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Abstract. In a plain vanilla option, its holder is given the right, but not the obligation, to buy
or sell the underlying stock at a specified price (strike price) at a predetermined date. If the
exercise date is at maturity, the option is called a European; if the option is exercised anytime
prior to maturity, it is called an American. In a British option, the holder can enjoy the early
exercise feature of American option whereupon his payoff is the ‘best prediction’ of the European
payoff given all the information up to exercise date under the hypothesis that the true drift of
the stock equals a specified contract drift. In this paper, in contrast to the constant interest rate
and constant volatility assumptions, we consider the British option by assuming that the economic
state of the world is described by a finite state continuous-time Markov chain. Also, we provide a
solution to a free boundary problem by using PDE arguments. However, closed form expression
for the arbitrage-free price are not available in our setting.
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1. Introduction

Plain vanilla options such as European options and American options are widely used
in the market and their pricing mechanisms are well studied. An option gives the holder
the right, but not the obligation, to buy or sell an underlying asset for a specified price,
called strike price, on or before a specified future date, called maturity date or expiration
date. The option is European if the holder can exercise it only at expiration date; it is
American if the option can be exercised anytime even prior to the expiration date.
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One of the pricing mechanisms for European option is provided by the well-known
Black-Scholes-Merton formula. This mathematical model assumes, among other things,
the absence of arbitrage opportunities and that lending and borrowing are possible at the
same risk-free rate. Such method falls within the so-called risk-neutral pricing framework.

In [5], G. Peskir and F. Samee introduced a new type of option, called British option,
which is American in nature because it can be exercised prior to maturity but with Eu-
ropean payoff. The motivation for this new financial product stems from the disparity
between the expected value of the option buyer’s investment, in the form of premium
paid, and the expected value of his payoff when the actual drift rate of the underlying
stock price deviates from the risk-free rate. An added feature is built into this instrument
which aim at both providing protection against unfavourable price movements as well as
securing higher returns when these movements are favourable [5].

The derivation of the British option price in [5] assumes the usual model as in the
Black-Scholes-Merton formula: a geometric Brownian motion for the dynamics of the
underlying stock, a constant risk-free interest rate and a constant volatility. In [2], Yao,
Zhang and Zhou priced the European options in continuous-time regime-switching via a
recursive algorithm. This paper aims to extend the result in [5] by assuming that the
economic state of the world is described by a finite state continuous-time Markov chain.
The paper is organized as follows. In Section 2 we present the definition of the British
put option as given in [5] and the financial setting. In Section 3 we define the stopping
set and boundary function and provide results involving these two. In particular, we show
that the boundary function satisfies the Volterra type equation, then conclude.

2. Setting of the Problem

In this paper, we assume that the economic state of the world is described by a finite
state continuous-time Markov chain α = (αt)t∈R+ on M = {1, 2, . . . ,m}. Suppose that
the volatility σ : M → (0,∞) depends on the state α of the economy. Under the real world
probability measure P, we assume that the dynamics of the stock price process follows a
geometric Brownian motion:

dXt = µXtdt+ σ(αt)XtdWt, X0 = x > 0, (1)

where µ ∈ R is the true drift, W = (Wt)t≥0 denotes the standard Brownian motion
defined on a probability space (Ω,F ,P). Here, we assume that W is independent of the
Markov-chain α and the filtration F = (Ft)t∈R+ is generated by W and α.

We will consider the British put option on stocks in the aforementioned financial
market. The British put option with strike price K and time to maturity T (in years) is
defined in [5] as follows:

Definition 1. [5] The British put option is a financial contract between a seller/hedger and
a buyer/holder entitling the latter to exercise at any (stopping) time τ prior to maturity
T whereupon his payoff (deliverable immediately) is the ’best prediction’ of the European
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payoff (K − XT )
+ given all the information up to time τ under the hypothesis that the

true drift µ of the stock price equals the contract drift µc.

In [5], the price of the British put option is derived under the hypothesis that the
volatility is constant for all t ∈ [0, T ]. Hence, this paper presents an extension of the
results in [5].

For 0 ≤ t ≤ T , let

β(t) :=
µc − µ

σ(αt)
, (2)

where µc ̸= µ. Define an equivalent measure Pµc via the following:

dPµc

dP
= ZT , (3)

where

Zt := exp

[∫ t

0
β(u)dWu − 1

2

∫ t

0
β2(u)du

]
(4)

and E[Zt] = 1 for 0 ≤ t ≤ T . Then by Itô′s formula,

dZt

Zt
= β(t)dWt. (5)

This shows that Zt is a local martingale. From Lemma 1 in [2], we have

Wµc
t = Wt −

∫ t

0
β(u)du (6)

is a Pµc-Brownian motion. Under the probability measure Pµc , (1) becomes

dXt = µcXtdt+ σ(αt)XtdW
µc
t (7)

where 0 ≤ t ≤ T with X0 = x ∈ (0,∞). Thus, making use of (3), we have Eµc(X) =
E(ZTX) = E(ZT )E(X) = E(X) for any random variable X.

