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Abstract. In this paper, we prove the results on existence and uniqueness of fixed points in the
setting of symmetric space under ψ-contractions using a binary relation. We also provide some
examples to illustrate our newly proved results
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1. Introduction

The Banach contraction Principle (BCP), which was developed by the famous Polish
mathematician Banach [10], continued to be an inspiration for reseachers in this field. By
utilising an amorphous binary relation, Alam and Imdad [5, 6] recently derived an inter-
esting generalisation of the classical Banach contraction principle. The authors did this by
introducing relation theoretic analogues of some involved metrical terms, such as complete-
ness,contraction, continuity etc. Indeed, under the universal relation, such newly defined
notions reduce to their corresponding usual notion, and subsequently relation-theoretic
coincidence point theorem/ metrical fixed point theorem reduced to their corresponding
coincidence point theorem/ classical fixed point theorem. Due to its simplicity and wide
applicability, this idea has been developed and modified in many different ways in recent
years, see [1, 20].
The study of fixed points for contraction mapping in symmetric space was initiated by
Cicchese [15] in 1976. Wilson [21] introduced the concept of such spaces by droping the
triangle inequality from metric limitation. By now, there exists a considerable literature
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on fixed point theory in symmetric spaces. In several noted articles written in subsequent
years, numerous fixed point results in this setting were established which include Aamri
and El Moutawakil [3], Jachymski et al.[17], Aamri et al. [2], Hicks and Rhoades [16], and
others. The conclusions of the present work are based on a novel fixed point theorem for
regular symmetric spaces that was established by Bessenyei and Pales [12].

The idea of ψ-contraction is primarily investigated by Browder[14] in 1968, wherein the
author considered ψ to be increasing and right continuous control function and utilized
the same to extend the BCP. Many scholars modified the characteristics of the control
function ψ and then generalised the Browder fixed point theorem (e.g.Matkowski contrac-
tions [19] and Boyd-Wong contractions [13]). On the other hand, Ahmadullah et al. [4]
utilised the idea of (c)-comparison functions to demonstrate a fixed point theorem in a
metric space endowed with an amorphous relation that satisfies generalised ψ-contractions.

The aim of this manuscript is to extend the relation-theoretic contraction principle to
the class of symmetric spaces involving (c)-comparison functions with the condition (W3).
We also deduce the corresponding results for regular symmetric spaces. We provide some
examples to demonstrate our results.

2. Preliminaries

Throughout this manuscript N0, N, R+, R, and Q denotes the set of whole numbers,
natural numbers, nonnegative real numbers , real numbers and the rational numbers re-
spectively.

Definition 1. [8, 21] Let Ǧ be a nonempty set and p a mapping from Ǧ × Ǧ → R+

satisfying the following axioms:

(i) p(ϖ,ϑ) = 0 if and only if ϖ = ϑ,

(ii) p(ϖ,ϑ) = p(ϑ,ϖ) for each ϖ,ϑ ∈ Ǧ.

Then p is a symmetric on Ǧ and the pair (Ǧ, p) is called a symmetric space.

The concepts of convergent and Cauchy sequences are defined normally in such spaces.
A sequence {ϖn} ∈ Ǧ is said to be convergent to ϖ ∈ Ǧ if limϖ→∞ p(ϖn, ϖ) = 0. Also,
a sequence is Cauchy if for each ϵ > 0 there exists some N ∈ N such that p(ϖn, ϑn) <
ϵ ∀n,m ≥ N . The space Ǧ is said to be complete if every Cauchy sequence in Ǧ converges.
The open ball with center ϖ ∈ Ǧ and radius r > 0 is defined by

B(ϖ, r) = {ϑ ∈ Ǧ : p(ϖ,ϑ) < r}.
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If A is a subset of Ǧ , then

diam(A) = sup{p(ϖ,ϑ) : ϖ,ϑ ∈ A}.

