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Abstract. In this paper, we study the Diophantine equation (p + n)x + py = z2, where p, p + n
are prime numbers and n is a positive integer such that n ≡ 0 (mod 4). In case p = 3 and n = 4,
Rao [7] showed that the non-negative integer solutions are (x, y, z) = (0, 1, 2) and (1, 2, 4). In case
p > 3 and p ≡ 3 (mod 4), if n − 1 is a prime number and 2n − 1 is not prime number, then the
non-negative integer solution (x, y, z) is (0, 1,

√
p+ 1) or (1, 0,

√
p+ n+ 1). In case p ≡ 1 (mod 4),

the non-negative integer solution (x, y, z) is also (0, 1,
√
p+ 1) or (1, 0,

√
p+ n+ 1).
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1. Introduction

Many mathematicians have been studying the Diophantine equations of the type (p+
n)x+py = z2 with a constant n and a specific condition of p, for example, in case that p is a
prime number. In 2015, Tatong and Suvarnamani [10] found that (p, x, y, z) = (3, 1, 0, 2) is
a unique non-negative integer solution of the Diophantine equation px+(p+1)y = z2 where
p is an odd prime number. In 2018, Burshtein [1] showed that the Diophantine equation
px+(p+4)y = z2 when p > 3, p+4 are primes has no positive integer solution (x, y, z). In
the same year, Fernando [3] showed that px+(p+8)y = z2 has no positive integer solution,
when p > 3 and p+ 8 are primes. In addition, Kumar, Gupta and Kishan [5] proved that
the solution of px+(p+12)y = z2 has no non-negative integer solution where p and p+12
are prime numbers and p = 6n + 1 for some natural number n. In 2021, Dokchan and
Pakapongpun [2] studied a Diophantine equation px + (p+ 20)y = z2, when p and p+ 20
are primes and showed that the equation has no positive integer solution (x, y, z). In the
same year, Gayo Jr and Bacani [4] solved the Diophantine equation Mx

p + (Mq +1)y = z2

where Mp and Mq are Mersenne primes. In 2022, Tadee [8] gave the solutions of equations
px+(p+14)y = z2, where p and p+14 are primes. In 2023, Viriyapong and Viriyapong [11]
studied the Diophantine equation ax + (a+ 2)y = z2, where a ≡ 5 (mod 21) and showed
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that the equation has no non-negative integer solution (x, y, z). In the same year, Tadee
and Siraworakun [9] studied the Diophantine equation px+(p+2q)y = z2, where p, q, p+2q
are prime numbers and showed that the equation has no positive integer solution.

In this paper, we give a solution of the Diophantine equation (p+n)x+py = z2, where
p, p+n are odd prime numbers such that n ≡ 0 (mod 4). To obtain our result, we consider
two cases of p in modulo 4, i.e., the case that p ≡ 1 (mod 4) and the case that p ≡ 3
(mod 4). In case p ≡ 3 (mod 4), we first consider case p = 3 and n = 4. The considered
equation in this case is 3x + 7y = z2 in which the solutions were given by Rao [7] that
(x, y, z) = (0, 1, 2) or (x, y, z) = (1, 2, 4). Next, we consider p ≡ 3 (mod 4) such that p > 3
with a specific condition that n− 1 is a prime number and 2n− 1 is not a prime number.
Then, our final case is when p ≡ 1 (mod 4) and n is a positive integer.

2. Preliminaries

Proposition 1. (Catalan’s conjecture) The Diophantine equation ax − by = 1 where
min{a, b, x, y} > 1 has a unique solution (a, b, x, y) = (3, 2, 2, 3).

This proposition was proved in 2004 by Mihailescu [6].

Lemma 1. Let p be odd prime number. The non-negative integer solution to the Dio-
phantine equation 1 + py = z2 is (y, z) = (1,

√
p+ 1) if

√
p+ 1 is a positive integer.