The payoff of the British put option at a given stopping time t = τ is given by

Eµc [ (K −XT )
+ | Fτ ] (8)

where the conditional expectation is taken with respect to a new (equivalent) probability
measure Pµc under which the stock price X evolves as in (7) with X0 = x ∈ (0,∞). Thus,
the effect of exercising the British put option is to substitute the contract drift µc to the
true (unknown) drift µ of the stock price for the remaining time of the contract. Note
that the value of the contract drift µc must be equivalent to the buyer’s tolerance level
for the deviation of the true drift µ from his original belief. Moreover, to avoid arbitrage
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opportunity, the contract drift naturally satisfies (See [5])

µc > r. (9)

Note that by Itô’s formula, the solution to equation (7) is

Xt = XsZ
µc
s,t (10)

for 0 ≤ s ≤ t ≤ T where

Zµc
s,t = exp

[∫ t

s

(
µc −

σ2(αu)

2

)
du+

∫ t

s
σ(αu)dW

µc
u

]
(11)

so that the payoff (8) can be written as

Eµc [ (K −XτZ
µc

τ,T )
+ | Fτ ]. (12)

Let α0 be given. Applying the usual hedging scheme, then the arbitrage-free price of
the British put option at deal date (time 0) is given by

V = V (0, X0, α0)

= sup
0≤τ≤T

Ẽ
[
e−rτEµc

(
(K −XT )

+
∣∣Fτ

) ∣∣∣F0

]
(13)

= sup
0≤τ≤T

Ẽ
[
e−rτEµc

(
(K −XT )

+
∣∣Fτ

)]
where the supremum is taken over all stopping time τ ∈ [0, T ] of X and the Ẽ is taken
with respect to the (unique) equivalent martingale measure P̃.

Now, fix t ∈ [0, T ]. We want a general expression for the price, denoted by V (t,Xt, αt),
of the British put option at any time t at which the stock price Xt = x > 0. Denote the
payoff in (8) at τ = s by

Gµc(s, y, j) = Eµc

[
(K − yZµc

s,T )
+ | αs = j,Xs = y

]
(14)

for s ∈ [0, T ] where Zµc

s,T is given in (11) . If the exercise date of the British put option is
at time t+ τ , where τ ∈ [0, T − t], then extending the argument in (13), we have

V (t, x, i) = sup
0≤τ≤T−t

Ẽt,x

[
e−rτGµc(t+ τ,Xt+τ , j) | αt = i,Xt = x

]
(15)

where the supremum is taken overall stopping time τ ∈ [0, T−t] ofX and Ẽt,x is taken with

respect to the (unique) equivalent martingale measure P̃t,x under which Xt = x ∈ R+.
Using the same argument as above with µc is replaced with r in relations (2) through
(7) and that Zr

t,t+τ (as defined in (11) with µc is replaced with r) has stationary and
independent increments (i.e., Zr

t,t+τ is a version of Zr
0,τ ), the option price in (15) can be
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rewritten as

V (t,Xt, αt) = sup
0≤τ≤T−t

E
[
e−rτGµc(t+ τ,XtXτ , j) | Ft

]
(16)

where the process X = X(r) under P solves

dXt = rXtdt+ σ(αt)XtdW
r
t

with X0 = 1. Note that they are equivalent because Ft knows the values of Xt and αt.

Proposition 1. For any t ∈ [0, T ] and j ∈ M given and fixed, the mapping

x 7→ Gµc(t, x, j) (17)

is convex on (0,∞).

Proof. Let 0 ≤ λ ≤ 1 and x2 = λx1 + (1− λ)x3 for some x1, x3 ∈ (0,∞) with x1 < x3.
We have

Gµc(t, x2, j) = Gµc(t, λx1 + (1− λ)x3, j)

= Eµc

[(
K − λx1Z

µc

t,T − (1− λ)x3Z
µc

t,T

)+ ∣∣ Xt = x, αt = j

]
= Eµc

[(
λK + (1− λ)K − λx1Z

µc

t,T − (1− λ)x3Z
µc

t,T

)+ ∣∣ Xt = x, αt = j

]
≤ λEµc

[(
K − x1Z

µc

t,T

)+ ∣∣ Xt = x, αt = j

]
+ (1− λ)Eµc

[(
K − x3Z

µc

t,T

)+ ∣∣ Xt = x, αt = j

]
= λGµc(t, x1, j) + (1− λ)Gµc(t, x3, j),

which completes our proof.
It can also be verified that the mapping in (17) is strictly decreasing on (0,∞) with

Gµc(T, x, j) = (K −XT )
+, Gµc(t, 0, j) = K and lim

x→+∞
Gµc(t, x, j) = 0. By Proposition 1

and equation (15) above, it follows that the mapping

x 7→ V (t, x, i) (18)

is convex for any t ∈ [0, T ] and i ∈ M given and fixed and strictly decreasing on (0,∞) with
V (T, x, i) = (K − XT )

+, V (t, 0, i) = K and lim
x→+∞

V (t, x, i) = 0. Hence, both mappings

(17) and (18) are continuous on (0,∞) for any t ∈ [0, T ] and αt ∈ M given and fixed.
Define the set

D := {(t, x, j) ∈ [0, T ]× (0,∞)×M : V (t, x, j) = Gµc(t, x, j)}. (19)
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Let (T, x, j) ∈ {T} × (0,∞)×M. We note that