We require some additional axioms to prove fixed point theorems in such spaces in order to
get around the aforementioned difficulties. The following axioms have played a significant
role in the literature.

• (W3): For {ϖn}, ϖ and ϑ in Ǧ;

p(ϖn, ϖ) → 0 and p(ϖn, ϑ) → 0 =⇒ ϖ = ϑ.

• (W4): For {ϖn}, {ϑn} and ϖ in Ǧ;

p(ϖn, ϖ) → 0 and p(ϖn, ϑn) → 0 =⇒ p(ϑn, ϖ) → 0.

• (HE): For {ϖn}, {ϑn} and ϖ in Ǧ;

p(ϖn, ϖ) → 0 and p(ϖn, ϑ) → 0 =⇒ p(ϖn, ϑn) → 0.

• (IC): For {ϖn}, ϖ and ϑ in Ǧ;

p(ϖn, ϖ) → 0 =⇒ p(ϑn, ϖ) → p(ϑ,ϖ).

If (Ǧ, p) satisfies the property (IC) then the symmetry p is called 1-continuous.

• (CC): For {ϖn}, {ϑn} and ϖ and ϑ in Ǧ;

p(ϖn, ϖ) → 0 and p(ϑn, ϑ) → 0 =⇒ p(ϖn, ϑn) → p(ϖ,ϑ).

If (Ǧ, p) satisfies the property (CC) then the symmetry p is called continuous.

we observe that

(CC) =⇒ (IC), (W4) =⇒ (W3) and (IC) =⇒ (W3).

But the converse of the above implications are not true in general. Moreover, (CC)
implies all the other four conditions, namely (W3); (W4); (HE) and (1C).

Definition 2. [12] Let (Ǧ, p) be a symmetric space. A function φ : R2
+ → R+ is called a

triangle function with respect to the symmetry p if

(a) φ is symmetry,

(b) φ is monotonically increasing in both the arguments,
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(c) φ(0, 0) = 0,

(d) p(ϖ,ϑ) ≤ φ(p(ϖ, z), p(ϑ, z)) for all ϖ,ϑ, z ∈ Ǧ.

Proposition 1. [12] Every symmetric space (Ǧ, p) admits a unique triangle function Φp

such that Φp ≤ φ, where φ is any other triangle function with respect to p.

Such a unique triangle function Φp is called the basic triangle function.

Definition 3. [12] “A symmetric space (Ǧ, p) is said to be a regular space if the basic
triangle function with respect to the symmetry p is continuous at the origin (0,0).

Lemma 1. [12] “The topology of a regular symmetric space is always Hausdorff. A con-
vergent sequence in a regular symmetric space possesses a unique limit and it has the
Cauchy property. Moreover, a symmetric space (Ǧ, p) is regular if and only if”

lim
ϵ→0

sup
p∈0

B(p, ϵ) = 0.

Proposition 2. [8] Every regular symmetric space possesses the property (W3).

Definition 4. [18] Let Ǧ be a nonempty set. A subset Ř of Ǧ2 is called a binary relation
on Ǧ. The subsets, Ǧ2 and ∅ of Ǧ2 are called the universal relation and empty relation
respectively.

Definition 5. [9] Let Ř be a binary relation on a nonempty set Ǧ. For ϖ,ϑ ∈ Ǧ, we
say that ϖ and ϑ are Ř-comparative if either (ϖ,ϑ) ∈ Ř or (ϑ,ϖ) ∈ Ř. We denote it by
[ϖ,ϑ] ∈ Ř.

Proposition 3. If (Ǧ, p) is a symmetric space, Ř is a binary relation on Ǧ, Ť a self-
mapping on Ǧ. Then these conditions are equivalent:

(1) p(Ťϖ, Ťϑ) ≤ ψ(p(ϖ,ϑ)) ∀ ϖ,ϑ ∈ Ǧ with (ϖ,ϑ) ∈ Ř,

(2) p(Ťϖ, Ťϑ) ≤ ψ(p(ϖ,ϑ)) ∀ ϖ,ϑ ∈ Ǧ with [ϖ,ϑ] ∈ Ř.