Proof. Let (y, z) be a non-negative integer solution of 1 + py = z2. If y = 0, then
z2 = 2, which is impossible. If y > 1, then z > 1. By Catalan’s conjecture, there is no
non-negative integer solution. If y = 1, then z2 = p+ 1. So z =

√
p+ 1. This means that√

p+ 1 is a non-negative integer as z is a non-negative integer.

Lemma 2. Let n be a positive integer such that n ≡ 0 (mod 4) and let p, p+ n be prime
numbers. The non-negative integer solutions of the Diophantine equation 1+(p+n)x = z2

is (x, z) = (1,
√
p+ n+ 1) if

√
p+ n+ 1 is a positive integer.

Proof. Let (x, z) be a non-negative integer solution of 1+(p+n)x = z2. If x = 0, then
z2 = 2, which is impossible. If x > 1, then z > 1. By Catalan’s conjecture, there is no of
a non-negative integer solution. If x = 1, then z2 = p + n + 1. So z =

√
p+ n+ 1. This

means that
√
p+ n+ 1 is a non-negative integer as z is a non-negative integer.

Theorem 1. ([7]) Let n = 4 and p = 3. The non-negative integer solutions of the Dio-
phantine equation (p+ n)x + py = z2 are (x, y, z) = (0, 1, 2) and (1, 2, 4).

This theorem was proved in 2017 by Rao [7].

3. Main results

In Theorem 2, we use the same method of proof as appeared in [1, 2] to derive the
result.
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Theorem 2. Let n and p be positive integers where n ≡ 0 (mod 4), p ≡ 3 (mod 4) and
p > 3 such that p, p+n, n−1 are prime numbers and 2n−1 is not a prime number. If

√
p+ 1

and
√
p+ n+ 1 are integers, then all of the non-negative integer solutions of the Diophan-

tine equation (p+n)x+py = z2 are given by (x, y, z) ∈ {(0, 1,
√
p+ 1), (1, 0,

√
p+ n+ 1)},

where x, y and z are non-negative integer.

Proof. Let (x, y, z) be a non-negative integer solution of (p + n)x + py = z2. If x = 0
or y = 0, then (x, y, z) = (0, 1,

√
p+ 1) or (x, y, z) =

(
1, 0,

√
p+ n+ 1

)
by Lemma 1 and

Lemma 2. Now, we suppose x > 0 and y > 0. We consider the following cases. If x and y
are even, then (p+n)x ≡ 1 (mod 4) and py ≡ 1 (mod 4). Thus (p+n)x+py ≡ 2 (mod 4)
which is impossible since z2 ≡ 0, 1 (mod 4). If x and y are odd, then (p+n)x ≡ 3 (mod 4)
and py ≡ 3 (mod 4). Thus (p+ n)x + py ≡ 2 (mod 4) which is impossible since z2 ≡ 0, 1
(mod 4). Now, there are two remaining cases to be considered.

Case 1. x is even and y is odd.
There exist k ≥ 1 and s ≥ 0 such that x = 2k, y = 2s+1. We have (p+n)2k+p2s+1 = z2,

which can be rewritten as

p2s+1 = z2 − (p+ n)2k =
[
z − (p+ n)k

] [
z + (p+ n)k

]
.

Thus, there exist non-negative integers α, β that pα = z− (p+ n)k and pβ = z+(p+ n)k,
where α < β and α+ β = 2s+ 1. Hence

2 (p+ n)k = pα
[
pβ−α − 1

]
.

If α ≥ 1, then p | (p + n) which is impossible since p and p + n are different primes. In
Case α = 0, we have 2(p + n)k = p2s+1 − 1. If s = 0, then 2(p + n)k + 1 = p which is
impossible. If s ≥ 1, then we have

2(p+ n)k = (p− 1)
[
p2s + p2s−1 + · · ·+ p+ 1

]
.

Since p−1 is even and p2s+p2s−1+· · ·+p+1 is odd, it follows that p−1 is an even positive
divisor of 2(p + n)k that is p − 1 = 2 (p+ n)j , for some integer j such that 0 ≤ j < k. If
j = 0, then p = 3 which contradicts p > 3. If 1 ≤ j < k, then 2(p+ n)j + 1 = p which is
also impossible.