V (T,XT , j) = (K −XT )
+ = Gµc(T,XT , j). (20)

Hence, {T} × (0,∞) × M ⊂ D, which is consistent with the fact that the supremum in
(15) is taken over (Ft)t∈[0,T ]-stopping times τ ∈ [t, T ]. Furthermore, by Corollary 2.9 page
46 in Peskir and Shiryaev [6], the (Ft)t∈[0,T ]-stopping time

τD(t,Xt, αt) := inf {s ∈ [0, T − t] : (t, x, j) ∈ D} (21)

with Xt = x ∈ (0,∞) and αt = j ∈ M, is an optimal stopping time for option price
in (15) since x 7→ V (t, x, j) and x 7→ Gµc(t, x, j) are both continuous on (0,∞) and
Gµc(t, x, j) ≤ K for all t ∈ [0, T ] and j ∈ M. Moreover, by using the equivalent expression
for the stopping set D in Relation (46) in Proposition (2), τD(t,Xt, αt) can be rewritten
in terms of the optimal stopping boundary function as

τD(t, x, j) := inf {s ∈ [0, T − t] : x ≤ bD(t, j)} , (22)

where bD(t, j) is defined in (44) below at which Xt = x and αt = j.
We next derive the following continuity results to show that the set D in (24) is closed.

Lemma 1. The mapping (t, x) 7→ Gµc(t, x, j) is jointly continuous on [0, T ]× (0,∞).

Proof. The continuity of the mapping x 7→ Gµc(t, x, j) follows from the fact that
Gµc(t, x, j) is convex with respect to x ∈ (0,∞) for any time t ∈ [0, T ] given and fixed.
It remains to show the uniform continuity of the mapping t 7→ Gµc(t, x, j) at time t = t1.
Let x ∈ (0,∞) be given and fixed and 0 ≤ t1 < t2 ≤ T . Then we have,

0 ≤
∣∣∣Gµc(t2, x, j)−Gµc(t1, x, j)

∣∣∣
≤ Eµc

[∣∣∣(K − xZµc

t2,T
)+ − (K − xZµc

t1,T
)+
∣∣∣ ∣∣∣∣∣ Ft2

]

≤ xEµc

[∣∣∣(Zµc

t1,T
− Zµc

t2,T
)+
∣∣∣ ∣∣∣∣∣ Ft2

]

= xEµc

[∣∣∣∣∣Zµc

t1,T

(
1−

Zµc

t2,T

Zµc

t1,T

)+ ∣∣∣∣∣
∣∣∣∣∣ Ft2

]

= xEµc

∣∣∣∣∣Zµc

t1,T

(
1− e

−
∫ t2
t1

(
µc−σ2(αu)

2

)
du−

∫ t2
t1

σ(αu)dW
µc
u

)+ ∣∣∣∣∣
∣∣∣∣∣ Ft2

 .

Therefore, as t2 − t1 → 0, we have Gµc(t2, x, j) − Gµc(t1, x, j) → 0 uniformly, which
completes our proof.
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Lemma 2. For any j ∈ M, the mapping (t, x) 7→ V (t, x, j) is jointly continuous on
[0, T ]× (0,∞).

Proof. The continuity of the mapping x 7→ V (t, x, j) at a point x0 follows from the
fact that V (t, x, j) is convex with respect to x ∈ (0,∞) for any time t ∈ [0, T ] given and
fixed. It remains to show that the mapping t 7→ V (t, x, j) is continuous at t1 uniformly
over x ∈ R. Let x ∈ (0,∞) be given and fixed and suppose 0 ≤ t1 < t2 ≤ T . Let
τ1 = τD(t, x, i) be the optimal stopping time for (15) and τ2 = τ1 ∧ (T − t2). Then

0 ≤
∣∣∣V (t1, x, i)− V (t2, x, i)

∣∣∣
≤

∣∣∣E [e−rτ1Gµc(t1 + τ1, Xt1+τ1 , j)
∣∣ Ft1

]
−E

[
e−rτ2Gµc(t2 + τ2, Xt2+τ2 , j)

∣∣ Ft2

] ∣∣∣
≤

∣∣∣E [e−rτ2Gµc(t1 + τ1, Xt1+τ1 , j)
∣∣ Ft1

]
−E

[
e−rτ2Gµc(t2 + τ2, Xt2+τ2 , j)

∣∣ Ft2

] ∣∣∣
≤

∣∣∣E [e−rτ2 {Gµc(t1 + τ1, Xt1+τ1 , j)−Gµc(t2 + τ2, Xt2+τ2 , j)}
∣∣ Ft2

] ∣∣∣
≤ E

[
e−rτ2

∣∣Gµc(t1 + τ1, Xt1+τ1 , j)−Gµc(t2 + τ2, Xt2+τ2 , j)
∣∣ ∣∣∣ Ft2

]
.

By the continuity of the mapping t 7→ Gµc(t, x, j) from Lemma 1, the mapping t 7→
V (t, x, i) is continuous on [0, T ], uniformly in x ∈ (0,∞).