Definition 6. [6] Let Ǧ be a non-empty set and Ř a binary relation on Ǧ. A sequence
ϖn ⊂ Ǧ is called Ř- preserving if

(ϖn, ϖn+1) ∈ Ř ∀ n ∈ N0.

Definition 7. [6] Let Ǧ be a nonempty set and Ť a self-mapping on Ǧ. A binary relation
Ř defined on Ǧ is called Ť-closed if for any ϖ,ϑ ∈ Ǧ

(ϖ,ϑ) ∈ Ř =⇒ (Ťϖ, Ťϑ) ∈ Ř.

Definition 8. [6] Let Ǧ be a nonempty set and Ť a self-mapping on Ǧ. A binary relation
Ř defined on Ǧ is called Ť-transitive if for any ϖ,ϑ, z ∈ Ǧ

(Ťϖ, Ťz), (Ťz, Ťϑ) ∈ Ř =⇒ (Ťϖ, Ťϑ) ∈ Ř.
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Definition 9. [18] Let Ǧ be a nonempty set and Ť a self-mapping on Ǧ. A binary relation
Ř defined on Ǧ and U ⊆ Ǧ. Then the retriction of Ř to U is the set Ř∩U2 and is denoted
by Ř|U .

Definition 10. [7] Let Ǧ be a nonempty set and Ť a self-mapping on Ǧ. A binary
relation Ř defined on Ǧ and U ⊆ Ǧ. The relation Ř is said to be locally transitive if
for any Ř-preserving sequence {ϖn} ⊂ Ǧ the binary relation Ř|U is transitive, where
U = {ϖn|n ∈ N0}.

Definition 11. [7] Let Ǧ be a nonempty set and Ť a self-mapping on Ǧ. A binary
relation Ř defined on Ǧ and U ∈ Ǧ. The relation Ř is said to be locally Ť-transitive if
for any Ř-preserving sequence {ϖn} ⊂ Ť(Ǧ) the binary relation Ř|U is transitive, where
U = {ϖn|n ∈ N0}.

Definition 12. [9] Let Ǧ be a nonempty set and Ř a binary relation on Ǧ. A subset U of
Ǧ is said to be Ř-connected for ϖ,ϑ ∈ Ǧ, a path of length k (where k is a natural number)
in Ř from ϖ to ϑ is a finite sequence {ϖ0, ϖ1, ϖ2, . . . , ϖk} ⊂ Ǧ satisfying the following
conditions:
(i) ϖ0 = ϖ and ϖk = ϑ,
(ii) (ϖi, ϖi+1) ∈ Ř for each i (0 ≤ i ≤ k − 1).
Notice that a path of length k involves k+1 elements of Ǧ, although they are not necessarily
distinct.

Definition 13. [9] Let (Ǧ, p) be a symmetric space. A binary relation Ř defined on Ǧ is
called p-self closed if, whenever {ϖn} is an Ř-preserving sequence and ϖn →p ϖ, there
exists a subsequence {ϖnk

} of {ϖn} with (ϖnk
, ϖ) ∈ Ř for all k ∈ N.

Definition 14. [9] Let (Ǧ, p) be a symmetric space and a binary relation Ř defined on
Ǧ. Ť a self-mapping on Ǧ is Ř-continuous at ϖ ∈ Ǧ if for any Ř-preserving sequence
{ϖn} ∈ Ǧ converging to ϖ, we have Ťϖn → Ťϖ. Moreover, Ť is called Ř-continuous if
it is so at each point of Ǧ”.

Definition 15. [9] Let Ǧ be a nonempty set and a binary relation Ř defined on Ǧ. We
say that (Ǧ, p) is Ř-complete if every Ř-preserving Cauchy sequence in Ǧ converges.

