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A note on quantum gates SWAP and iSWAP in higher
dimensions
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Abstract. We present explicit descriptions for the swap gate and the iswap gate in any arbitrary
dimension d ≥ 2, in terms of permutation matrices. Moreover, we unify these gates by introducing
a more general gate xSWAP which includes SWAP and iSWAP for x = 1 and x = i (i.e.

√
−1),

respectively. The higher dimensional xSWAP e.g., the swap and iswap gates for d > 2 serve as
quantum logic gates that operate on two d-level qudits. For d = 2, it is well known that iSWAP
unlike SWAP is universal for quantum computing. We will prove this fact for xSWAP in any
dimension d, when x ̸= ±1. Our explicit representation of xSWAP by a permutation matrix
facilitates the proof, greatly.
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1. Introduction

Applications of d-level qudits for d ≥ 3 have been found to have many advantages
over the conventional qubits (d = 2) in quantum computing and quantum information.
[7–9, 11–13, 17]. As in the case of d = 2, to make it possible to work with any d-level
qudits one needs to have quantum logic gates that could operate on them.

The familiar swap gate (SWAP) and iswap gate (iSWAP) are among most important
quantum gates in quantum computing (for d = 2). Their generalization from different
point of views, and their physical implementation are active topics of research [2, 4–
6, 10, 14–16].

Our aim in this work is to explicitly extend the well known swap and iswap gates from
dimension d = 2 to any dimension d ≥ 2, from the point of view of their representations
in terms of permutation matrices. To do this we first unify these gates by introducing a
more general gate xSWAP which includes SWAP and iSWAP for x = 1 and x = i (

√
−1),

respectively. These higher dimensional gates are quantum logic gates for d-level qudit
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systems.

Our explicit representation in terms of permutation matrix will play a crucial role in
helping us to prove that for x ̸= ±1, xSWAP is a universal quantum gate, analogous to the
well known fact about iSWAP for d = 2. To do this we will use the universality criterion
in [3] and the non-entangling criteria in [1].

This paper is organized as follows. In Section 2, we recall some preliminary notions
and notations. In Section 3 in Definition 1, we give an explicit description for the higher
dimensional xSWAP (hence SWAP and iSWAP) in terms of permutation matrices. In
Section 4 in Theorem 1, we prove that the quantum gate xSWAP is universal for x ̸= ±1.
We will finish this paper with concluding remarks in Section 5.

2. Preliminaries and Notations

Let us recall that in quantum computing quantum logic gates can be represented by
unitary matrices on a Hilbert space H with dimension d. The qubit is a basic unit of
quantum information in dimension d = 2. The qudit is a generalization of the qubit to a
larger Hilbert space of dimension d ≥ 2.

In dimension d = 2, i.e. for qubit systems, two very important examples of quantum
logic gates are the swap gate (SWAP) denoted here by S and the iswap gate (iSWAP)
denoted here by iS. They are defined as follows.

S : H ⊗ H → H ⊗ H (1)

S(u⊗ v) = v ⊗ u

iS : H ⊗ H → H ⊗ H (2)

S(u⊗ v) = i(v ⊗ u),

when v ̸= u and,

S(u⊗ u) = u⊗ u

for all u and v in H .

For our purpose in this paper it is enough to consider H = Cd, as this is enough
for quantum computing. Throughout this paper we will use the standard basis for
Cd alongside the ket from Bra–ket notation common in quantum computing literature

(
{
|0⟩, |1⟩, |2⟩, · · · , |d− 1⟩

}
).
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By |ab⟩ we mean |a⟩ ⊗ |b⟩, where ⊗ stands for the tensor product. Therefore, for ex-
ample in dimension d = 2, for C2 ⊗C2, we use the computational basis for 2-qubit states,{
|00⟩, |01⟩, |10⟩, |11⟩

}
. Or in dimension d = 3, for C3 ⊗ C3, we use the computational

basis for 2-qudit states,
{
|00⟩, |01⟩, |02⟩, |10⟩, |11⟩, |12⟩, |20⟩, |21⟩, |22⟩

}
.

Let us also recall the following. A quantum logic gate must be unitary by definition. A
quantum logic gate is entangling if it can produce entangled states by acting on unentan-
gled ones. A 2-qudit gate G (i.e. a gate that operates on two d-level qudits) is universal if
the set containing G and all 1-qudit gates is enough to generate all qudit gates. It is well
known that, a quantum logic gate operating on two d-level qudits is universal for quantum
computing [6], if and only if it is entangling [3].