3. Stopping set and boundary function

Define

F (t, x, j) = V (t, x, j)−G(t, x, j) ≥ 0, (23)

which is nonnegative for t ∈ [0, T ], x ∈ (0,∞) and j ∈ M, so that we have

D = {(t, x, j) ∈ [0, T ]× (0,∞)×M : F (t, x, j) = 0}. (24)

By the continuity of both mappings (t, x) 7→ V (t, x, i) and (t, x) 7→ Gµc(t, x, j) on [0, T ]×
(0,∞), the set D is closed. Thus, the continuation set

C = Dc = {(t, x, j) ∈ [0, T ]× (0,∞)×M : F (t, x, j) > 0} (25)

is open.

Lemma 3. For any (t, x, j) ∈ D, we have

lim sup
ϵ↘0

F (t, x+ ϵ, j)− F (t, x, j)

ϵ
≤ 0. (26)
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Proof. For all x ∈ (0,∞) and ϵ > 0, consider the (Fs)s∈[t,T ]-stopping time

τ+ϵ = τD(t, x+ ϵ, j) ∈ [0, T − t] (27)

defined in (21), which solves the optimal stopping problem

V (t, x+ ϵ, αt) = sup
0≤τ≤T−t

E
[
e−rτGµc(t+ τ,Xt+τ , j)

∣∣∣Ft

]
= E

[
e−rτ+ϵ Gµc(t+ τ+ϵ , Xt+τ+ϵ

, j)
∣∣∣Ft

]
. (28)

We first claim that

τ+ϵ → 0 as ϵ → 0. (29)

From the definition of τD(t, x+ ϵ, j), we have, on the event {αt = j},

τD(t, x+ ϵ, j) = inf {s ∈ [0, T − t] : (t, x+ ϵ, j) ∈ D}

= inf

{
s ∈ [0, T − t] : sup

0≤s≤T−t
E
[
e−rsEµc

[
(K − (x+ ϵ)XsZ

µc

t+s,T )
+
∣∣∣Ft+s

] ∣∣∣Ft

]
= Eµc

[
(K − (x+ ϵ)XsZ

µc

t+s,T )
+
∣∣∣Ft+s

]}
≤ inf

{
s ∈ [0, T − t] : sup

0≤s≤T−t
E
[
e−rsEµc

[
(K − xXsZ

µc

t+s,T )
+
∣∣∣Ft+s

] ∣∣∣Ft

]
≥ Eµc

[
(K − (x+ ϵ)XsZ

µc

t+s,T )
+
∣∣∣Ft+s

]}
≤ inf

{
s ∈ [0, T − t] : sup

0≤s≤T−t
E
[
e−rsEµc

[
(K − xXsZ

µc

t+s,T )
+
∣∣∣Ft+s

] ∣∣∣Ft

]
≥ Eµc

[
1

2

(
K − xZµc

t+s,T − ϵZµc

t+s,T +
∣∣K − xZµc

t+s,T − ϵZµc

t+s,T

∣∣) ∣∣∣Ft+s

]}
This implies that

lim
ϵ→0

τD(t, x+ ϵ, j) ≤ lim
ϵ→0

inf

{
s ∈ [0, T − t] : sup

0≤s≤T−t
E
[
e−rsEµc

[
(K − xXsZ

µc

t+s,T )
+
∣∣∣Ft+s

] ∣∣∣Ft

]
≥ Eµc

[
1

2

(
K − xZµc

t+s,T − ϵZµc

t+s,T +
∣∣K − xZµc

t+s,T − ϵZµc

t+s,T

∣∣) ∣∣∣Ft+s

]}
= inf

{
s ∈ [0, T − t] : sup

0≤s≤T−t
E
[
e−rsEµc

[
(K − xXsZ

µc

t+s,T )
+
∣∣∣Ft+s

] ∣∣∣Ft

]
≥ Eµc

[
1

2

(
K − xZµc

t+s,T +
∣∣K − xZµc

t+s,T

∣∣) ∣∣∣Ft+s

]}
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= inf

{
s ∈ [0, T − t] : sup

0≤s≤T−t
E
[
e−rsEµc

[
(K − xXsZ

µc

t+s,T )
+
∣∣∣Ft+s

] ∣∣∣Ft

]
≥ Eµc

[
(K − xXsZ

µc

t+s,T )
+
]}

= inf

{
s ∈ [0, T − t] : sup

0≤s≤T−t
E
[
e−rsEµc

[
(K − xXsZ

µc

t+s,T )
+
∣∣∣Ft+s

] ∣∣∣Ft

]
= Eµc

[
(K − xXsZ

µc

t+s,T )
+
]}

= inf {s ∈ [0, T − t] : (t, x, j) ∈ D}
= 0.

Now to prove (26), we use (28). Thus, we have

lim sup
ϵ↘0

V (t, x+ ϵ, j)− V (t, x, j)

ϵ

= lim sup
ϵ↘0

1

ϵ

{
E
[
e−rτ+ϵ Gµc

(
t+ τ+ϵ , x+ ϵ, j

) ∣∣∣Ft

]
− sup

0≤τ≤T−t
E
[
e−rτ+ϵ Gµc

(
t+ τ+ϵ , x, j)

) ∣∣∣Ft

]}
≤ lim sup

ϵ↘0

1

ϵ

{
E
[
e−rτ+ϵ Gµc

(
t+ τ+ϵ , x+ ϵ, j

) ∣∣∣Ft

]
− E

[
e−rτ+ϵ Gµc

(
t+ τ+ϵ , x, j)

) ∣∣∣Ft

]}
≤ lim sup

ϵ↘0

1

ϵ

{
Gµc

(
t+ τ+ϵ , x+ ϵ, j

)
−Gµc

(
t+ τ+ϵ , x, j)

)}
=

∂Gµc

∂x
(t, x, j), (30)

hence we conclude (26).
It is well-known that every convex functions on the open interval I are differentiable

almost everywhere, e.g. [3]. In the following Lemmas, we use the fact that both V (t, x, j)
and Gµc(t, x, j) are differentiable P-almost surely for all x on (0,∞).