Definition 16. [11] A mapping ψ : [0,∞) → [0,∞) is termed as comparison function if
it enjoys the following ones:

(i) ψ is monotonic increasing,

(ii) limn→∞ ψn(t) = 0, ∀ t > 0.

Definition 17. [11] A mapping ψ : [0,∞) → [0,∞) is termed as (c)-comparison function
if it enjoys the following ones:

(i) ψ is monotonic increasing,

(ii)
∑∞

n=1 ψ
n(t) <∞, ∀ t > 0.
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Clearly, every (c)-comparison function is a comparison function.

Remark 1. [11] Let ψ be a (c)-comparison function. Then

(i) ψ(0) = 0,

(ii) ψ(t) < t, ∀t > 0,

(iii) ψ is right continuous at 0.

3. Main Result

In this manuscript, we utilize the following notations:

(i) F (Ť) = the set of all fixed points of Ť

(ii) Ǧ(Ť, Ř) := {ϖ ∈ Ǧ : (ϖ, Ťϖ) ∈ Ř}

Theorem 1. Let (Ǧ, p) be a symmetric space which enjoys the property (W3) and Ř a
binary relation on Ǧ. Ť : Ǧ → Ǧ be mapping satisfying the following conditions.

(a) (Ǧ, p) is Ř-complete,

(b) Ř is Ť-closed and locally Ť-transitive,

(c) either Ť is Ř-continuous or Ř is p-self-closed,

(d) there is ϖ0 ∈ Ǧ(Ť, Ř) such that

δ(p, Ť, ϖ0) = sup
i,j∈N

p(Ťiϖ0, Ť
jϖ0) <∞.

(e) There exists (c)-comparison function ψ such that

p(Ťϖ, Ťϑ) ≤ ψ(p(ϖ,ϑ)) ∀ ϖ,ϑ ∈ Ǧ with (ϖ,ϑ) ∈ Ř.

Then Ť posses a fixed point in Ǧ. In addition if

(f) Ř|Ť(Ǧ) is complete, then Ť has a unique fixed point.

Proof. In the view of (d), there is some ϖ0 ∈ Ǧ, such that

δ(p, Ť, ϖ0) = sup
i,j∈N

p(Ťiϖ0, Ť
jϖ0) <∞.

Take ϖ0 ∈ Ǧ(Ť, Ř) and construct the sequence {ϖn} ⊂ Ǧ such that

ϖn = Ťn(ϖ0) ∀ n ∈ N

so that
ϖn = Ťϖn−1 ∀ n ∈ N.
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As (ϖ0, Ťϖ0) ∈ Ř and Ř is Ť-closed. we have

(Ťϖ0, Ť
2ϖ0), (Ť

2ϖ0, Ť
3ϖ0), . . . , (Ť

nϖ0, Ť
n+1ϖ0) ∈ Ř

so that
(ϖn, ϖn+1) ∈ Ř.

Thus, {ϖn} is Ř-preserving. Now Ř is locally Ť-transitive , We have

(Ťmϖ0, Ť
nϖ0) ∈ Ř ∀n > m

or

(ϖm, ϖn) ∈ Ř ∀n > m.

Set M := δ(p, Ť, ϖ0). Then 0 ≤M <∞. Applying contractivity condition (e), we get

p(ϖn+i, ϖn+j) ≤ ψ(p(ϖn+i−1, ϖn+j−1)).

Therefore

δ(p, Ť, ϖn) ≤ ψ δ(p, Ť, ϖn−1)

≤ ψ2 δ(p, Ť, ϖn−2)

...

≤ ψn δ(p, Ť, ϖ0),

so that

δ(p, Ť, ϖn) ≤ ψn(M) → 0 as n→ ∞,

now

p(ϖn+1, ϖn+m) ≤ δ(p, Ť, ϖn) → 0 as n→ ∞.

