EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS
Vol. 16, No. 4, 2023, 2208-2212
ISSN 1307-5543 - ejpam.com
Published by New York Business Global


# On the Diophantine Equation $(p+n)^{x}+p^{y}=z^{2}$ where $p$ and $p+n$ are prime numbers 

Wachirarak Orosram<br>Department of Mathematics, Faculty of Science, Buriram Rajabhat University, Buriram 31000, Thailand


#### Abstract

In this paper, we study the Diophantine equation $(p+n)^{x}+p^{y}=z^{2}$, where $p, p+n$ are prime numbers and $n$ is a positive integer such that $n \equiv 0(\bmod 4)$. In case $p=3$ and $n=4$, Rao [7] showed that the non-negative integer solutions are $(x, y, z)=(0,1,2)$ and $(1,2,4)$. In case $p>3$ and $p \equiv 3(\bmod 4)$, if $n-1$ is a prime number and $2 n-1$ is not prime number, then the non-negative integer solution $(x, y, z)$ is $(0,1, \sqrt{p+1})$ or $(1,0, \sqrt{p+n+1})$. In case $p \equiv 1(\bmod 4)$, the non-negative integer solution $(x, y, z)$ is also $(0,1, \sqrt{p+1})$ or $(1,0, \sqrt{p+n+1})$.


2020 Mathematics Subject Classifications: 11D61
Key Words and Phrases: Diophantine equation, Catalan's conjecture

## 1. Introduction

Many mathematicians have been studying the Diophantine equations of the type ( $p+$ $n)^{x}+p^{y}=z^{2}$ with a constant $n$ and a specific condition of $p$, for example, in case that $p$ is a prime number. In 2015, Tatong and Suvarnamani [10] found that $(p, x, y, z)=(3,1,0,2)$ is a unique non-negative integer solution of the Diophantine equation $p^{x}+(p+1)^{y}=z^{2}$ where $p$ is an odd prime number. In 2018, Burshtein [1] showed that the Diophantine equation $p^{x}+(p+4)^{y}=z^{2}$ when $p>3, p+4$ are primes has no positive integer solution $(x, y, z)$. In the same year, Fernando [3] showed that $p^{x}+(p+8)^{y}=z^{2}$ has no positive integer solution, when $p>3$ and $p+8$ are primes. In addition, Kumar, Gupta and Kishan [5] proved that the solution of $p^{x}+(p+12)^{y}=z^{2}$ has no non-negative integer solution where $p$ and $p+12$ are prime numbers and $p=6 n+1$ for some natural number $n$. In 2021, Dokchan and Pakapongpun [2] studied a Diophantine equation $p^{x}+(p+20)^{y}=z^{2}$, when $p$ and $p+20$ are primes and showed that the equation has no positive integer solution $(x, y, z)$. In the same year, Gayo Jr and Bacani [4] solved the Diophantine equation $M_{p}^{x}+\left(M_{q}+1\right)^{y}=z^{2}$ where $M_{p}$ and $M_{q}$ are Mersenne primes. In 2022, Tadee [8] gave the solutions of equations $p^{x}+(p+14)^{y}=z^{2}$, where $p$ and $p+14$ are primes. In 2023, Viriyapong and Viriyapong [11] studied the Diophantine equation $a^{x}+(a+2)^{y}=z^{2}$, where $a \equiv 5(\bmod 21)$ and showed

[^0]Email address: Wachirarak.tc@bru.ac.th (W. Orosram)
that the equation has no non-negative integer solution $(x, y, z)$. In the same year, Tadee and Siraworakun [9] studied the Diophantine equation $p^{x}+(p+2 q)^{y}=z^{2}$, where $p, q, p+2 q$ are prime numbers and showed that the equation has no positive integer solution.

In this paper, we give a solution of the Diophantine equation $(p+n)^{x}+p^{y}=z^{2}$, where $p, p+n$ are odd prime numbers such that $n \equiv 0(\bmod 4)$. To obtain our result, we consider two cases of $p$ in modulo 4 , i.e., the case that $p \equiv 1(\bmod 4)$ and the case that $p \equiv 3$ $(\bmod 4)$. In case $p \equiv 3(\bmod 4)$, we first consider case $p=3$ and $n=4$. The considered equation in this case is $3^{x}+7^{y}=z^{2}$ in which the solutions were given by Rao [7] that $(x, y, z)=(0,1,2)$ or $(x, y, z)=(1,2,4)$. Next, we consider $p \equiv 3(\bmod 4)$ such that $p>3$ with a specific condition that $n-1$ is a prime number and $2 n-1$ is not a prime number. Then, our final case is when $p \equiv 1(\bmod 4)$ and $n$ is a positive integer.