3. SWAP and iSWAP in higher dimensions and general xSWAP

For d = 2 the SWAP and iSWAP defined by (1) and (2) are represented by the following
permutation matrices S4 and iS4 (or S and iS for short if there is no confusion about the
dimensions)

S4 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , iS4 =


1 0 0 0
0 0 i 0
0 i 0 0
0 0 0 1

 (3)

Before we move to the higher dimensions let us first unify these gates by introducing
a more general gate xSWAP (denoted here by xS4 or xS for short) as follows:

xS4 =


1 0 0 0
0 0 x 0
0 x 0 0
0 0 0 1

 (4)

where x = eiφ and φ belongs to the real numbers. This choice of x guarantees the unitarity
of xS. Clearly, x = 1 and x = i correspond to S and iS, respectively.

The representations in (3), and (4) are basically the results of the following fact. From
(1) and (2), for x = 1 and x = i, xS must satisfy

xS(|00⟩) = |00⟩
xS(|01⟩) = x|10⟩
xS(|10⟩) = x|01⟩
xS(|11⟩) = |11⟩
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Now going one step higher in dimension, for d = 3, using the same definitions (1) and
(2), the unified xswap gate xS9 : C3 ⊗ C3 → C3 ⊗ C3 (or xS for short) must satisfy

xS(|00⟩) = |00⟩
xS(|01⟩) = x|10⟩
xS(|02⟩) = x|20⟩
xS(|10⟩) = x|01⟩
xS(|11⟩) = |11⟩
xS(|12⟩) = x|21⟩
xS(|20⟩) = x|02⟩
xS(|21⟩) = x|12⟩
xS(|22⟩) = |22⟩

The above relations easily imply that for x = eiφ where φ is a real number

xS9 =



1 0 0 0 0 0 0 0 0
0 0 0 x 0 0 0 0 0
0 0 0 0 0 0 x 0 0
0 x 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 x 0
0 0 x 0 0 0 0 0 0
0 0 0 0 0 x 0 0 0
0 0 0 0 0 0 0 0 1


This is xSWAP in dimension d = 3. For x = 1 and x = i, it provides the gates SWAP

and iSWAP in dimension d = 3 (S9 and iS9), respectively.

A similar argument for d = 4 yields xSWAP (denoted below by xS16), as follows:
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xS16 =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 x 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 x 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 x 0 0 0
0 x 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 x 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 x 0 0
0 0 x 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 x 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 x 0
0 0 0 x 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 x 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


Here x = 1 and x = i correspond to SWAP and iSWAP in dimension d = 4, respec-

tively.

At this point it is not hard to see that the matrix xSd2 (or xS for short) defined below
is the xSWAP gate for any dimension d.

Definition 1 (xSWAP). For any d ≥ 2 and for any x = eiφ in which φ belongs to the
real numbers, we define the xSWAP (denoted by xS below) by the following relations:

xSi,j = x,

for i = (t− 1)d+ s and j = (s− 1)d+ t, (5)

where 1 ≤ t ≤ d, 1 ≤ s ≤ d and t ̸= s

xSi,j = 1,

for i = (t− 1)d+ s and j = (s− 1)d+ t,

where t = s = 1, 2, · · · , d

and, xSi,j = 0 elsewhere.

4. xSWAP is a universal quantum logic gate when x ̸= ±1

A quantum gate must be unitary by definition. A 2-qudit gate (i.e. a gate operating
on two d-level qudits) is universal if and only if it is entangling [3]. It is very easy to see



A. Pourkia / Eur. J. Pure Appl. Math, 16 (3) (2023), 1695-1704 1700

that, in any dimension d and for any unit complex number x = eiφ, xSWAP is unitary.
However, the entangling property of xSWAP is not obvious for dimensions d > 2 (for d = 2
and x = i this fact is well known and easy to prove).

In this section we will prove that xSWAP is a universal quantum gate when x ̸= ±1. We
use the non-entangling criteria in [1]. To show that any operator R : H ⊗H → H ⊗H
is entangling, it is enough to prove neither R nor RS can be factored as X ⊗ Y , where X
and Y are arbitrary operators on H , i.e., X, Y : H → H .

First, we illustrate this for for d = 3 i.e. for xS9 and (xS9)(S9).