Lemma 4. The functions
∂V

∂x
(t, x, j) and

∂Gµc

∂x
(t, x, j) are continuous on (0,∞) P-almost

surely for fixed t ∈ [0, T ] and j ∈ M.

Proof. Let ϵ and c ∈ (0,∞) be arbitrary. Since V (t, x, j) is differentiable for all
x ∈ (0,∞) for fixed t ∈ [0, T ] and j ∈ M, we know that there exists δ > 0 such that∣∣∣∣∣V (t, x, j)− V (t, c, j)

c− x
− ∂V

∂x
(t, c, j)

∣∣∣∣∣ < ϵ

2
(31)

whenever 0 < |c − x| < δ/2. Moreover, by Mean-Value Theorem, there is an element
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y ∈ (x, c) such that

V (t, x, j)− V (t, c, j)

c− x
=

∂V

∂x
(t, y, j)

and inequality (31) becomes∣∣∣∣∣∂V∂x (t, y, j)− ∂V

∂x
(t, c, j)

∣∣∣∣∣ < ϵ

2
. (32)

Note that we have 0 < |y − c| < |x− c| < δ/2. For t ∈ [0, T ] and j ∈ M given and fixed,

we know from Proposition 1 that V (t, x, j) is convex for all x ∈ (0,∞), then
∂V

∂x
(t, x, j) is

monotonically increasing. Thus, if 0 < |x− y| < δ/2 we have∣∣∣∣∣∂V∂x (t, x, j)− ∂V

∂x
(t, y, j)

∣∣∣∣∣ < ϵ

2
. (33)

Therefore, combining inequalities (32) and (33) we have∣∣∣∣∣∂V∂x (t, x, j)− ∂V

∂x
(t, c, j)

∣∣∣∣∣ < ϵ,

whenever 0 < |x− c| ≤ |x− y|+ |y − c| < δ.

Furthermore, by Lemma 6 and the fact that
∂Gµc

∂x
is monotonically increasing and

that V = Gµc in the stopping set D which is defined in (24) above, we have

V (t, x2, j)− V (t, x1, j)

x2 − x1
=

∂V

∂x
(t, x, j)

≥ ∂Gµc

∂x
(t, x, j)

=
Gµc(t, x2, j)−Gµc(t, x1, j)

x2 − x1
≥ 0

for x1, x2 ∈ (0,∞). Therefore, continuity of ∂Gµc

∂x (t, x, j) follows from the continuity of
∂V
∂x (t, x, j) on (0,∞). This completes our proof.

Define the infinitesimal generator

Lf(s, x, αs) =

(
∂

∂t
+ rx

∂

∂x
+

1

2
σ2(αs)x

2 ∂2

∂x2
− r

)
f(s, x, j)

+

m∑
i=1

qjif(s, x, i) (34)



F. Sumalpong, M. Frondoza, N.L. Sayson / Eur. J. Pure Appl. Math, 16 (3) (2023), 1830-1847 1840

of the Markov process (Xs)s∈[0,T ], where Q = (qij)i,j=1,2,...,m is the infinitesimal matrix
generator of the Markov process (αs)s∈[0,T ], for any sufficiently differentiable function f
of (s, x, j) ∈ [0, T ]× (0,∞)×M.

Lemma 5. For all (t, x, j) ∈ [0, T ]× (0,∞)×M, we have

LGµc(t, x, j) < 0 (35)

when the contract drift µc satisfies µc < r.

Proof. The payoff function in (14) can be rewritten as

Gµc(t, x, j) = Eµc [(K −XT )
+
∣∣Xt = x, αt = j]

for all j ∈ M and hence a martingale by tower property. By (7) and the Itô’s formula we
have

dGµc(t, x, j) =
∂Gµc

∂t
(t, x, j) + µcx

∂Gµc

∂x
(t, x, j)

+
1

2
σ2(j)x2

∂2Gµc

∂x2
(t, x, j) +

m∑
i=1

qjiG
µc(t, x, i)

+ σ(j)x
∂Gµc

∂x
dWµc

t .

Since Gµc(t, x, j) is a martingale, we find

∂Gµc

∂t
(t, x, j) + µcx

∂Gµc

∂x
(t, x, j) +

1

2
σ2(j)x2

∂2Gµc

∂x2
(t, x, j)

+
m∑
i=1

qjiG
µc(t, x, i) = 0. (36)

Substituting (36) to (34) we have

LGµc(t, x, j) = (r − µc)x
∂Gµc

∂x
(t, x, j)− rGµc(t, x, j). (37)

Since Gµc(t, x, j) is convex and decreasing with respect to x ∈ (0,∞), then we have
∂Gµc

∂x
(t, x, j) < 0. This completes our proof.