Thus, we conclude that the sequence {ϖn} is a Cauchy sequence and also as the sequence
is Ř-preserving, Ř-completeness of (Ǧ, p) guarantees the existence of some ϖ ∈ Ǧ such
that Ťnϖ0 → ϖ or ϖn → ϖ.

If Ť is Ř-continuous, then Ť(ϖn) → Ť(ϖ), i.e., ϖn+1 → Ť(ϖ). We observed that
ϖn → ϖ and ϖn → Ť(ϖ). As (Ǧ, p) posses the property (W3), we conclude Ť(ϖ) = (ϖ).
Hence {ϖn} converges to a fixed point of Ť.

Alternately, if Ř is p-self closed, then ∃ a subsequence {ϖnk
} of {ϖn} with [ϖnk

, ϖ] ∈
Ř, ∀ k ∈ N. Hence

p(ϖn+1, Ťϖ) = p(Ťϖnk
, Ťϖ) ≤ ψ(p(ϖnk

, ϖ)).
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As p(ϖnk
, ϖ) → 0 we obtain p(ϖnk+1, Ťϖ) → 0. Owing to property (W3) of Ǧ, we

obtain Ť(ϖ) = ϖ. Hence {ϖn} converges to a fixed point of Ť.

For uniqueness part, let ϖ,ϑ be two fixed point of Ť such that ϖ ̸= ϑ. we see that
ϖ,ϑ ∈ F (Ť) as ϖ = Ť(ϖ) and ϑ = Ť(ϑ). Now, Ř|Ť(Ǧ) being complete gives rise to

[ϖ,ϑ] ∈ Ř. Therefore,

p(ϖ,ϑ) = p(Ť(ϖ), Ť(ϑ)) ≤ ψ(p(ϖ,ϑ)) < p(ϖ,ϑ),

which is a contradiction. Hence, the fixed point of Ť is unique.

Proposition 4. Let Ř be a binary relation on a regular symmetric space (Ǧ, p) and Ť a self
- mapping on Ǧ. Let Ř be Ť-closed and locally Ť-transitive. If there exists (c)-comparison
ψ such that

p(Ťϖ, Ťϑ) ≤ ψ(p(ϖ,ϑ)) ∀ ϖ,ϑ ∈ Ǧ with (ϖ,ϑ) ∈ Ř,

then for each ϖ0 ∈ Ǧ(Ť, Ř)

δ(p, Ť, ϖ0) = sup
i,j∈N

p(Ťiϖ0, Ť
jϖ0) <∞.

Proof. Consider ϖ0 ∈ Ǧ(Ť, Ř), then, we have (ϖ0, Ťϖ0) ∈ Ř. If Ť(ϖ0) = ϖ0, then
we are done; as

δ(p, Ť, ϖ0) = sup
i,j∈N

p(Ťiϖ0, Ť
jϖ0) = sup

i,j∈N
p(ϖ0, ϖ0) = 0 <∞.

Suppose that Ťϖ0 ̸= ϖ0. Since (ϖ0, Ťϖ0) ∈ Ř and Ř is Ť-closed, we get by induction on
n that

(Ťnϖ0, Ť
n+1ϖ0) ∈ Ř ∀ n ∈ N.

Construct the sequence {ϖn} ⊂ Ǧ such that

ϖn = Ťn(ϖ0) ∀ n ∈ N

so that
ϖn = Ť(ϖn−1) ∀ n ∈ N.

As (ϖ0, Ťϖ0) ∈ Ř and Ř is Ť-closed, we have

(Ťϖ0, Ť
2ϖ0), (Ť

2ϖ0, Ť
3ϖ0), . . . , (Ť

nϖ0, Ť
n+1ϖ0) ∈ Ř

so that
(ϖn, ϖn+1) ∈ Ř.

