$. If k = 0, then $2p^s - p = n - 1$. Hence $p \left[2p^{s-1} - 1 \right] = n - 1$. Since n - 1 is prime, it follows that p = n - 1 this contradicts the fact that p + n = 2n - 1 is not prime. If $k \ge 1$, then

$$2p^{s} = (p+n-1)\left[(p+n)^{2k} + (p+n)^{2k-1} + \dots + (p+n) + 1\right].$$

Since p + n - 1 is even and $(p + n)^{2k} + (p + n)^{2k-1} + \dots + (p + n) + 1$ is odd, it follows that p + n - 1 is an even positive divisor of $2p^s$ that is $p + n - 1 = 2p^l$, for some integer l such that $0 \le l < s$. If l = 0, then p + n = 3, which is impossible since p > 3 and n are positive integer. If $1 \le l < s$, then $p [2(p)^{l-1} - 1] = n - 1$ which is also impossible.

Example 1. There are infinitely many n, p of the form $n \equiv 0 \pmod{4}, p \equiv 3 \pmod{4}$ where p > 3 such that p, p+n, n-1 are prime numbers and 2n-1 is not a prime number. Some Diophantine equations of particular values of n where n is between 1 to 70 with positive integers $\sqrt{p+1}$ and $\sqrt{p+n+1}$ are given in the table below.

n	$(p+n)^x + p^y = z^2$	(x,y,z)
8	$(p+8)^x + p^y = z^2$	$\{(0,1,\sqrt{p+1}\} \cup \{(1,0,\sqrt{p+9})\}$
20	$(p+20)^x + p^y = z^2$ [2]	$\{(0,1,\sqrt{p+1}\} \cup \{(1,0,\sqrt{p+21})\}$
32	$(p+32)^x + p^y = z^2$	$\{(0,1,\sqrt{p+1}\} \cup \{(1,0,\sqrt{p+33})\}$
44	$(p+44)^x + p^y = z^2$	$\{(0,1,\sqrt{p+1}\} \cup \{(1,0,\sqrt{p+45})\}$
48	$(p+48)^x + p^y = z^2$	$\{(0,1,\sqrt{p+1}\} \cup \{(1,0,\sqrt{p+49})\}\$
60	$(p+60)^x + p^y = z^2$	$\{(0,1,\sqrt{p+1}\}\cup\{(1,0,\sqrt{p+61})\}$
68	$(p+68)^x + p^y = z^2$	$\{(0,1,\sqrt{p+1}\}\cup\{(1,0,\sqrt{p+69})\}$

Table 1: Diophantine equations satisfying the condition in Theorem 2.

Theorem 3. Let p and n be a positive integer where $n \equiv 0 \pmod{4}$, $p \equiv 1 \pmod{4}$ such that p and p + n are prime numbers. If $\sqrt{p+1}$ and $\sqrt{p+n+1}$ are integers, then the all of the non-negative integer solutions of $(p+n)^x + p^y = z^2$ are given by $(x, y, z) \in \{(0, 1, \sqrt{p+1}), (1, 0, \sqrt{p+n+1})\}$.

Proof. Let (x, y, z) be a non-negative integer solution of $(p+n)^x + p^y = z^2$. If x = 0 or y = 0, then $(x, y, z) = (0, 1, \sqrt{p+1})$ or $(x, y, z) = (1, 0, 2\sqrt{p+n+1})$ by Lemma 1 and Lemma 2. If x > 0 and y > 0, then $(p+n)^x \equiv 1 \pmod{4}$ and $p^y \equiv 1 \pmod{4}$. Thus $(p+n)^x + p^y \equiv 2 \pmod{4}$ which is impossible since $z^2 \equiv 0, 1 \pmod{4}$.

Acknowledgements

The authors wish to thank the referees for their kind suggestions and comments to improve the article.

References

- [1] Nechemia Burshtein. On the diophantine equation $p^x + (p+4)^y = z^2$ when p > 3, p+4 are primes is insolvable in positive integers. Annals of Pure and Applied Mathematics, 16(2):283–286, 2018.
- [2] Rakporn Dokchan and Apisit Pakapongpun. On the diophantine $p^x + (p+20)^y = z^2$ when p and p + 20 are primes. International Journal of Mathematics and Computer Science, 16(1):179–183, 2021.
- [3] N Fernando. On the solvability of the diophantine equation $p^x + (p+8)^y = z^2$ when p > 3 and p+8 are primes. Annals of Pure and Applied Mathematics, 18(1):9–13, 2018.
- [4] William Sobredo Gayo Jr and Jerico Bravo Bacani. On the diophantine equation $m_p^x + (m_q + 1)^y = z^2$. European Journal of Pure and Applied Mathematics, 14(2):396–403, 2021.
- [5] S Kumar, D Gupta, and H Kishan. On the solution of exponential diophantine equation $p^x + (p + 12)^y = z^2$. International transactions in Mathematical Sciences and Computer, 11(1):1–4, 2018.
- [6] Preda Mihailescu. Primary cyclotomic units and a proof of catalans conjecture. 2004.
- [7] CG Rao. On the diophantine equation $3^x + 7^y = z^2$. EPRA International Journal of Research and Development, 3(6):93–95, 2018.
- [8] Suton Tadee. On the diophantine equation $p^x + (p+14)^y = z^2$ where p and p+14 are prime numbers. Annals of Pure and Applied Mathematics, 26(2):125–130, 2022.
- [9] Suton Tadee and Apirat Siraworakun. Non-existence of positive integer solutions of the diophantine equation $p^x + (p+2q)^y = z^2$ where p, q and p+2q are prime numbers. European Journal of Pure and Applied Mathematics, 16(2):724–735, 2023.
- [10] M Tatong and A Suvarnamani. On the diophantine equation $p^x + (p+1)^y = z^2$. International Journal of Pure and Applied Mathematics, 103(2):155–158, 2015.
- [11] Chokchai Viriyapong and Nongluk Viriyapong. On the diophantine equation $a^x + (a + 2)^y = z^2$, where $a \equiv 5 \pmod{21}$. International Journal of Mathematics & Computer Science, 18(3), 2023.