Lemma 6. For all (t, y, j) ∈ C, we have

∂V

∂y
(t, y, j) >

∂Gµc

∂y
(t, y, j). (38)

Proof. Let (t, xb, j) be a fixed point on the boundary function bD(t, j) so that xb =
bD(t, j). Let xb < y ≤ K so that (t, y, j) ∈ C. Since x 7→ V (t, x, j) is continuous on (0,∞)
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by Lemma 2 and differentiable P-almost surely, by Mean Value Theorem, there exists at
least one c ∈ (xb, y) such that

V (t, y, j)− V (t, xb, j)

y − xb
=

∂V

∂x
(t, c, j).

Similarly, we have

Gµc(t, y, j)−Gµc(t, xb, j)

y − xb
=

∂Gµc

∂x
(t, c, j).

Since V (t, y, j) > Gµc(t, y, j) for all (t, y, j) ∈ C, we have

∂V

∂x
(t, c, j) =

V (t, y, j)− V (t, xb, j)

y − xb
>

Gµc(t, y, j)−Gµc(t, xb, j)

y − xb
=

∂Gµc

∂x
(t, c, j).

Since V and Gµc are continuous and convex, the above inequality holds for all (t, c, j) ∈
C.

Lemma 7. For any (t, x, j) in the optimal stopping boundary ∂C ⊂ D, we have

∂V

∂x
(t, x+, j) =

∂V

∂x
(t, x−, j). (39)

Proof. For nay ϵ > 0, consider the stopping time τ+ϵ = τD(t, x+ ϵ, j) as in (27). Noting
that τ+ϵ → 0 as ϵ → 0 as claimed in (29), by (30) we have

∂Gµc

∂x
(t, x, j) ≥ lim sup

ϵ↘0

V (t, x+ ϵ, j)− V (t, x, j)

ϵ
.

On the other hand, since (t, x, j) ∈ ∂C ⊂ D, we have

lim inf
ϵ↘0

V (t, x+ ϵ, j)− V (t, x, j)

ϵ
≥ lim inf

ϵ↘0

Gµc(t, x+ ϵ, j)−Gµc(t, x, j)

ϵ

=
∂Gµc

∂x
(t, x, j).

Since V = Gµc on a closed set D, we have

∂V

∂x
(t, x−, j) =

∂Gµc

∂x
(t, x, j) =

∂V

∂x
(t, x−, j). (40)

Lemma 8. We have

{(t, x, i) ∈ [0, T ]× (0,∞)×M : LGµc(t, x, i) > 0} ⊂ C

where C = Dc is the continuation set.
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Proof. Let (t, x, i) ∈ [0, T ]× (0,∞)×M be such that LGµc(t, x, i) > 0. By Lemma 1
in [2] we have

e−rsGµc(t+ s,Xt+s, αt+s) = Gµc(t, x, i)

+

∫ t+s

t
e−ruLGµc(u,Xu, αu)du+Ms, (41)

where Ms =
∫ t+s
t e−ruσ(αu)Xu

∂Gµc

∂x (u,Xu, αu)dW
µc
u defines a continuous martingale for

s ∈ [0, T−t] with t ∈ [0, T ). By Lemma (1), Lemma (4) and equation (37), the infinitesimal
generator LGµc(t, x, j) is continuous with respect to (t, x) ∈ [0, T ] × (0,∞). Thus there
exists an open neighborhood U × V ⊂ [0, T )× (0,∞) of (t, x) such that LGµc(s, y, j) > 0
for all (s, y) ∈ U × V . Let

τU = inf{τ : (t+ τ,Xt+τ ) ∈ U × V, (Xt, αt) = (x, i) ∈ V ×M}.

By Optional Sampling Theorem, the Relation (41) with s = τU shows that

E
[
e−rτUGµc(t+ τU , Xt+τU , αt+τU )

∣∣∣Ft

]
= Gµc(t, x, i)

+ E

[∫ t+τU

t
e−ruLGµc(u,Xu, αu)du

∣∣∣Ft

]
.

(42)

Since LGµc(u,Xu, αu) > 0 for u ∈ (t, t+τU ), the right hand side of equation (42) is strictly
greater than Gµc(t, x, i), while from equation (15) we have

V (t, x, i) ≥ E
[
e−rτUGµc(t+ τU , Xt+τU , αt+τU ) | Ft

]
showing that V (t, x, i) > Gµc(t, x, i), which implies that (t, x, i) ∈ C. This completes our
proof.

Next, we define the boundary function bD(t, j) via the following:
For any stopping time τ ∈ [0, T − t], it can be verified from equations (37) and (42)

that there is a continuous function h : [0, T ]×M → R such that the infinitesimal generator
(37) satisfies

LGµc(t, h(t, j), j) = 0. (43)

Since µc > r, we see that LGµc(t, h(t, j), j) > 0 for x > h(t, j) and LGµc(t, h(t, j), j) <
0 for x < h(t, j) when t ∈ [0, T ] and j ∈ M are given and fixed. In view of equation (42),
this implies that for any stopping time τ ∈ [0, T−t], there is no point (t, x) ∈ [0, T ]×(0,∞)
with x > h(t, j) is a stopping point. From here, we define the optimal stopping boundary
as follows:

bD(t, j) := sup {x ∈ (0,∞) : (t, x, j) ∈ D} . (44)
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Now, we characterize the stopping set defined in (24) in terms of the boundary function
bD(t, j).