Thus, {ϖn} is Ř-preserving. Now as Ř is locally Ť-transitive , we have

(Ťmϖ0, Ť
nϖ0) ∈ Ř or (ϖm, ϖn) ∈ Ř ∀ m > n
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we observe that the sequence p(ϖn, ϖn+k) → 0 ∀ k ∈ N,

p(ϖn, ϖn+k) = p(Ťϖn−1, Ťϖn+k−1)

Therefore

p(ϖn, ϖn+k) ≤ ψ (p(ϖn−1, ϖn+k−1))

≤ ψ2 (p(ϖn−2, ϖn+k−2))

...

≤ ψn (p(ϖ0, ϖk)),→ 0 as n→ ∞.

Now we show that {ϖn} is Cauchy. Let ϵ > 0 be any positive number. As (Ǧ, p) is regular,
the basic triangle function Φp is continuous at the origin (0, 0). Therefore, there exists a
neighbourhood U of the origin such that Φp(u, v) ∈ U . In other words, there exists δ > 0
such that,

Φp(u, v) < ϵ for all u, v : 0 ≤ u, v ≤ δ. Take δ < ϵ. We can find N ∈ N such that
ψN ϵ < δ. Set F = ŤN , then we have

p(Fϖ,Fϑ) = p(Ťnϖ, Ťnϑ) ≤ ψNp(ϖ,ϑ) when (ϖ,ϑ) ∈ Ř.

Define mk : p(ϖn, Ť
kFϖn) < δ ∀ n ≤ mk and set m = max{m0,m1,m2, . . . ,mN}.

If V = {ϖm, ϖm+1, ϖm+2, . . . , ϖm+k, . . . , } then for any ϑ ∈ B(ϖm, ϵ) ∩ V , ϑ ̸= ϖm

p(ŤkFϖm, Ť
kFϑ) = p(F Ťkϖm, F Ť

kϑ) ≤ ψNp(Ťkrm, Ť
Kϑ) as (Ťkrm, Ť

Kϑ) ∈ Ř

≤ ψNψkp(ϖm, ϑ) < ψNp(ϖm, ϑ) < ψN (ϵ) < δ,

yielding thereby

p(ŤkFϑ,ϖm) ≤ Φp(p(Ť
kFϑ, ŤkFϖm), p(ŤkFϖm, ϖm))

≤ Φp(δ, δ) ∀ k = 0, 1, 2, . . . , N

which implies that

p(ŤkFϑ,ϖm) < ϵ, ∀ k = 0, 1, 2, . . . , N.

Also, for ϑ = ϖm, p(Ť
kFϖm, ϖm) < δ < ϵ,∀k = 0, 1, 2, . . . , N. Thus, we see that ŤkF

maps V ∩ B(ϖm, ϵ) into itself for all k = 0,1,2,. . . , N. In particular, each iterate of Ť
maps V ∩B(ϖm, ϵ) into itself (as F = ŤN ). Now, if n > m be an arbitrarily given natural
number, i.e., n = Nk +M where k ∈ N0 and 0 ≤M < N , then

ŤnF = ŤNk+MF = ŤMF k+1.

Henceforth,

ŤnF (V ∩B(ϖm, ϵ)) = ŤMF k+1(V ∩B(ϖm, ϵ))
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= ŤMF (F k+1(V ∩B(ϖm, ϵ)))

⊂ ŤMF (V ∩B(ϖm, ϵ))

⊂ V ∩B(ϖm, ϵ) as 0 ≤M < N.

Therefore, ŤnF (ϖm) ∈ B(ϖm, ϵ) ∀ n > m, i.e.,ϖm+N+k ∈ B(ϖm, ϵ) ∀ k ∈ N.
As (Ǧ, p) is regular, diam(ϖm, ϵ) → 0 when ϵ → 0, which means the sequence {ϖn} is a
Cauchy sequence. Therefore, for each ϖ0 ∈ Ǧ(Ť, Ř)

δ(p, Ť, ϖ0) = sup
i,j∈N

p(Ťiϖ0, Ť
jϖ0) = sup

i,j∈N
p(ϖi, ϖj) <∞,

as p(ϖi, ϖj) → 0 when i, j → ∞. This accomplish the proof.