Let xS9 = X ⊗ Y , where X and Y are any two 3 by 3 matrices. This means

xS9 =



1 0 0 0 0 0 0 0 0
0 0 0 x 0 0 0 0 0

0 0 0 0 0 0 x 0 0
0 x 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 x 0

0 0 x 0 0 0 0 0 0
0 0 0 0 0 x 0 0 0

0 0 0 0 0 0 0 0 1


=

 x11 x12 x13
x21 x22 x23
x31 x32 x33

⊗

 y11 y12 y13
y21 y22 y23
y31 y32 y33



=



x11y11 · · · · · · · ·
· · · · · · · · ·
· · x11y33 · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
· · · · · · x33y11 · ·
· · · · · · · · ·
· · · · · · · · x33y33


Then, comparing only the boxed diagonal entries in the big matrices above we must

have (x11y11)(x33y33) = (x11y33)(x33y11), which implies the contradictory result 1 = 0.
Thus, xS9 can never be factored as X ⊗ Y .

Similarly, for the equality (xS9)(S9) = X ⊗ Y to happen, we need to have:
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(xS9)(S9) =



1 0 0 0 0 0 0 0 0
0 x 0 0 0 0 0 0 0
0 0 x 0 0 0 0 0 0
0 0 0 x 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 x 0 0 0
0 0 0 0 0 0 x 0 0
0 0 0 0 0 0 0 x 0

0 0 0 0 0 0 0 0 1


=

 x11 x12 x13
x21 x22 x23
x31 x32 x33

⊗

 y11 y12 y13
y21 y22 y23
y31 y32 y33



=



x11y11 · · · · · · · ·
· · · · · · · · ·
· · x11y33 · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·
· · · · · · x33y11 · ·
· · · · · · · · ·
· · · · · · · · x33y33


Again, comparing only the boxed diagonal entries in the big matrices above we must

have (x11y11)(x33y33) = (x11y33)(x33y11), which implies 1 = x2. Therefore, for x ̸= ±1,
(xS9)(S9) can not be factored as X ⊗ Y .

The general result and its proof is presented in the following theorem.

Theorem 1. For any d ≥ 2 and for any x = eiφ in which φ is a real number, the
xSWAP from Definition 1 is unitary and it is entangling when x ̸= ±1. Hence, for
x ̸= ±1, xSWAP is a universal quantum gate for d-level qudit systems.

Proof. The unitarity of xSWAP is obvious because of the choice x = eiφ. As for the
entangling property, we need to show that for x ̸= ±1 none of xS and (xS)(S) can factor
as X ⊗ Y , where X and Y are d by d matrices [1].

For both cases, we assume the opposite, i.e., we assume xS = X ⊗ Y or (xS)(S) =
X ⊗ Y . Then, using Definition 1, we compare the following equality,

(x11y11)(xddydd) = (x11ydd)(xddy11) (6)
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which involves certain diagonal entries from the tensor product matrix X ⊗ Y with the
same equality involving the same entries from the matrix S or (xS)(S)).

The above mentioned comparison for the case of xS = X ⊗ Y implies 1 = 0, which is
impossible regardless of the value of x. Also for the case of (xS)(S) = X ⊗ Y it implies
x2 = 1. This finishes the proof.

Remark 1. To directly prove a 2-qudit gate G is universal one needs to show that the set
containing G and all 1-qudit gates is enough to produce other qudit gates. Showing this
directly is not always easy even in dimension d = 2. This is why we have instead used the
powerful Brylinskis’ criterion [3] and the the non-entangling criteria from [1].

5. Concluding remarks

In the recent decades, there has been an ever increasing interest in applications of
d-level qudits, for d ≥ 3, in quantum computing and quantum information. This is due
to their advantages over the conventional qubits (i.e., d = 2). These advantages include
larger storing and processing space for information, smaller number of qudits required to
span the state space, better noise-resistant, simplifying quantum logic, and more. More-
over, there has been very interesting developments regarding the physical implementation
of qudit-based quantum computing systems [7–9, 11–13, 17].

Naturally, to make it possible to work with d-level qudits one needs to have quantum
logic gates that could operate on them. In the present paper we have generalized the swap
gate and the iswap gate to any dimension d ≥ 2, in terms of permutation matrices. We
have unified these gates by introducing a more general gate xSWAP for x = eiφ where φ is
a real number. Moreover, we have shown that xSWAP is universal for quantum computing
when x ̸= ±1. These higher dimensional gates can serve as quantum logic gates acting on
two d-level qudits.

Let us conclude by mentioning some future research directions related to the present
work. It would be interesting to generalize the xSWAP further by using different variables
x1, x2, x3, etc., instead of only one variable x. Using the definition to prove the universality
is usually not very easy even in dimension d = 2 (refer to Remark 1). However, it would
be still interesting and useful to find such a direct proof based on the definition. These
research directions will be pursued in a sequel to this paper.
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