Proposition 2. For any (t, x, j) ∈ [0, T ]× (0,∞)×M such that (t, x, j) ∈ D we have

{t} × (0, x]× {j} ⊂ D (45)

and

D = {(t, x, j) ∈ [0, T ]× (0,∞)×M : x ≤ bD(t, j)}. (46)

Proof. Let (t, y, j) ∈ {t} × (0, x]× {j}. Since (t, x, j) ∈ D and V (t, x, j) ≥ Gµc(t, x, j)
for all x ∈ (0,∞), we have

V (t, x, j)− V (t, y, j)

x− y
=

Gµc(t, x, j)− V (t, y, j)

x− y

≤ Gµc(t, x, j)−Gµc(t, y, j)

x− y
.

Taking the limit on both sides as x− y → 0 and by Lemma (3), we have (t, y, j) ∈ D and
conclude (45). From the definition of the boundary function in (44), we have the following
equivalence

(t, x, j) ∈ D ⇐⇒ {t} × (0, x]× {j} ⊂ D ⇐⇒ x ≤ bD(t, j).

Lemma 9. For any (x, j) ∈ (0,∞)×M, the mapping

t 7→ F (t, x, j) = V (t, x, j)−Gµc(t, x, j) (47)

is nonincreasing in t ∈ [0, T ].

Proof. Let s1, s2 ∈ [0, T − t] with s1 < s2 and consider the stopping time τs2 =
τD(s2, x, j) ∈ [0, T − s2]. From definition of the function F in (23) and replacing τU with
τs2 in (42), we have

F (s2, x, j) = V (s2, x, j)−Gµc(s2, x, j)

= E
[
e−rτs2Gµc(s2 + τs2 , Xs+τs2

, αs+τs2
)
∣∣∣αs2 = j

]
−Gµc(s2, x, j)

= E

[∫ s2+τs2

s2

e−ruLGµc(u,Xu, αu)du
∣∣∣αs2 = j

]
= E

[∫ τs2

0
e−ruLGµc(s2 + u,Xs2+u, αs2+u)du

∣∣∣α0 = j

]
. (48)

Combining (48) with (49) below

F (s1, x, j) = V (s1, x, j)−Gµc(s1, x, j)
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≥ E
[
e−rτs2Gµc(s1 + τs2 , Xs1+τs2

, αs1+τs2
)
∣∣∣αs1 = j

]
−Gµc(s1, x, j)

= E

[∫ s1+τs2

s1

e−ruLGµc(u,Xu, αu)du
∣∣∣αs1 = j

]
= E

[∫ τs2

0
e−ruLGµc(s1 + u,Xs1+u, αs1+u)du

∣∣∣α0 = j

]
, (49)

we have

F (s2, x, j)− F (s1, x, j)

≤ E

[∫ τs2

0
e−ruLGµc(s2 + u,Xs2+u, αs2+u)du

∣∣∣α0 = j

]
−E

[∫ τs2

0
e−ruLGµc(s1 + u,Xs1+u, αs1+u)du

∣∣∣α0 = j

]
≤ E

[∫ τs2

0
{LGµc(s2 + u,Xs2+u, αs2+u)du− LGµc(s1 + u,Xs1+u, αs1+u)du}

∣∣∣α0 = j

]
.

From Relation (37) with r < µc, since t 7→ Gµc(t, x, j) is nondecreasing on [0, T ], we say
that LGµc(t, x, j) is nonincreasing in t, we find that the right hand side is nonpositive,
thereby conclude that F (t, x, j) is nonincreasing in t ∈ [0, T ].

Proposition 3. The boundary function bD(t, j) is continuous in t ∈ [0, T ] for all j ∈ M.

Proof.
Let αt = j ∈ M be fixed. We first show that the boundary function bD(t, j) is left-

continuous. Suppose to the contrary that it is not left-continuous at time t = t0. Consider
the following cases:

Case 1. bD(t0−, j) < bD(t0, j)

Let (t′, x′, j) ∈ (0, t0)×(bD(t0−, j), bD(t0, j))×M be a point in the continuation set C

with t′ close to t0 and t′ ↑ t0. We know that, by Lemma 4, x 7→ ∂V

∂x
and x 7→ ∂Gµc

∂x

are both continuous. Since both
∂V

∂x
and

∂Gµc

∂x
are bounded by −P(y ≤ K) for

(t, y, j) ∈ D, by Newton-Leibniz formula and Lemma 6 we have

0 <

∫ bD(t0,j)

x′

[
Vx(t

′, u, j)−Gµc
x (t′, u, j)

]
du

= Gµc(t′, x′, j)− V (t′, x′, j)

as t′ → t0. This implies that V (t0, x
′, j) < Gµc(t0, x

′, j) which contradicts the fact
that (t0, x

′, j) ∈ D since x′ < bD(t0, j), i.e., V (t0, x
′, j) = Gµc(t0, x

′, j).