By the use of Propositions 2 and 4, Theorem 1 yields the following consequence.

Corollary 1. Let (Ǧ, p) be a regular symmetric space endowed with a binary relation Ř.
Let Ť be a self - mapping on Ǧ and the following conditions hold:
(a) Ǧ(Ť, Ř) is nonempty,
(b) (Ǧ, p) is Ř-complete,
(c) Ř is locally Ť-transitive and Ť-closed,
(d) either Ť is Ř is p-self closed or Ř-continuous,
(e) there exists (c)-comparison function ψ such that.

p(Ťϖ, Ťϑ) ≤ ψ(p(ϖ,ϑ)) ∀ ϖ,ϑ ∈ Ǧ with (ϖ,ϑ) ∈ Ř.

Then Ť has a fixed point, moreover, if
(f) Ř|Ť(Ǧ) is complete, then the fixed point of Ť is unique.

Proof. As (Ǧ, p) is regular space, using Proposition 2, we infer that it has the property
(W3). Also, in view of assumption (a), ∃ ϖ0 ∈ Ǧ(Ť, Ř). From Proposition 4 , we have
δ(p, Ť, ϖo) <∞. Hence we observe that all the hypotheses of Theorem 1 holds. Therefore,
Ť has a unique fixed point in Ǧ.

Theorem 2. In the hypotheses of Corollory 1, if we replace assumption (f) by the following
weaker condition:

(f ’) Ť(Ǧ) is Řs − connected;.
Then the fixed point of Ť is unique.

Proof. The existence of fixed point is guaranteed from the assumption (a)-(e) of Corol-
lary 1. To prove the uniqueness let ϖ,ϑ be two fixed points of Ť such that ϖ ̸= ϑ. we see
that ϖ,ϑ ∈ F (Ť) as ϖ = Ť(ϖ) and ϑ = Ť(ϑ). As Ť(Ǧ) being Řs- connected, there exists
ϖ0, ϖ1, ϖ2, . . . , ϖk ∈ Ǧ satisfying the following conditions:
(i) ϖ0 = ϖ, ϖk = ϑ
(ii) [ϖi, ϖi+1] ∈ Ř for each i (0 ≤ i ≤ k − 1).
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Due to condition (ii), we have p(Ťϖi, Ťϖi+1) ≤ ψ(p(ϖi, ϖi+1)). By using induction,
we get p(Ťnϖi, Ť

nϖi+1) ≤ ψn(p(ϖi, ϖi+1)). For ϵ > 0, ∃δ > 0 such that

Φp(ϖ,ϑ) < ϵ ∀ ϖ,ϑ : 0 ≤ ϖ,ϑ < δ.

Let δ1 = δ and define δi(2 ≤ i ≤ k − 1): Φp(ϖ,ϑ) < δi−1 ∀ ϖ,ϑ : 0 ≤ ϖ,ϑ < δi
and set γ = min{δ1, δ2, . . . , δk−1} also, set M ′ = max{N1, N2, . . . , NK−1} where,

Ni : p(Ť
nϖi, Ť

nϖi+1) ≤ ψnp(ϖi, ϖi+1) < γ ∀n ≤ Ni

hence, for n ≤M ′, we have,

p(Ťnϖk−1, Ť
nϑ) = p(Ťnϖk−i, Ť

nϖk) < γ ≤ δk−1

p(Ťnϖk−2, Ť
nϑ) ≤ Φp(p(Ť

nϖk−2, Ť
nϖk−1), p(Ť

nϖk−1, Ť
nϑ))