## 2. Preliminaries

Proposition 1. (Catalan's conjecture) The Diophantine equation $a^{x}-b^{y}=1$ where $\min \{a, b, x, y\}>1$ has a unique solution $(a, b, x, y)=(3,2,2,3)$.

This proposition was proved in 2004 by Mihailescu [6].
Lemma 1. Let $p$ be odd prime number. The non-negative integer solution to the Diophantine equation $1+p^{y}=z^{2}$ is $(y, z)=(1, \sqrt{p+1})$ if $\sqrt{p+1}$ is a positive integer.

Proof. Let $(y, z)$ be a non-negative integer solution of $1+p^{y}=z^{2}$. If $y=0$, then $z^{2}=2$, which is impossible. If $y>1$, then $z>1$. By Catalan's conjecture, there is no non-negative integer solution. If $y=1$, then $z^{2}=p+1$. So $z=\sqrt{p+1}$. This means that $\sqrt{p+1}$ is a non-negative integer as $z$ is a non-negative integer.

Lemma 2. Let $n$ be a positive integer such that $n \equiv 0(\bmod 4)$ and let $p, p+n$ be prime numbers. The non-negative integer solutions of the Diophantine equation $1+(p+n)^{x}=z^{2}$ is $(x, z)=(1, \sqrt{p+n+1})$ if $\sqrt{p+n+1}$ is a positive integer.

Proof. Let $(x, z)$ be a non-negative integer solution of $1+(p+n)^{x}=z^{2}$. If $x=0$, then $z^{2}=2$, which is impossible. If $x>1$, then $z>1$. By Catalan's conjecture, there is no of a non-negative integer solution. If $x=1$, then $z^{2}=p+n+1$. So $z=\sqrt{p+n+1}$. This means that $\sqrt{p+n+1}$ is a non-negative integer as $z$ is a non-negative integer.

Theorem 1. ([7]) Let $n=4$ and $p=3$. The non-negative integer solutions of the Diophantine equation $(p+n)^{x}+p^{y}=z^{2}$ are $(x, y, z)=(0,1,2)$ and $(1,2,4)$.

This theorem was proved in 2017 by Rao [7].

## 3. Main results

In Theorem 2, we use the same method of proof as appeared in $[1,2]$ to derive the result.

Theorem 2. Let $n$ and $p$ be positive integers where $n \equiv 0(\bmod 4), p \equiv 3(\bmod 4)$ and $p>3$ such that $p, p+n, n-1$ are prime numbers and $2 n-1$ is not a prime number. If $\sqrt{p+1}$ and $\sqrt{p+n+1}$ are integers, then all of the non-negative integer solutions of the Diophantine equation $(p+n)^{x}+p^{y}=z^{2}$ are given by $(x, y, z) \in\{(0,1, \sqrt{p+1}),(1,0, \sqrt{p+n+1})\}$, where $x, y$ and $z$ are non-negative integer.

Proof. Let $(x, y, z)$ be a non-negative integer solution of $(p+n)^{x}+p^{y}=z^{2}$. If $x=0$ or $y=0$, then $(x, y, z)=(0,1, \sqrt{p+1})$ or $(x, y, z)=(1,0, \sqrt{p+n+1})$ by Lemma 1 and Lemma 2. Now, we suppose $x>0$ and $y>0$. We consider the following cases. If $x$ and $y$ are even, then $(p+n)^{x} \equiv 1(\bmod 4)$ and $p^{y} \equiv 1(\bmod 4)$. Thus $(p+n)^{x}+p^{y} \equiv 2(\bmod 4)$ which is impossible since $z^{2} \equiv 0,1(\bmod 4)$. If $x$ and $y$ are odd, then $(p+n)^{x} \equiv 3(\bmod 4)$ and $p^{y} \equiv 3(\bmod 4)$. Thus $(p+n)^{x}+p^{y} \equiv 2(\bmod 4)$ which is impossible since $z^{2} \equiv 0,1$ $(\bmod 4)$. Now, there are two remaining cases to be considered.