Case 2. bD(t0−, j) > bD(t0, j)
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Let (t∗, x∗, j) ∈ (0, t0) × (bD(t0, j), bD(t0−, j) ×M) be a point on the stopping set
D with t∗ close to t0 and t∗ ↑ t0. By (40), we have Vx(t

∗, x∗, j) = Gµc(t∗, x∗, j) on
D. Similarly, by Newton-Leibniz formula, we have

0 =

∫ x

bD(t0,j)
[Vx(t

∗, v, j)−Gµc
x (t∗, v, j)] dv

= V (t∗, x∗, j)−Gµc(t∗, x∗, j)

as t∗ → t0. This shows that V (t0, x
∗, j) = Gµc(t0, x

∗, j) which contradicts the fact
that (t0, x

∗, j) ∈ C since x∗ > bD(t0, j), i.e., V (t∗, x∗, j) > Gµc(t∗, x∗, j).

Therefore, in either case, bD is left-continuous. To prove the right-continuity can be done
similarly.

Proposition 4. The boundary function bD(t, j) satisfies the Volterra type equation

Gµc(t, bD(t, j), j) = F (t, bD(t, j), j)−
∫ T

t
J(t, bD(t, j), u, bD(u, αu), αu)du, (50)

for 0 ≤ t ≤ T , where

F (t, x, j) = E
[
(K −XT )

+
∣∣∣αt = j,Xt = x

]
(51)

and

J(t, x, u, bD(u, αu), αu) = E
[
LXV (u,Xu, j)I(Xu < bD(u, j))

∣∣∣αt = j,Xt = x
]
, (52)

for 0 ≤ t ≤ T and x ∈ (0,∞).

Proof. From Relation (16), we see that V (t, x, j) ≥ Gµc(t, x, j) for all (t, x, j) ∈
[0, T ]× (0,∞)×M and recall the continuation set

C = Dc = {(t, x, j) ∈ [0, T ]× (0,∞)×M
∣∣∣ V (t, x, j) > Gµc(t, x, j)}.

Noting that the stopping time τD = τD(t, x, j) defined in (21) is optimal for (16), we have

V (t, x, i) = E
[
e−rτGµc(t+ τD, Xt+τD , j)

∣∣∣ αt = i,Xt = x
]
.

It is well known from the theory of Markov processes that V (t, x, i) is C1,2 in the contin-
uation set and it solves the Cauchy-Dirichlet free-boundary problem{

LXV (t, x, j) = 0, (t, x, j) ∈ C
V (t, x, j) = Gµc(t, x, j), (t, x, j) ∈ ∂C,

(53)

where ∂C is the boundary of the open set C. By the local time space formula of [4], we
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have

V (T,XT , j) = E
[
(K −XT )

+
∣∣∣αt = j,Xt = x

]
= V (t, x, j) + E

[
M b

t

∣∣∣ αt = j,Xt = x
]

+ E

[∫ T

t
LXV (u,Xu, αu)I(Xu ̸= bD(u, αu))du

∣∣∣αt = j,Xt = x

]
+

1

2
E

[∫ T

t

(
∂V

∂y
(u,Xu+, αu)−

∂V

∂y
(u,Xu−, αu)

)
I(Xu = bD(u, αu)dℓ

b
u(X

x)
∣∣∣αt = j,Xt = x

]
(54)

whereM b
t =

∫ T

t
σ(αu)Xu

∂V

∂x
dWu is a continuous local martingale and ℓb = (ℓbu(X

x))t≤u≤T

is the local time of Xx = (Xu)t≤u≤T at the curve u 7→ bD(u, j). Using that
∂Gµc

∂x
(t, x, j) =

−P(x ≤ K) ≤ ∂V

∂x
(t, y, j) ≤ 0 for all t ∈ [0, T ), it can easily be verified from Proposition

4.4, page 45 in [1] that E
[
M b

t

]
= 0. By the smooth-fit property shown in Lemma 7,

the last two terms in (54) above vanishes. Furthermore, by (53) above and the fact that
V = Gµc in the closed set D, equation (54) becomes

E
[
(K −XT )

+
∣∣∣αt = j,Xt = x

]
= Gµc(t, x, j)

+

∫ T

t
E
[
LXV (u,Xu, αu)I(Xu < bD(u, αu))

∣∣∣αt = j,Xt = x
]
du. (55)

Substituting x with bD(t, j), we have

Gµc(t, bD(t, j), j) = E
[
(K −XT )

+
∣∣∣αt = j,Xt = bD(t, j)

]
−
∫ T

t
E
[
LXV (u,Xu, αu)I(Xu < bD(u, αu))

∣∣∣αt = j,Xt = bD(t, j)
]
du

= F (t, bD(t, j), j)−
∫ T

t
J(t, bD(t, j), u, bD(u, αu), αu).

4. Conclusion and Recommendations

This paper extends the results for British put option that was introduced by G. Peskir
and F. Samee (2011) by considering stochastic volatility, particularly in a regime-switching.
We have shown that the boundary function satisfies the Volterra equation, instead of
deriving the closed form expression for the arbitrage-free price for the British put option.
For further studies, a similar extension may be done for the British call option. In addition,
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one may provide a practical implication of this study.
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