Case 2. x is odd and y is even.
There exist k ≥ 0 and s ≥ 1 such that x = 2k + 1 and y = 2s. We now have

(p+ n)2k+1 + (p)2s = z2, which can be rewritten as

(p+ n)2k+1 = z2 − p2s = (z + ps) (z − ps) .

Thus, there exist non-negative integers α, β such that (p+ n)α = z − ps and (p+ n)β =
z + ps, where α < β and α+ β = 2k + 1. Then

2ps = (p+ n)α
[
(p+ n)β−α − 1

]
.
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If α ≥ 1, then (p+n) | p which is impossible. In Case α = 0, we have 2ps = (p+ n)2k+1−1.
If k = 0, then 2ps−p = n−1. Hence p

[
2ps−1 − 1

]
= n−1. Since n−1 is prime, it follows

that p = n− 1 this contradicts the fact that p+ n = 2n− 1 is not prime. If k ≥ 1, then

2ps = (p+ n− 1)
[
(p+ n)2k + (p+ n)2k−1 + · · ·+ (p+ n) + 1

]
.

Since p + n − 1 is even and (p+ n)2k + (p+ n)2k−1 + · · · + (p+ n) + 1 is odd, it follows
that p + n − 1 is an even positive divisor of 2ps that is p + n − 1 = 2pl, for some integer
l such that 0 ≤ l < s. If l = 0, then p+ n = 3, which is impossible since p > 3 and n are
positive integer. If 1 ≤ l < s, then p

[
2(p)l−1 − 1

]
= n− 1 which is also impossible.

Example 1. There are infinitely many n, p of the form n ≡ 0 (mod 4),p ≡ 3 (mod 4)
where p > 3 such that p, p+n, n−1 are prime numbers and 2n−1 is not a prime number.
Some Diophantine equations of particular values of n where n is between 1 to 70 with
positive integers

√
p+ 1 and

√
p+ n+ 1 are given in the table below.

n (p+ n)x + py = z2 (x, y, z)

8 (p+ 8)x + py = z2 {(0, 1,
√
p+ 1} ∪ {(1, 0,

√
p+ 9)}

20 (p+ 20)x + py = z2 [2] {(0, 1,
√
p+ 1} ∪ {(1, 0,

√
p+ 21)}

32 (p+ 32)x + py = z2 {(0, 1,
√
p+ 1} ∪ {(1, 0,

√
p+ 33)}

44 (p+ 44)x + py = z2 {(0, 1,
√
p+ 1} ∪ {(1, 0,

√
p+ 45)}

48 (p+ 48)x + py = z2 {(0, 1,
√
p+ 1} ∪ {(1, 0,

√
p+ 49)}

60 (p+ 60)x + py = z2 {(0, 1,
√
p+ 1} ∪ {(1, 0,

√
p+ 61)}

68 (p+ 68)x + py = z2 {(0, 1,
√
p+ 1} ∪ {(1, 0,

√
p+ 69)}

Table 1: Diophantine equations satisfying the condition in Theorem 2.

Theorem 3. Let p and n be a positive integer where n ≡ 0 (mod 4), p ≡ 1 (mod 4) such
that p and p + n are prime numbers. If

√
p+ 1 and

√
p+ n+ 1 are integers, then the

all of the non-negative integer solutions of (p + n)x + py = z2 are given by (x, y, z) ∈
{(0, 1,

√
p+ 1), (1, 0,

√
p+ n+ 1)}.

Proof. Let (x, y, z) be a non-negative integer solution of (p + n)x + py = z2. If x = 0
or y = 0, then (x, y, z) = (0, 1,

√
p+ 1) or (x, y, z) =

(
1, 0, 2

√
p+ n+ 1

)
by Lemma 1 and

Lemma 2. If x > 0 and y > 0, then (p + n)x ≡ 1 (mod 4) and py ≡ 1 (mod 4). Thus
(p+ n)x + py ≡ 2 (mod 4) which is impossible since z2 ≡ 0, 1 (mod 4).
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