Case 1. $x$ is even and $y$ is odd.
There exist $k \geq 1$ and $s \geq 0$ such that $x=2 k, y=2 s+1$. We have $(p+n)^{2 k}+p^{2 s+1}=z^{2}$, which can be rewritten as

$$
p^{2 s+1}=z^{2}-(p+n)^{2 k}=\left[z-(p+n)^{k}\right]\left[z+(p+n)^{k}\right] .
$$

Thus, there exist non-negative integers $\alpha, \beta$ that $p^{\alpha}=z-(p+n)^{k}$ and $p^{\beta}=z+(p+n)^{k}$, where $\alpha<\beta$ and $\alpha+\beta=2 s+1$. Hence

$$
2(p+n)^{k}=p^{\alpha}\left[p^{\beta-\alpha}-1\right] .
$$

If $\alpha \geq 1$, then $p \mid(p+n)$ which is impossible since $p$ and $p+n$ are different primes. In Case $\alpha=0$, we have $2(p+n)^{k}=p^{2 s+1}-1$. If $s=0$, then $2(p+n)^{k}+1=p$ which is impossible. If $s \geq 1$, then we have

$$
2(p+n)^{k}=(p-1)\left[p^{2 s}+p^{2 s-1}+\cdots+p+1\right] .
$$

Since $p-1$ is even and $p^{2 s}+p^{2 s-1}+\cdots+p+1$ is odd, it follows that $p-1$ is an even positive divisor of $2(p+n)^{k}$ that is $p-1=2(p+n)^{j}$, for some integer $j$ such that $0 \leq j<k$. If $j=0$, then $p=3$ which contradicts $p>3$. If $1 \leq j<k$, then $2(p+n)^{j}+1=p$ which is also impossible.

Case 2. $x$ is odd and $y$ is even.
There exist $k \geq 0$ and $s \geq 1$ such that $x=2 k+1$ and $y=2 s$. We now have $(p+n)^{2 k+1}+(p)^{2 s}=z^{2}$, which can be rewritten as

$$
(p+n)^{2 k+1}=z^{2}-p^{2 s}=\left(z+p^{s}\right)\left(z-p^{s}\right) .
$$

Thus, there exist non-negative integers $\alpha, \beta$ such that $(p+n)^{\alpha}=z-p^{s}$ and $(p+n)^{\beta}=$ $z+p^{s}$, where $\alpha<\beta$ and $\alpha+\beta=2 k+1$. Then

$$
2 p^{s}=(p+n)^{\alpha}\left[(p+n)^{\beta-\alpha}-1\right] .
$$

If $\alpha \geq 1$, then $(p+n) \mid p$ which is impossible. In Case $\alpha=0$, we have $2 p^{s}=(p+n)^{2 k+1}-1$. If $k=0$, then $2 p^{s}-p=n-1$. Hence $p\left[2 p^{s-1}-1\right]=n-1$. Since $n-1$ is prime, it follows that $p=n-1$ this contradicts the fact that $p+n=2 n-1$ is not prime. If $k \geq 1$, then

$$
2 p^{s}=(p+n-1)\left[(p+n)^{2 k}+(p+n)^{2 k-1}+\cdots+(p+n)+1\right] .
$$

Since $p+n-1$ is even and $(p+n)^{2 k}+(p+n)^{2 k-1}+\cdots+(p+n)+1$ is odd, it follows that $p+n-1$ is an even positive divisor of $2 p^{s}$ that is $p+n-1=2 p^{l}$, for some integer $l$ such that $0 \leq l<s$. If $l=0$, then $p+n=3$, which is impossible since $p>3$ and $n$ are positive integer. If $1 \leq l<s$, then $p\left[2(p)^{l-1}-1\right]=n-1$ which is also impossible.

Example 1. There are infinitely many $n, p$ of the form $n \equiv 0(\bmod 4), p \equiv 3(\bmod 4)$ where $p>3$ such that $p, p+n, n-1$ are prime numbers and $2 n-1$ is not a prime number. Some Diophantine equations of particular values of $n$ where $n$ is between 1 to 70 with positive integers $\sqrt{p+1}$ and $\sqrt{p+n+1}$ are given in the table below.

| $n$ | $(p+n)^{x}+p^{y}=z^{2}$ | $(x, y, z)$ |
| :---: | :---: | :---: |
| 8 | $(p+8)^{x}+p^{y}=z^{2}$ | $\{(0,1, \sqrt{p+1}\} \cup\{(1,0, \sqrt{p+9})\}$ |
| 20 | $(p+20)^{x}+p^{y}=z^{2}[2]$ | $\{(0,1, \sqrt{p+1}\} \cup\{(1,0, \sqrt{p+21})\}$ |
| 32 | $(p+32)^{x}+p^{y}=z^{2}$ | $\{(0,1, \sqrt{p+1}\} \cup\{(1,0, \sqrt{p+33})\}$ |
| 44 | $(p+44)^{x}+p^{y}=z^{2}$ | $\{(0,1, \sqrt{p+1}\} \cup\{(1,0, \sqrt{p+45})\}$ |
| 48 | $(p+48)^{x}+p^{y}=z^{2}$ | $\{(0,1, \sqrt{p+1}\} \cup\{(1,0, \sqrt{p+49})\}$ |
| 60 | $(p+60)^{x}+p^{y}=z^{2}$ | $\{(0,1, \sqrt{p+1}\} \cup\{(1,0, \sqrt{p+61})\}$ |
| 68 | $(p+68)^{x}+p^{y}=z^{2}$ | $\{(0,1, \sqrt{p+1}\} \cup\{(1,0, \sqrt{p+69})\}$ |

Table 1: Diophantine equations satisfying the condition in Theorem 2.