≤ Φp(γ, δk−1) ≤ Φp(δk−1, δk−1) < δk−2

p(Ťnϖk−3, Ť
nϑ) ≤ Φp(p(Ť

nϖk−3, Ť
nϖk−2), p(Ť

nϖk−2, Ť
nϑ))

≤ Φp(γ, δk−2) ≤ Φp(δk−2, δk−2) < δk−3

...

p(Ťnϖ1, Ť
nϑ) ≤ Φp(p(Ť

nϖ1, Ť
nϖ2), p(Ť

nϖ2, Ť
nϑ))

≤ Φp(γ, δ2) ≤ Φp(δ2, δ2) < δ1

p(Ťnϖ, Ťnϑ) ≤ Φp(p(Ť
nϖ, Ťnϖ1), p(Ť

nϖ1, Ť
nϑ))

≤ Φp(γ, δ1) ≤ Φp(δ1, δ1) < ϵ.

It is true for any ϵ > 0. Therefore, p(Ťnϖ, Ťnϑ) = p(ϖ,ϑ) = 0 i.e., ϖ = ϑ. Hence,
fixed point of Ť is unique.

Now, we present two examples to demonstrate our main results.

Example 1. Let Ǧ = [0, 1). Define p : Ǧ× Ǧ → R+ by

p(ϖ,ϑ) =


0 if ϖ = ϑ = ϑ,

1 if ϖ = ϑ ̸= 0,

ϖ + ϑ if ϖ ̸= ϑ.

Here, it easy to check that (Ǧ, p) is a symmetric space having the property (W3). Consider
the binary relation Ř on Ǧ as given below:

Ř = {
[ 1
m
,
1

n

]
|m,n ∈ N, 5 ≤ m < n}.
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Also define Ť : Ǧ → Ǧ by

Ť(ϖ) =

{
ϖ
3 if 0 ≤ ϖ ≤ 1

5 ,
1
6(7ϖ − 1) if 1

5 < ϖ < 1.

Define ψ : [0,∞) → [0,∞) by

ψ(t) =
t

3
.

Then, for all (ϖ,ϑ) ∈ Ř, we have

p(Ťϖ, Ťϑ) = p(
ϖ

3
,
ϑ

3
) =

ϖ

3
+
ϑ

3
≤ 1

3
p(ϖ,ϑ) = ψ(p(ϖ,ϑ)).

It follows that Ť is a contraction for the elements related by Ř. Thus, all the conditions
of Theorem 1 are also satisfied and hence Ť has a fixed point (namely, ϖ = 0).

Example 2. let Ǧ = R and define a symmetric p on Ǧ by p(ϖ,ϑ) = (ϖ−ϑ), then (Ǧ, p)
is a regular symmetric space then (Ǧ, p) is Ř-complete. Take a binary relation Ř on Ǧ as
follows:

Ř = {(ϖ,ϑ) ∈ R2 : ϖ ≥ ϑ ≥ 0, ϖ ∈ R}.

Define a mapping Ť : Ǧ → Ǧ such that

Ť(ϖ) =

{
ϖ
2 if ϖ ≥ 0,

(3ϖ + 1) ifϖ < 0.

Define ψ : [0,∞) → [0,∞) by

ψ(t) =
t

2
.

Consider (ϖ,ϑ) ∈ Ř, then

p(Ťϖ, Ťϑ) = p(
ϖ

2
,
ϑ

2
) =

ϖ

2
− ϑ

2
≤ 1

2
p(ϖ,ϑ) = ψ(p(ϖ,ϑ)).

It follows that Ť is a contraction for the elements related by Ř. Thus, all the hypotheses
of Corollary 1 are also satisfied and hence Ť has a fixed point.

4. Conclusions

We have proved some fixed point theorems for relation-theoretic ψ-contraction in sym-
metric space. Analogously, we can prove the variants of similar results in the settings of
quasi-metric space, dislocated space, b-metric space, cone metric space etc.
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