A Note on Quantum Gates SWAP and iSWAP in Higher Dimensions
DOI:
https://doi.org/10.29020/nybg.ejpam.v16i3.4824Keywords:
Qudits, Quantum logic gates, Universal gates, Entangling gates.Abstract
We present explicit descriptions for the swap gate and the iswap gate in any arbitrary dimension $d \geq 2$, in terms of permutation matrices. Moreover, we unify these gates by introducing a more general gate xSWAP which includes SWAP and iSWAP for $x=1$ and $x=i$ (i.e. $\sqrt{-1}$), respectively. The higher dimensional xSWAP e.g., the swap and iswap gates for $d > 2$ serve as quantum logic gates that operate on two $d$-level qudits. For $d=2$, it is well known that iSWAP unlike SWAP is universal for quantum computing. We will prove this fact for xSWAP in any dimension $d$, when $x \neq \pm 1$. Our explicit representation of xSWAP by a permutation matrix facilitates the proof, greatly.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 European Journal of Pure and Applied Mathematics

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Upon acceptance of an article by the journal, the author(s) accept(s) the transfer of copyright of the article to European Journal of Pure and Applied Mathematics.
European Journal of Pure and Applied Mathematics will be Copyright Holder.