Theorem 3. Let $p$ and $n$ be a positive integer where $n \equiv 0(\bmod 4), p \equiv 1(\bmod 4)$ such that $p$ and $p+n$ are prime numbers. If $\sqrt{p+1}$ and $\sqrt{p+n+1}$ are integers, then the all of the non-negative integer solutions of $(p+n)^{x}+p^{y}=z^{2}$ are given by $(x, y, z) \in$ $\{(0,1, \sqrt{p+1}),(1,0, \sqrt{p+n+1})\}$.

Proof. Let $(x, y, z)$ be a non-negative integer solution of $(p+n)^{x}+p^{y}=z^{2}$. If $x=0$ or $y=0$, then $(x, y, z)=(0,1, \sqrt{p+1})$ or $(x, y, z)=(1,0,2 \sqrt{p+n+1})$ by Lemma 1 and Lemma 2. If $x>0$ and $y>0$, then $(p+n)^{x} \equiv 1(\bmod 4)$ and $p^{y} \equiv 1(\bmod 4)$. Thus $(p+n)^{x}+p^{y} \equiv 2(\bmod 4)$ which is impossible since $z^{2} \equiv 0,1(\bmod 4)$.

## Acknowledgements

The authors wish to thank the referees for their kind suggestions and comments to improve the article.

## References

[1] Nechemia Burshtein. On the diophantine equation $p^{x}+(p+4)^{y}=z^{2}$ when $p>3, p+4$ are primes is insolvable in positive integers. Annals of Pure and Applied Mathematics, 16(2):283-286, 2018.
[2] Rakporn Dokchan and Apisit Pakapongpun. On the diophantine $p^{x}+(p+20)^{y}=z^{2}$ when $p$ and $p+20$ are primes. International Journal of Mathematics and Computer Science, 16(1):179-183, 2021.
[3] N Fernando. On the solvability of the diophantine equation $p^{x}+(p+8)^{y}=z^{2}$ when $p>3$ and $p+8$ are primes. Annals of Pure and Applied Mathematics, 18(1):9-13, 2018.
[4] William Sobredo Gayo Jr and Jerico Bravo Bacani. On the diophantine equation $m_{p}^{x}+\left(m_{q}+1\right)^{y}=z^{2}$. European Journal of Pure and Applied Mathematics, 14(2):396403, 2021.
[5] S Kumar, D Gupta, and H Kishan. On the solution of exponential diophantine equation $p^{x}+(p+12)^{y}=z^{2}$. International transactions in Mathematical Sciences and Computer, 11(1):1-4, 2018.
[6] Preda Mihailescu. Primary cyclotomic units and a proof of catalans conjecture. 2004.
[7] CG Rao. On the diophantine equation $3^{x}+7^{y}=z^{2}$. EPRA International Journal of Research and Development, 3(6):93-95, 2018.
[8] Suton Tadee. On the diophantine equation $p^{x}+(p+14)^{y}=z^{2}$ where $p$ and $p+14$ are prime numbers. Annals of Pure and Applied Mathematics, 26(2):125-130, 2022.
[9] Suton Tadee and Apirat Siraworakun. Non-existence of positive integer solutions of the diophantine equation $p^{x}+(p+2 q)^{y}=z^{2}$ where $p, q$ and $p+2 q$ are prime numbers. European Journal of Pure and Applied Mathematics, 16(2):724-735, 2023.
[10] M Tatong and A Suvarnamani. On the diophantine equation $p^{x}+(p+1)^{y}=z^{2}$. International Journal of Pure and Applied Mathematics, 103(2):155-158, 2015.
[11] Chokchai Viriyapong and Nongluk Viriyapong. On the diophantine equation $a^{x}+(a+$ $2)^{y}=z^{2}$, where $a \equiv 5(\bmod 21)$. International Journal of Mathematics \& Computer Science, 18(3), 2023.


[^0]:    DOI: https://doi.org/10.29020/nybg.ejpam.v16i4.4822

